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Abstract

A material network consists of discrete material nodes, which, when interacting, can repre-
sent complex microstructure responses. In this work, we investigate this concept of material
networks under the viewpoint of the hierarchical network interactions. Within this viewpoint,
the response of the material network is governed by a well-defined system of equations and
an arbitrary number of phases can be considered, independently of the network architecture.
The predictive capability is achieved by, on the one hand, sufficiently deep and rich network
interactions to tie the discrete material nodes together, and, on the other hand, an efficient
offline training procedure. For this purpose, a unified and efficient framework for an arbitrary
network architecture is developed, not only for the offline training, but also for the online
evaluation. The efficiency and prediction accuracy of the material network as a surrogate of a
homogenization-based multiscale model in predicting the stress-strain response in both con-
texts of a virtual test and of FE2 multiscale simulations are demonstrated through numerical
examples with two-phase and three-phase fiber-reinforced composites.

Keywords: Deep material network, Finite strain, Data driven, Closed form implementation

1. Introduction

When performing numerical simulations in mechanics, the definition of a constitutive
model governing the stress-strain response is a key role to solve the underlying boundary value
problem. On the one hand, single-scale models can be derived using phenomenological or
physical arguments to capture the physics of the problems. The significant problem with these
constitutive models consists in the prediction errors, which could arise by the fact that the
real material behavior is so complex that it cannot be accurately captured by a simple model
or by the difficulty in identifying the parameters. On the other hand, when considering the
simulations of large-scale heterogeneous structures, multiscale models are widely developed
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to incorporate the information from the material microstructure and constitutive behaviors
at the lower scales through a homogenization process, see reviews by [1, 2]. These so-called
homogenization models provide closed forms of the constitutive relationships at the structural
scale while remaining of reduced computational cost as compared to the direct numerical
simulations that embed the microstructural details.

Among the existing different multiscale methods, computational homogenization (so-
called FE2) is the most versatile homogenization method since it can be applied on a large
variety of heterogeneous material systems using a full-field finite element discretization of the
micro-structure [3, 4]. In this framework, at each material point of the macro-scale Bound-
ary Value Problem (BVP), a microscopic BVP is defined on a representative volume element
(RVE) extracted from the material microstructure at that point. With a suitable boundary
condition defined from the kinematic variables (e.g. strains), this lower-scale BVP is solved
yielding the homogenized quantities (e.g. stresses). Even though a relative coarse mesh is
used at the macro-scale, extreme events involving large deformations and nonlinearities re-
quire solving a larger number of microscopic BVPs and lead to intractable computation time
and memory that make this approach infeasible for simulations of large-scale heterogeneous
structures.

A popular remedy to alleviate the computation cost in the FE2 scheme is to substitute the
microscopic BVPs by Reduced Order Models (ROM), which balance the computational cost
and accuracy [5, 6, 7, 8, 9, 10, 11, 12]. The governing equations can be solved with a reduced
number of degrees of freedom in a reduced-order space based on full-field analyzes by means
of proper orthogonal decomposition of the displacement field; this step is possibly followed by
a so-called hyper-reduction in order to reduce the evaluation of the internal variables, see the
review in [13] for a complete discussion. Within the context of multiscale simulations, the use
of ROMs allows obtaining a considerably reduced computational cost [6, 9, 11]. Although
ROMs show significant computational benefits, they can become inefficient for the cases
involving high nonlinearities. Indeed, the computational efficiency is not really improved by
several orders of magnitude because of the computational cost related to the assembly of the
reduced residuals unless a hyper-reduction stage follows, but whose accuracy can be limited
for highly non-linear models.

Meanwhile, Machine Learning (ML) models, e.g. Artificial Neural Networks (ANN),
have received an increasing attention in the field of computational mechanics. Thanks to the
capability of the ML models to act as universal approximators, the complex input-output
relationships representing the constitutive behavior can be approximated in disregard of any
physical arguments through a training step using data obtained from offline simulations.
The ANNs can either be used to replace different parts of single-scale constitutive models,
e.g. evolution laws of internal variables [14, 15] or they can serve as complete constitutive
laws [16, 17, 18]. In the context of the FE2 scheme, ANN-based surrogate models have
been extensively used. In elasticity and nonlinear elasticity, the so-called feed-forward ANNs
can be used to construct the homogenized strain energy surface from which the stress-strain
relationship can be derived [19, 20] or to directly approximate this stress-strain relationship
[21, 22, 23]. Although the feed-forward ANNs have been shown to be reliable surrogate
models in these history-independent cases, the difficulty arises with irreversible behaviors,
e.g. plasticity, in both the ANN architecture and offline training since the information moves
only along one direction. As a result, the material response under complex loading conditions
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(e.g. unloading, reloading) cannot be captured. Nevertheless, the inputs of the feed-forward
ANNs can be enriched by the ones related to the strain paths, e.g. length of strain paths,
to introduce the history-dependency [24]. Recently, Recurrent Neural Networks (RNN) have
been used in [25, 23, 26, 27, 28] to approximate the history-dependent homogenized stress-
strain relationships with accuracy, thanks to their ability to account for the information
about what has been computed so far. Although these ANN-based surrogate models provide
a promising speedup, the prediction could be inaccurate when extrapolating beyond the
offline sampling space, which is not easily built large enough when dealing with irreversible
material responses since this requires a large amount of offline simulations.

Recently, the concept of Deep Material Network (DMN) was pioneered in [29] as a novel
data-driven modeling technique for two-phase heterogeneous materials. Based on two-phase
laminates of given orientations serving as mechanistic building blocks, a binary hierarchical
topological structure, so-called DMN, is created. During the training process for a fixed mi-
crostructure, this DMN is able to “learn”, not only the contribution of its constituents, but
also its constituents interactions. Once trained, the DMN handles well extrapolation, since it
is able to predict nonlinear material behaviors both accurately and efficiently although only
linear elastic data were used during the offline training. The online evaluation of the DMN is
obtained through a forward homogenization process and a backward de-homogenization pro-
cess of the linearization of the stress-strain behavior. This DMN was applied to 3-dimensional
microstructures [30] and interface failure [31] showing that the predicted stress-strain curves
are close to direct numerical simulation results. The theoretical basis of the DNM from the
viewpoint of the classical small-strain micromechanics was investigated in [32], from which
the rotation-free DMNs and a new online evaluation technique based on the energy mini-
mization statement were proposed. Only one direction characterizing the laminate direction
was considered in the rotation-free DMNs, leading to a smaller number of degrees of free-
dom compared to the micro-orientation defined by three angles in the original version [29].
More complex micro-mechanical models such as mean-field homogenization in the mechanis-
tic building blocks was also recently considered for woven composite materials [33], allowing
reducing the needed number of blocks to a few couples.

The aim of this work is to derive the DMN theory under the viewpoint of network inter-
actions with the following highlights:

• A material network is formed from discrete material nodes as a surrogate of a computa-
tional micro-structural models with an arbitrary kinematic assumption. Consequently,
a well-defined system of DMN governing equations can be derived and allows easily
estimating the response of the material network during the online stage.

• Not only the stress measure but also the tangent operator are computed in a closed
form way as the output of the DMNs. As a result, the DMNs can be considered as an
efficient surrogate model for estimating the stress-strain relationships in FE2 multiscale
simulations.

• A complete and efficient offline training procedure is proposed for material networks,
in which an arbitrary architecture and an arbitrary number of physical phases of the
micro-structure can be considered.
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The paper is organized as follows. In Section 2, the theory of homogenization-based
multiscale model is briefly recalled. In Section 3, the micromechanics-based material network
structure is introduced in the context of the network interactions and the unified framework
is detailed. A complete and efficient offline training procedure for the material network is
proposed in Section 4. The accuracy and computational efficiency of the proposed framework
are demonstrated through various numerical examples with two-phase and three-phase fiber-
reinforced composites in Section 5.

2. Homogenization-based multiscale model

The goal of a homogenization-based multiscale model is to derive constitutive relations
from the resolution of a microscopic boundary value problem (BVP). This microscopic BVP
is defined by a representative volume element (RVE) V0 whose boundary is ∂V0, by an
appropriate boundary condition, and by the constitutive models of the different phases. The
microscopic BVP is usually formulated using classical continuum under the assumption of the
separation of scales, in which the characteristic length of the microscopic BVP is much smaller
than the one of the macro-scale [3]. In this section, the theory of the homogenization-based
multiscale model in the context of finite strains is briefly summarized.

At a material point X ∈ V0, the deformation gradient F is given by

F = x⊗∇0 , (1)

where ∇0 is the gradient operator with respect to the microscopic reference configuration and
x is the position of the material point X ∈ V0 in the current configuration. In the absence of
dynamic effects, the equilibrium state of the microscopic BVP is governed by the following
equations

P ·∇0 = 0 ∀x ∈ V0 and (2)

P ·N = T ∀x ∈ ∂V0 , (3)

where P is the microscopic first Piola-Kirchhoff stress tensor and T is the surface traction
per unit reference surface on the boundary ∂V0 whose outward unit normal N is expressed in
the reference configuration. The RVE consists of P constituents, also called physical phases
in this paper, whose mechanical behaviors are explicitly provided by

P (t) = Pp (F (t) ,Z (t)) and evolution laws for Z , (4)

for p = 0 , . . . , P − 1, and where Z is a set of internal variables defined to follow the history-
dependent processes.

The macroscopic deformation gradient F̄ and first Piola-Kirchhoff stress P̄ are related to
their microscopic counterparts by the following equations

〈F〉V0
= F̄ , (5)

〈P〉V0
= P̄ , and (6)

〈P : δF〉V0
= P̄ : δF̄ , (7)
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where 〈•〉V0
= 1

V0

∫
V0
• dV denotes the averaging operator over V0. Equations (5, 6) are respec-

tively the averaging strain and stress identities. Equation (7) is the Hill-Mandel condition,
which corresponds to the requirement of energy consistency between the different scales.

In the context of strain-driven homogenization, F̄ is known and P̄ is sought. From the
value of F̄, the boundary condition of the microscopic BVP is defined in such a way that
Eqs. (5, 7) are satisfied a priori. The microscopic BVP is solved and the homogenized stress
P̄ is computed following Eq. (6). In order to solve the microscopic BVP, a perturbation field
ξ is introduced over V0 such that

ξ = x− F̄ ·X . (8)

Consequently, Eq. (1) can be rewritten as

F = F̄ + ξ ⊗∇0 , (9)

where ξ⊗∇0 represents the fluctuation deformation gradient. Equation (5) therefore implies∫
∂V0

ξ ⊗N dA = 0 . (10)

By using the strong form stated by Eqs. (2, 3) and performing an integration by parts, Eq.
(7) is rewritten as ∫

V0

P : (δξ ⊗∇0) dV =

∫
∂V0

T · δξ dA = 0 . (11)

In order to resolve the strong form stated by Eqs. (2, 3) under the constraints described by
Eqs. (10, 11), a minimal kinematic vector field is defined as

Umin (V0) =

{
ξ|
∫
∂V0

ξ ⊗N dA = 0

}
. (12)

Using the Hill-Mandel condition (11), the weak form of the microscopic BVP is stated as
finding ξ ∈ U (V0) ⊆ Umin (V0) such that∫

V0

P : (δξ ⊗∇0) dV = 0 ∀δξ ∈ U (V0) , (13)

where U (V0) is either a subset of or the set Umin (V0). It is noted that the resolution of
this weak form (13) automatically fulfills the Hill-Mandel condition stated by Eq. (11). The
space U (V0) is obtained by defining a specific boundary condition kinematically stronger
than Umin (V0), e.g. linear displacement boundary condition, minimal kinematic boundary
condition, periodic boundary condition [34]. In this work, the periodic boundary condition
is employed because of its good convergence rate in terms of the microstructure RVE size
[35, 36]. The kinematic space for the periodic boundary condition is given by

U (V0) =
{
ξ|ξ
(
X+
)

= ξ
(
X−
)
∀X+ ∈ ∂V +

0 and corresponding X− ∈ ∂V −0
}
, (14)
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where ∂V +
0 and ∂V −0 are two non-overlapping and separate parts of the boundary ∂V0. The

weak form (13) coupled with the constitutive laws specified in Eq. (4) can be solved using
the finite element method.

To summarize, in the context of the homogenization-based multiscale approach, the ho-
mogenized stress P̄ is estimated from F̄ following:

• An RVE V0 is chosen with its discretization;

• The kinematic space U (V0) is chosen. The application of the periodic boundary con-
dition on non periodic micro-structures follows the interpolation method proposed in
[37].

• For a given F̄ history, the constrained microscopic BVP (13) is iteratively solved using
at the micro-scale the constitutive laws (4) as detailed in [38].

• The extraction of P̄ follows Eq. (6). When this model is used within a macroscopic finite
element simulation as a constitutive law, the homogenized tangent operator L̄ = ∂P̄

∂F̄

needs to be estimated in order to perform the macro-scale Newton-Raphson iterations.
The estimation of L̄ can be found in [38].

From the computational point of view, the homogenization-based multiscale model acts as
the usual constitutive laws. Its explicit form generally cannot be achieved, but the stress-
strain relationship is always available through the resolutions of the microscopic BVP. This
technique provides an accurate prediction as it enables the incorporation of both geometrical
and material nonlinearities. However, the finite element simulations with embedded compu-
tational homogenization-based models, so-called FE2 simulations, need to perform a large
number of the iterative resolutions of the microscopic BVP (at all macro-scale Gauss points
and for all macroscopic Newton-Raphson iterations), for which an intractable computation
time is required. In order to speed up the multiscale analysis, a surrogate model needs to be
considered to replace the costly homogenization-based multiscale model.

3. Micromechanics-based material network

In this section, a micromechanical viewpoint of the concept of material networks is pro-
vided. A material network is built from a list of discrete nodes and the definition of their
interactions. These interactions are expressed in terms of fitting parameters, which are
identified through an offline training stage. Such interactions can be obtained with the hi-
erarchical tree architectures considered in [29, 30, 32], from which the predictive capability
of these models can be explained. Furthermore, the interaction viewpoint in this work al-
lows, not only easily evaluating the response of material networks, thus seen as a surrogate,
through the resolution of the governing equations, but also considering an arbitrary number
of physical phases independently of the tree architecture. In this section, the theory of the
micromechanics-based material network is introduced.
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3.1. Governing equations of material networks

Let us consider K, a list of indexes, representing N discrete material nodes indexed from
0 to N − 1 as

K = [0 , 1 , . . . , N − 1] . (15)

An arbitrary material node i ∈ K possesses

• a positive weight W i in order to quantify its contribution into the network; and

• a physical state, consisting of the deformation gradient Fi, the first Piola-Kirchhoff
stress Pi, and internal state Zi, which is governed by a constitutive law.

In the remaining of this paper, the superscript “i” is used to refer to the node i ∈ K.
Assuming that there exists a homogenization-based multiscale model defined on an RVE

V0 is decomposed into N parts V i
0 , where V i

0 is associated to the node i, with i = 0 , . . . , N−1.
One thus has

V i
0

V0

=
W i

S (K)
with i = 0 , . . . , N − 1 , (16)

where S (•) is the weighted sum operator defined on the list of indexes • of an arbitrary
material network as

S (•) =
∑
i∈•

W i . (17)

Each part V i
0 ∈ V0 corresponds to the material node i in a homogenization sense in which

Eqs. (5, 6, 7) are postulated, yielding

Fi = 〈F〉V i
0
,Pi = 〈P〉V i

0
, and Pi : δFi = 〈P : δF〉V i

0
, (18)

where 〈•〉V i
0

= 1
V i
0

∫
V i
0
• dV denotes the averaging operator over V i

0 . As a result, Eqs. (5, 6,

7) can be rewritten under discrete forms

1

S (K)

N−1∑
i=0

W iFi = F̄ , (19)

1

S (K)

N−1∑
i=0

W iPi = P̄ , and (20)

1

S (K)

N−1∑
i=0

W iPi : δFi = P̄ : δF̄ . (21)

The behavior of each material node is governed by a material law specified in Eq. (4). For
the material node i with i = 0, . . . , N − 1, the local stress Pi and the internal variables Zi

are estimated from the current deformation gradient Fi (and previous values of the internal
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variables) as

Pi (t) = Ppi
(
Fi (t) ,Zi (t)

)
and evolution laws for Zi , (22)

where pi denotes the phase index of the material node i.
Equations (19, 20, 21) govern the response of the material network with F0 , . . . ,FN−1

being unknowns. The interactions between these material nodes must be introduced to
tie them together and to close the problem statement. Inspired from the work [32], these
interactions are obtained through a so-called interaction mapping I, which is defined by

I :
(
a0 , . . . , aM−1

)
→

(
F0 , . . . ,FN−1

)
(23)

: Fi = F̄ +
M−1∑
j=0

αi,jaj ⊗Gj with i = 0 , . . . , N − 1 ,

where M is the number of interaction mechanisms defined by the DMN structure, where αi,j

and the M unit vectors Gj with i = 0 , . . . , N − 1 and j = 0 , . . . ,M − 1 are the fitting
parameters supposed to be known, e.g. following an offline training stage, and where the M
vectors aj with j = 0 , . . . ,M−1 are the new unknowns substituting to the local deformation
gradients Fi with i = 0 , . . . , N − 1. For a mechanism j at node i, the unit normal vector Gj

characterizes the interaction direction while aj characterizes the interaction incompatibility.
Hereafter, Gj and aj are called as the interaction direction and interaction incompatibility
vector, respectively. The interaction mapping (23) is equivalent to Eq. (9) since the local
deformation gradient Fi at a material node is also decomposed into a homogeneous part
F̄ and a fluctuation part

∑M−1
j=0 αi,jaj ⊗Gj from which the interaction with other material

nodes is defined.
Using the interaction mapping described in Eq. (23), Eqs. (19, 21) can be respectively

rewritten as

M−1∑
j=0

(
N−1∑
i=0

W iαi,j

)
aj ⊗Gj = 0 , and (24)

M−1∑
j=0

[(
N−1∑
i=0

W iPiαi,j

)
·Gj

]
· δaj = 0 . (25)

Equations (24, 25) represent respectively the constrained kinematic space and the weak form
from which the solution of this material network can be found. An obvious choice to fulfill
Eq. (24) a priori is

N−1∑
i=0

W iαi,j = 0 with j = 0 , . . . ,M − 1 . (26)

In this last equation, a mechanism j is characterized by a list of values
[
α0,j , . . . , αN−1,j

]
,

which can be chosen as functions of the values of W i with i = 0 , . . . , N − 1 and satisfies Eq.
(26). A particular choice for this mechanism will be detailed in the next section. Because of
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Eq. (26), Eq. (24) is satisfied independently to the values of aj. As a result, one can choose
a0, a1, . . . , aM−1 being independent. Equation (25) therefore results in the following system
of M equations (

N−1∑
i=0

W iPiαi,j

)
·Gj = 0 with j = 0 , . . . ,M − 1 . (27)

It is noted that the resolution of Eq. (27) automatically fulfills the Hill-Mandel condition
stated by Eq. (21). The homogenized stress P̄ is estimated following Eq. (20) as an observ-
able quantity.

Equation (26) is an inevitable condition of the underlying framework to fulfill a priori
Eq. (19) which is equivalently stated by the strain averaging theorem often employed in the
homogenization theories. It is noted that the governing equations (19, 20, 21, 22) of the
DMN do not rely on any assumption about the number of material phases, the nature of
their constitutive behaviors, or the kinematic formalism (i.e. small strain or large strain).
Although the framework is written in the large strain formalism, the small strain formalism
is naturally obtained by considering the stress measure as the Cauchy stress. In the next
section, the condition (26) is satisfied through the definition of the network interactions,
i.e. for each j = 0 , . . . ,M − 1, α0,j, . . . , αN−1,j are defined as functions of W 0 , . . . ,WN−1

satisfying Eq. (26).
Eventualy, a material networkM is defined as a network of material nodes indexed in K

with their interactions defined through the interaction mapping I. The homogenized stress
P̄ is estimated from F̄ in the context of the material network following

• The set of N material nodes, with their parameters W i and M interaction mecha-
nisms characterized by αi,j and Gj with i = 0 , . . . , N − 1 and j = 0 , . . . ,M − 1, are
determined from an offline stage.

• The governing equation (27) is iteratively solved in terms of the unknowns ak, with
k = 0 , . . . ,M − 1, as detailed in Section 3.4 of this work.

• The extraction of P̄ follows Eq. (20). When this model is used within a macro-
scale finite element simulation as a constitutive law, the homogenized tangent operator
L̄ = ∂P̄

∂F̄
needs to be estimated in order to perform the Newton-Raphson iterations. The

estimation of L̄ is detailed in Section 3.4 of this work.

3.2. Network interactions

The network interactions are defined to satisfy a priori Eq. (26). From Eq. (23), one can
define an interaction mechanism j, with j = 0, . . . ,M − 1, as the pair (αj,Gj) in which αj

is given as

αj =
[
α0,j, . . . , αN−1,j

]
, (28)

and satisfies a priori Eq. (26). The list of these M interaction mechanisms is denoted by H
with

H =
[(
α0,G0

)
, . . . ,

(
αM−1,GM−1

)]
, (29)
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which gathers all the fitting parameters of the material network and is assumed to be deter-
mined from an offline training stage.

A network interaction corresponds to the creation of one or more interaction mechanisms.
For a material networkM with a nodes list indexed in K, each network interaction is defined
by making a connection either between two sub-lists of material nodes extracted from K,
leading to a two-list interaction, or, more generally, between n (with n ≥ 2) sub-lists of
material nodes extracted from K, leading to an n-list interaction (also-called multiple-list
interaction if the value of n > 2 is not mentioned). A two-list interaction results into a single
interaction mechanism while an n-list interaction results into n− 1 interaction mechanisms.
These network interaction types are sketched in Fig. 1 and detailed subsequently.

To build all interaction mechanisms for the material network M, H starts as an empty
list. Once a network interaction is created, its resulting interaction mechanisms are appended
to H. Without loss of generality, in this section, one assumes that a network interaction
indexed by m induces nm− 1 mechanisms indexed by qm, . . . , qm +nm − 2, where qm denotes
the starting index of the mechanisms associated to the network interaction m, i.e. qm =∑m−1

k=0 (nk−1). Assuming the existence of L network interactions, one has
∑L−1

m=0(nm−1) = M .

...

(a) (b)

Figure 1: Sketch of a network interaction indexed by m of nm sub-lists inducing nm− 1 mechanisms indexed
by qm, . . ., qm + nm − 2: (a) a two-list interaction and (b) a multiple-list interaction as an extension of the
two-list interaction. Nm denotes the interaction direction.

Let us first consider a list of material nodes K with two of its arbitrary nonempty and
non-overlapping sub-lists Km,0 and Km,1 of material nodes, i.e. Km,0 6= ∅, Km,1 6= ∅, and
Km,0 ∩ Km,1 = ∅. The network interaction between Km,0 and Km,1, the so-called two-list
interaction, following the direction Nm, the so-called interaction direction, as sketched in
Fig. 1(a), results into an interaction mechanism characterized by a pair (αqm ,Gqm), in which
Gqm = Nm and αqm can be obtained by choosing the values of αi,qm with i ∈ K satisfying
Eq. (26) following

αi,qm =



1

S (Km,0)
if i ∈ Km,0 ,

−
1

S (Km,1)
if i ∈ Km,1 , and

0 if i ∈ K\ (Km,0 ∪ Km,1) ,

(30)
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since S (Km,0) =
∑

i∈Km,0 W i and S (Km,1) =
∑

i∈Km,1 W i. Following Eq. (23), this interac-
tion contributes to the deformation gradient of each material node in the network by

In Km,0 :
1

S (Km,0)
aqm ⊗Nm ,

In Km,1 : −
1

S (Km,1)
aqm ⊗Nm , and

In K\ (Km,0 ∪ Km,1) : 0 .

(31)

As a result, Eq. (27) can be rewritten as[
1

S (Km,0)

∑
i∈Km,0

W iPi − 1

S (Km,1)

∑
i∈Km,1

W iPi

]
·Nm = 0 , (32)

in which 1
S(Km,0)

∑
i∈Km,0 W iPi and 1

S(Km,1)

∑
i∈Km,1 W iPi represent respectively the average

stresses in Km,0 and Km,1. The last equation implies the balance between these two average
stresses following the direction Nm.

The two-list interaction can be directly extended into a general case of nm (with nm ≥ 2)
non-overlapping and nonempty sub-lists Km,0, Km,1, . . ., Km,nm−1 of K, i.e. Km,k 6= ∅ ,Km,k∩
Km,l = ∅ with k = 0, . . . , nm − 1, l = 0, . . . , nm − 1, and l 6= k. By assuming a unique vector
Gqm for a given multiple-list interaction or nm-list interaction, the latter can be obtained by
applying nm − 1 two-list interactions of nm − 1 pairs of two consecutive sub-lists Km,k and
Km,k+1 with k = 0, . . . , nm − 2 following the direction Nm as sketched in Fig. 1(b). This
network interaction results into nm − 1 different interaction mechanisms as[

(αqm ,Gqm) , . . . ,
(
αqm+nm−2,Gqm+nm−2

)]
, (33)

in which Gqm = . . . = Gqm+nm−2 = Nm and αqm+k with k = 0, . . . , nm − 2 can be obtained
by choosing the values of αi,qm+k with i ∈ K satisfying Eq. (26) following

αi,qm+k =



1

S (Km,k)
if i ∈ Km,k ,

−
1

S (Km,k+1)
if i ∈ Km,k+1 , and

0 if i ∈ K\
(
Km,k ∪ Km,k+1

)
,

with k = 0, . . . , nm − 2 . (34)

Following the interaction mapping (23), the contribution of this interaction to the deformation
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gradient in each material node of Km,k with k = 0, . . . , nm − 1 reads

In Km,0 :
1

S (Km,0)
aqm ⊗Nm ,

In Km,1 :
1

S (Km,1)
(aqm+1 − aqm)⊗Nm ,

...

In Km,nm−1 :
1

S (Km,nm−1)
(−aqm+nm−2)⊗Nm , and

In K\ (Km,0 ∪ . . . ∪ Km,nm−1) : 0 .

(35)

As a result, Eq. (27) yields[
1

S (Km,k)

∑
i∈Km,k

W iPi − 1

S (Km,k+1)

∑
i∈Km,k+1

W iPi

]
·Nm = 0 with k = 0, . . . , nm − 2 , (36)

where 1

S(Km,k)

∑
i∈Kj,k W iPi represents the average stress in Km,k. The last equation implies

the balance between these nm averaging stresses following the direction Nm.
In the following sections, one assumes that the material network M of a list of material

nodes K is built with L network interactions leading to M interaction mechanisms. All the
interaction directions are stored in a list of vectors as

N =
[
N0 , . . . ,NL−1

]
. (37)

Once all the network interactions are defined, the interaction mechanisms given in Eq. (29)
are known as functions of the weights W i for i ∈ K and the interaction directions N .

3.3. Hierarchical interaction-based deep material network

The basic concept of the deep material network (DMN) is to use a collection of con-
nected material nodes to describe the complex response of microstructured materials [29]. In
this work, the DMN is built from an arbitrary list of material nodes by specifying multiple
hierarchical network interactions. This strategy can be described as follows:

• At the lowest level (so-called level 0), each material node is separately found in a
separate sub-list.

• Once a network interaction is formed, a merged sub-list is defined as the union of all
the sub-lists participating to this network interaction. This merged sub-list is then used
as a sub-list in a network interaction at the upper level.

• At current level (level c with c ≥ 1), multiple network interactions are created by form-
ing multiple n-list interactions between n sub-lists, with the former n-list interactions
corresponding to the merged sub-lists of the lower level (level c − 1) for c > 1. These
network interactions are non-overlapping, i.e. a sub-list at the level c− 1 cannot take
part in two different network interactions at the level c. This recursive procedure stops
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when all the material nodes of the material network under consideration are found in
one unique merged sub-list.

An example of this strategy for 10 material nodes is illustrated in Fig. 2(a). First, at level
0, 10 material nodes are separately present. Then, at level 1, 5 non-overlapping two-list
interactions are created. Next, at level 2, a two-list interaction and a three-list interaction
are created from the merged sub-lists of the interactions at the level 1. Finally, at the level
3 (the highest level), the merged sub-lists of the two interactions existing at the level 2 are
used to define a unique two-list interaction. These hierarchical network interactions can be
arranged under a tree architecture, as shown in Fig. 2(b) for the data reported in Fig. 2(a).
It is noted that the leaves of the tree correspond to material nodes while regular nodes,
i.e. nodes having children nodes, of the tree correspond to the network interactions. The
notations “depth”, “interaction level”, and “position” are also reported for each interaction.
Clearly, each node of this tree corresponds to a material network, subsequently called sub-
material network in order to distinguish with the material network under consideration, with
a corresponding number of material nodes.

(a) (b)

Figure 2: Example of an interaction-based deep material network of 10 material nodes: (a) interaction level
definition and (b) equivalent tree architecture in which the blank nodes represent network interactions while
filled nodes correspond to material nodes; the number inside each node corresponds to the number of nodes
in the respective interaction; the notations “depth”, “interaction level”, and “position” of an interaction are
also reported.

In a hierarchical network structure as shown in Fig. 2, a depth list, denoted by Dd at the
depth d, can be defined by including the lists of indexes of all sub material networks at the
same depth d, with

Dd :
[
K0

d , . . . ,K
Td−1
d

]
for d = 0 , . . . , dmax , (38)

where Td is the number of sub material networks at the depth d and dmax denotes the deepest
depth of the material network. Each sub-material network at the deepest depth, i.e. Ddmax ,
contains only one material node. When the number of sub-lists in each network interaction
is fixed to a unique value of n ≥ 2, with the total number of material nodes being N = ndmax ,
a perfect n-tree of the deepest depth dmax is obtained.

An arising question is how to link the N material nodes of the material networkM with
P physical phases whose behaviors are governed by P constitutive laws provided by Eq. (4).
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For a multiple-list interaction at the level 1 consisting of n material nodes, the condition
n ≤ P must be respected when designing a network interaction and two possibilities are
distinguished:

• if n = P , the P constitutive laws are then randomly distributed into these P material
nodes; and

• if n < P , n constitutive laws are randomly taken from the total P constitutive laws and
these n constitutive laws are then randomly distributed into these n material nodes.

We can find in Figs. 3(a) and (b) respective illustrations of the distribution for 2 and 3
physical phases, i.e. 2 and 3 constitutive laws, into the tree structure sketched in Fig. 2(b).

1

10

4 6

2 2

11 11 11

2

1 1

2

1

2

1

10

4 6

2 2

11 11 11

2

1 1

2

1

2

(a) (b)

Figure 3: Random distribution of P physical phases for the material network sketched in Fig. 2(b): (a)
P = 2 (colored in red and green, respectively) and (b) P = 3 (colored in red, green, and cyan, respectively).

A small number of material nodes in a DMN allows reducing the computational cost
during both the offline training and the online predictions, but this decreases the accuracy.
To find a necessary number of material nodes for a given microstructure, different DMN
architectures should be tested by increasing the number of material nodes until reaching a
required accuracy. Once the architecture of the DMN is initialized, its fitting parameters are
randomly initialized as well. As a result, the volume fractions of the physical phases in the
DMN do not necessarily correspond to the values in the microstructure under consideration.
However, after training, the original volume fractions are recovered for a sufficiently large
number of material nodes [29]. It is noted that the model compression, e.g. nodal deletion
and sub-tree merging, can be used to reduce the number of material nodes, from which the
training process can be accelerated [29, 30, 33]. Such an optimization procedure however is
not considered in the current framework.

The accurate predictive capability of the DMN presented in the works [29, 30, 32] was
explained by the suitable presence of network interactions. In contrast to these works, in
the herein developed interaction-based viewpoint, the response of the material network is
governed by a micromechanics-based system of equations and an arbitrary number of phases
can be considered independently of the network architecture, which can also be an arbitrary
hierarchical tree. Moreover, this interaction-based strategy allows facilitating the network
evaluation as it will be detailed in the next section.

In summary, the hierarchical interaction-based DMN is viewed as a trainable system
involving fitting parameters:
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• The weights of the material nodes W i satisfying W i > 0, ∀i ∈ K; and

• The interaction directions N consisting of L unit normal vectors: Nm with m =
0, . . . , L− 1 as described in Section 3.2.

It is noted that the values of αi,j in Eq. (23) are known from the values of W i when
specifying the network interactions. In order to make this DMN become a surrogate of a
full-field model, it must be trained to identify these fitting parameters by minimizing a loss
function as detailed in Section 4.

3.4. Material network evaluation

Let us consider the material network M of N material nodes given by a list of indexes
K. The governing equations of this DMN are provided in Section 3.1. Assuming that the
weights W i for i ∈ K and the interaction directions N are known following a training stage,
see Section 4 for details, from which all the interaction mechanisms H as described in Eq.
(29) are available, the unknowns of the DMN involve only the M vectors aj considered in
Eq. (23). These unknown vectors are collected in a column vector denoted by A as

A =
[(

aj
)T

for j = 0 , . . . ,M − 1
]T

. (39)

In a kinematically driven and finite strain framework, the input of the DMN is the ho-
mogenized deformation gradient F̄ while the outputs consist of the homogenized first Piola-
Kirchhoff stress P̄ and of the homogenized tangent operator

L̄ =
∂P̄

∂F̄
. (40)

The estimation of the tangent operator L̄ is mandatory when integrating the DMN in a mul-
tiscale finite element setting as a surrogate model predicting the local stress-strain behavior.
The evaluation of a DMN follows an iterative resolution with the following steps:

(i) Downscaling : the homogenized deformation gradient tensor F̄ is propagated downward
to all the material nodes through the network interactions specified by Eq. (23), leading
to the deformation gradient at each material node, which depends not only on F̄ but
also on A. The local constitutive law of each material node, Eq. (4), allows estimating
the local stresses and tangent operators.

(ii) Nonlinear system resolution: the balance equation (27) is evaluated. If a convergence
criterion is not yet satisfied, the unknown vector A is updated by solving the lin-
earization of the system of equations (27) and the resolution continues with step (i).
Otherwise, the step (iii) follows.

(iii) Upscaling : the homogenized stress P̄ and the homogenized tangent operator L̄ (if
required) are computed.

These three steps are detailed in the following sections. For the ease of implementation,
the bijective operators vec (•) and mat (•) are introduced in order to convert second-order
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tensors (e.g. F and P) and fourth order tensors (e.g. L = ∂P
∂F

) respectively into vectors and
matrices while preserving the tensor operations through matrix-vector multiplications, see
Appendix A for details.

3.4.1. Downscaling

Using the unknown vector A defined by Eq. (39), the interaction mapping described by
Eq. (23) can be rewritten for a material node i ∈ K under the vector form

vec
(
Fi
)

= vec
(
F̄
)

+ DiA ∀i ∈ K , (41)

where vec (•) is the vector representation operator of an arbitrary second-order tensor, see
Appendix A for details, and Di is a row-block matrix depending only on the weights and
interaction directions,

Di =
[
αi,jRj for j = 0, . . . ,M − 1

]
. (42)

In the last equation, Rj is a 9 × 3 matrix constructed from Gj when converting a dyadic
tensor product into a matrix-vector operation, i.e.

vec
(
aj ⊗Gj

)
= Rjaj , (43)

where

Rj =

Gj
0 0 0 Gj

1 0 0 Gj
2 0 0

0 Gj
0 0 0 Gj

1 0 0 Gj
2 0

0 0 Gj
0 0 0 Gj

1 0 0 Gj
2

T

. (44)

From the local deformation gradient estimated by Eq. (41) at each material node, the
material constitutive law associated to this node as defined by Eq. (4) is used to estimate the
local stress Pi and the internal variables Zi. This is achieved with an appropriate integration
scheme in the time interval [t−∆t , t] from the current deformation gradient Fi and the
internal variables of the previous converged solution Zi (t−∆t), or in other words{

Pi (t) = P̂
i
(Fi (t) ,Zi (t−∆t))

Zi (t) = Q̂
i
(Fi (t) ,Zi (t−∆t))

∀i ∈ K , (45)

where t and ∆t denote respectively the current time and time step. We assume that the local
tangent operator Li = ∂Pi

∂Fi is available under the form of a closed form expression, which can
be obtained by linearization of any material model.

3.4.2. Nonlinear system resolution

Using the matrix Di expressed in Eq. (42), the residual vector of the system of M
equations described by the system (27) can be rewritten as

r =
∑
i∈K

W i
(
Di
)T

vec
(
Pi
)
. (46)
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The convergence is achieved if the following condition is satisfied:

||r||∞ < τ abs or ||r||∞ < τ rel||r0||∞ , (47)

where || • ||∞ represents the infinity norm operator, τ abs and τ rel are respectively the absolute
and relative tolerances, and r0 is the initial residual. In this work, τ abs = 10−12 and τ rel = 10−6

are considered.
If the condition (47) is not satisfied, the unknown vector A is corrected with

δA = −K−1r and A← A + δA , (48)

where K is the Jacobian matrix

K =
∂r

∂A
. (49)

Using Eqs. (41, 45, 46), Eq. (49) can be rewritten as

K =
∑
i∈K

W i
(
Di
)T

mat
(
Li
)

Di , (50)

where mat (•) is the matrix representation operator of a fourth order tensor, see Appendix
A for details.

3.4.3. Upscaling

The homogenized stress tensor P̄ is computed by Eq. (20). If the DMN is considered in
an iterative multiscale simulation as a constitutive law, the homogenized tangent operator L̄
also needs to be estimated following Eq. (40). Using Eqs. (20, 41), Eq. (40) yields

mat
(
L̄
)

=
1

S (K)

∑
i∈K

W imat
(
Li
)

+ Y ∂A

∂vec
(
F̄
) , (51)

where

Y =
1

S (K)

∑
i∈K

W imat
(
Li
)

Di . (52)

In order to estimate L̄ following Eq. (51), the matrix ∂A

∂vec(F̄)
needs to be computed. To this

end, the consistency of Eq. (46) is expressed as

δr =
∑
i∈K

W i
(
Di
)T

mat
(
Li
) (

vec
(
δF̄
)

+ DiδA
)

= 0 . (53)

This last equation allows computing

∂A

∂vec
(
F̄
) = −K−1X , (54)
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where K is given by Eq. (50) and

X =
∑
i∈K

W i
(
Di
)T

mat
(
Li
)
. (55)

Equation (54) is a linear system of multiple-right hand side and the matrix K was previously
used to solve the system of Eq. (48). Since the solution of Eq. (48) often follows a direct
factorization procedure for K, the resolution of the multiple-right hand side system (54) is
then performed using this factorized matrix at a reduced computational time [38].

Equation (51) can be rewritten under the form of a Schur complement as

mat
(
L̄
)

= J −YK−1X , (56)

where J = 1
S(K)

∑
i∈KW

imat (Li). If the tangent operators of all material nodes are sym-

metric, i.e. (mat (Li))
T

= mat (Li) ∀i ∈ K, which is the case for an elastoplastic model
relying on an elastic potential and an associative plastic flow rule, one has

Y =
1

S (K)
X T and mat

(
L̄
)

= J − 1

S (K)
X TK−1X , (57)

implying that the tangent operator mat
(
L̄
)

is also symmetric. In the general case, the
tangent operator mat (Li) is not necessarily symmetric and the symmetry of mat

(
L̄
)

is thus
not guaranteed.

3.4.4. Summary

For a material network M indexed in K, and assuming its weights and its network in-
teractions H have been determined, the resolution framework for estimating its response is
summarized as follows:

(I) Initialization:

(i) assemble A following Eq. (39);

(ii) initialize A = 0;

(iii) assemble Di ∀i ∈ K following Eq. (42).

(II) Evaluation at time t with a time step ∆t for the current value of F̄ (t), and knowing
the values of A (t−∆t) and the history data at material nodes Zi (t−∆t), ∀i ∈ K, at
the previous converged solution (at time t−∆t):

(i) initialize A(t) = A (t−∆t) and Zi (t) = Zi (t−∆t), ∀i ∈ K;

(ii) downscale F̄(t) and A(t) following Eq. (41);

(iii) evaluate the local constitutive law at all material nodes following Eq. (45), yielding
Pi (t), Zi (t), and Li (t), ∀i ∈ K;

(iv) evaluate the residual r following Eq. (46);

(v) if the convergence criterion following Eq. (47) is achieved go to (viii); else go to
(vi);

(vi) correct the value of A(t) following Eq. (48);
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(vii) go to (ii);

(viii) compute the homogenized stress P̄(t) following Eq. (20);

(ix) compute the homogenized tangent operator L̄(t) following Eq. (51) if required;

(x) store A(t) and history data Zi (t) at all material nodes for the next step;

(xi) exit.

4. Machine learning algorithm for tuning the network parameters

In Section 3, we have provided the theory of the DMN from the network interaction view-
point, assuming that the fitting parameters consisting of the weights and network interaction
parameters were known. In order to make a DMN become a surrogate of the full-field reso-
lution of the homogenization problem described in Section 2, the DMN must be trained to
identify these fitting parameters.

The original homogenization model described in Section 2 is defined by i) a microstructure
topology, ii) the microscopic boundary condition on the RVE, and iii) the constitutive laws of
the underlying constituents. Since the theory of DMNs focuses on the topological learning,
the first two aspects, i) and ii), of the homogenization problem can be replaced by the
network of discrete material nodes with their interactions. In other words, the microstructure
and microscopic boundary condition in the full-field model are represented by the fitting
parameters of the DMN, and as a result the latter can be identified by an offline training.
This work follows the training strategy proposed in [29], in which it was shown that it is
enough to consider the homogenized material tensor, at zero-strain, in order to train the
DMN. To be complete, the point iii) of the homogenization problem, i.e. the constitutive
laws of the underlying constituents, is explicitly accounted for by the DMN during the on-
line simulations by using the same constitutive models in the corresponding DMN material
nodes.

As a result, the fitting parameters result from an optimization process conducted using
machine learning algorithms with a training dataset consisting of the homogenized material
tensors at zero-strain obtained by full-field simulations. This training dataset is obtained
from offline simulations with the full-field model, in which the different constituents are char-
acterized by their own material tensor. These constituent material tensors are not physical
but artificially and randomly generated in order to form a large dataset and are considered
to be orthotropic in order to reduce the dimension of the sampling space and to ease the ran-
dom generation process [29, 30]. Another possibility based on a rank-one perturbation was
considered in [39], in which the structure of the stiffness matrices encompasses the possible
algorithmic tangents of J2-elastoplasticity.

Although the training framework of two-phase composites can be found in [29, 32], the
training procedure is detailed in this section in the case of an arbitrary number of physical
phases and of an arbitrary DMN architecture. A complete training procedure consists of the
followings steps:

• First, the fitting parameters of the DMN are explicated.

• Then, the procedure to build a training dataset is summarized.
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• Next, a fast algorithm is proposed to estimate, not only the homogenized material
tensor of the DMN, but also its derivatives with respect to the fitting parameters. The
latter allows considering an arbitrary gradient-based optimizer for the training process.

• Finally, the training procedure based on a simple adaptive scheme of the stochastic
gradient descent is provided to minimize a cost function defined on the training dataset.

These steps are detailed as follows.

4.1. Fitting parameters

Let us consider the DMNM of N material nodes K as described in Section 3. Its fitting
parameters consist of the weights of the material nodes W i, ∀i ∈ K, and of the interaction
directions N defined by L unit normal vectors Nm with m = 0, . . . , L − 1. However, the
positiveness of the weights, i.e. W i > 0, ∀i ∈ K, and the unit length nature of the interactions
directions, i.e. Nm ·Nm = 1 with m = 0, . . . , L− 1, have to be enforced during the training
process, implying that a constrained minimization problem needs to be considered. In order
to avoid this constrained minimization, and thus to ease the training process that relies on
a gradient descent algorithm, ad hoc changes of variables are considered. In particular, each
weight of a material node is considered as a function whose image is in the positive range,
and each interactions direction is expressed through an angle parametrization.

First, the condition W i > 0, ∀i ∈ K, must be satisfied in order to obtain a valid con-
tribution of that material node into the network. To enforce this condition, the rectified
linear unit (abbreviated by “relu”) was considered in [29]. However, the use of relu leads to
the “death” of nodes with a gradient-based training algorithm, i.e. when a weight becomes
negative, its gradient vanishes and this node is never reactivated again. To avoid dead nodes,
this work considers the smoothed version of relu, abbreviated by “relus (•)”, as

y =
1

s
ln (1 + esx) = relus (x) , (58)

where s is the sharpness, see Fig. 4 for the influence of s on relus (•). When s→∞, the relu
activation function is recovered. In the remaining of the paper, the value s = 10 is used. As
a result, a weight W i is obtained through a function of a fitting parameter zi as

W i = relus
(
zi
)
, ∀i ∈ K . (59)

A positive value of W i is always guaranteed since the output of relus (•) is always positive.
Then, since any unit vector can be expressed in terms of either the polar angle in a

bidimensional state or the spherical angles in a general 3-dimensional state, the vector Nm

is rewritten by

Nm =


[
cos (2πϕm) sin (2πϕm) 0

]T
in plane strain ,[

cos (2πϕm) sin (πθm) sin (2πϕm) sin (πθm) cos (πθm)
]T

otherwise ,
(60)

with [ϕm θm] ∈ [0 1)× [0 1] being normalized angles. The relationship above allows defining

20



2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0

y

relu, s
smoothed relu, s=10
smoothed relu, s=3
smoothed relu, s=1

Figure 4: Activation function.

the operator angle (•) by

angle (N) =

{
[ϕ] in plane strain ,

[ϕ θ]T otherwise ,
(61)

for any arbitrary unit vector N. As a result, these normalized angles are considered as the
tuning parameters instead of directly using the interaction directions.

Finally, all the fitting parameters of the DMN are then assembled in a vector F as

F =
[
zi ∀ i ∈ K (angle (N))T ∀N ∈N

]T
. (62)

4.2. Dataset for training

Considering a composite material of P physical phases (P ≥ 2), the constitutive law of
each material node corresponds to one these P phases. Assuming that at the training stage,
the response of each material node is characterized by a material tensor C(p) with p chosen
among 0, . . . , P − 1, the response of the whole network is characterized by a homogenized
material tensor, denoted by C̄, whose explicit form is given by Eq. (51). As a result, one has
the following relation

C̄︸︷︷︸
output

= C̄

C(0), . . . ,C(P−1)︸ ︷︷ ︸
input

; F︸︷︷︸
fitting parameters

 , (63)

where the fitting parameters vector F is described by Eq. (62). In order to identify F for a
given microstructure V0, a training dataset of input-output pairs must be created. Following
the expression (63), one has

• input: X =
[
C(0), . . . ,C(P−1)

]
; and

• output: Y = C̄.
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Since Eq. (63) is viewed as a universal input-output relation, the values C(0), . . . ,C(P−1) do
not need to be the physical ones of the physical phases following Eq. (4). For this purpose,
following [29], Ns samples of the input, i.e. Xs with s = 0 , . . . , Ns − 1, are first randomly
generated. The number of elements Ns required in the training dataset to train the DMN
depends on the number of fitting parameters, and consequently, depends on the complexity
of the microstructure. A more complex microstructure requires a higher number of samples
Ns. In numerical applications considered in Section 5, the value of Ns is specified for each
microstructure. Then the corresponding outputs, i.e. YDNS

s with s = 0 , . . . , Ns − 1, are
obtained as the homogenized tangent operators of a microscopic boundary value problem
defined over V0 using the periodic boundary condition, see [38] for implementation details.

In order to take advantage of the symmetric property of the material tensor C, a bijective
operator [•] is introduced to convert a fourth-order material tensor into a symmetric matrix
following Voigt’s notations, we refer to Eq. (B.4) in Appendix B.1 for details. Using this
operator, a fourth order tensor C becomes either a 3 × 3 symmetric matrix in plane strain
state or a 6 × 6 symmetric matrix in a general three-dimensional state. The generation of
the training dataset is summarized as follows:

(I) initialize the full-field computational homogenization model:

(i) create the finite element mesh of the microstructure with P phases;

(ii) define the periodic boundary condition;

(II) for s from 0 to Ns − 1:

(i) generate randomly P material tensors C(0), . . . ,C(P−1) leading to an input sample
Xs of the P phase material tensors of the microstructure. The generation proce-
dure for general 3-dimensional problems can be found in [30], in which P material
tensors are generated through randomly generating the Young’s moduli and Poi-
son ratios of an arbitrary orthotropic material tensor. The particular plane strain
state is reported in Appendix B.2;

(ii) assign these P random material tensors to the P phases in the microstructure;

(iii) compute the corresponding homogenization material tensor YDNS
s = C̄DNS using

the full-field computational homogenization model. The computation details can
be found in [38];

(iv) append the pair
(
Xs,YDNS

s

)
in the training dataset.

4.3. Efficient evaluation of the homogenized material tensor for DMN training

In order to accelerate the training process, an efficient evaluation of Eq. (63) is necessary
since this function must be evaluated at each sample of the training dataset. Theoretically,
the DMN homogenized material tensor C̄ can be directly computed by Eq. (51). However,
the computation of the derivative of C̄ with respect to the fitting parameters F required for a
gradient-based training algorithm needs a considerable computation time because of the large
number of operations. For a fast evaluation, a recursive strategy was considered in [29] for a
perfect binary tree structure, in which the homogenized behavior is obtained by recursively
applying depth-by-depth the analytical homogenization solution of a two-phase composite
from its deepest depth. This work follows a similar strategy with the analytic solution of
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each network interaction, but generalizes it in order to estimate the material tensor of an
arbitrary tree architecture.

Let us consider a DMN M of a list of material nodes indexed in K and with the fitting
parameters F and let us consider an arbitrary sub-list Kp

d located at a depth d and position
p in the DMN tree structure as illustrated in Fig. 2. Since Kp

d is also a list of indexes
of a material network, one can define the operator C̄ (Kp

d;F) to indicate the homogenized
material tensor of Kp

d for a given F . In order to estimate C̄ (Kp
d;F), one can distinguish two

possibilities:

• If Kp
d contains only one material node i, one directly has

C̄ (Kp
d;F) = Ci , (64)

where Ci is the material tensor at that material node i.

• If Kp
d contains more than one material node, there exists a network interaction m whose

interaction direction is Nm and which is created from np
d (np

d ≥ 2) non-overlapping sub-
lists Krm+k

d+1 with k = 0 , . . . , np
d − 1 and rm =

∑p−1
k=0 n

k
d being the location of the first

sub-list of this interaction at the depth d+ 1. One has thus

Kp
d = Krm

d+1 ∪ . . . ∪ K
rm+np

d−1

d+1 . (65)

This network interaction leads to the following relation[
C̄p

d

]
= Hnp

d

([
C̄rm

d+1

]
, . . . ,

[
C̄rm+np

d−1

d+1

]
, fp,0

d , . . . , f
p,np

d−1

d ,Nm
)
. (66)

In this last equation, the notation C̄ (Ks
r;F) is replaced by C̄s

r for an arbitrary mate-
rial network Ks

r for simplicity; the bijective operator [•] is introduced to convert this
symmetric fourth-order tensor into a symmetric matrix following Voigt’s notations, see
Appendix B.1 for details; Hnp

d
is a functional operator used to refer the case of np

d

sub-lists; and

fp,k
d =

S
(
Krm+k

d+1

)
S (Kp

d)
for k = 0 , . . . , np

d − 1 . (67)

The analytical evaluation of Eq. (66) is provided in Appendix B.3.

The homogenized material tensor can be obtained as

C̄ = C̄ (K;F) ≡ C̄0
0 , (68)

by using recursively depth-by-depth Eq. (66) until all the sub-lists contain only one material
node, for which the material tensor is known. With this process, not only the value of C̄ but
also its derivative ∂C̄/∂F can be estimated, see the details reported in Appendix B.4.

4.4. Offline training procedure

Considering Ns input-output pairs serving as the training dataset described in Section
4.2, the fitting parameters identified in Section 4.1 are obtained though an optimization
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process. A gradient descent-based method can be found in [29] in which a large number of
training steps are needed in order to reach the required accuracy. In this work, a simpler and
faster training algorithm using an adaptive scheme of the stochastic gradient descent (SGD)
is investigated.

4.4.1. Cost function and its gradient with respect to the fitting parameters

For each data point (Xs,YDNS
s ), with Xs =

[[
C(0)

s

]
, . . .

[
C(P−1)

s

]]
and YDNS

s =
[
C̄DNS

s

]
,

in the training dataset, a relative error between the results predicted by the DNS and by the
DMN is measured by

Cs (F) =
||
[
C̄DNS

s

]
−
[
C̄DMN

s

]
||F

||
[
C̄DNS

s

]
||F

, (69)

where
[
C̄DMN

s

]
=
[
C̄DMN

s

]
(Xs; F) is obtained using Eq. (63) and || • ||F represents the

Frobenius norm. The cost function is defined over the training dataset as

Cg (F) =
1

Ns

Ns−1∑
s=0

Cs (F) , (70)

where Ns is the size of the training dataset. To investigate the overfitting, a validation set
consisting of Nv samples is also created. The prediction error in this validation set is also
estimated using Eq. (70).

The gradient of the error (69) with respect to the tuning parameters must be estimated
in the context of the gradient descent algorithm. One has

gs =
∂Cs

∂F =

(
1

||
[
C̄DNS

s

]
||F

[
C̄DNS

s

]
−
[
C̄DMN

s

]
||
[
C̄DNS

s

]
−
[
C̄DMN

s

]
||F

)
◦
∂
[
C̄DMN

s

]
∂F , (71)

where
∂[C̄DMN

s ]
∂F is a block vector whose components are matrices with the dimension of

[
C̄DMN

s

]
and ◦ represents the element-wise product of the previous matrix with each component of

the block vector. Using the procedure described in Section 4.3, the term
∂[C̄DMN

s ]
∂F required in

Eq. (71) is easily computed, see Appendix B.4.

4.4.2. Fast training algorithm with stochastic gradient descent

In this training algorithm, the gradient of the cost function (70) is approximated by the
gradient error on a single sample and the learning rate is adapted in order to reduce the loss
function. The input parameters of the training algorithm includes

• the maximum number of training steps Nmax;

• the maximum and minimum learning rates ηmax and ηmin; and

• the learning rate adaptive factor κ.

The training algorithm is detailed as follows:
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(I) initialization:

(i) initialize the values of F0 following uniform distributions, yielding

F0 =
[
zi ∈ U (0.2, 0.8) ∀i ∈ K (angle (N))T ∈ [U (0, 1)]d ∀N ∈N

]T
, (72)

where U (a, b) stands for a uniform distribution in the range [a, b], and d is the
number of components in angle (N); the values of zi, ∀i ∈ K, are normalized with
the total weights S (K) as

zi ← zi

S (K)
, ∀i ∈ K ; (73)

(ii) compute the initial cost function Cg
0 using Eq. (70);

(iii) initialize the learning rate η = ηmax;

(II) for l from 0 to Nmax − 1:

(i) initialize F l+1 = F l;

(ii) apply the stochastic gradient descent algorithm on the Ns training samples:
for s from 0 to Ns − 1:

(a) compute the gradient gs of the sample s with respect to F l+1 using Eq. (71);

(b) update F l+1 using the gradient gs and the learning rate η following

F l+1 ← F l+1 − ηgs . (74)

(iii) compute the cost function Cg
l+1 using Eq. (70);

(iv) compute the validation loss using Eq. (70) with the validation dataset;

(v) check convergence: if an early stopping criterion exists and if it is satisfied: set
Nmax = l + 1 and go to (III);

(vi) check Cg
l+1 ≤ Cg

l ; if true go to (viii);

(vii) modify the learning rate η = max(κη, ηmin) and go to (i);

(viii) go to next training step: l← l + 1;

(III) exit.

In this work, we use ηmin = 10−4, ηmax = 1 and κ = 0.8. The value Nmax can vary depending
on the required training error and can be adapted on the fly by defining an early stopping
criterion. Since the gradient of the loss function is easily computed, it is always possible
to consider an arbitrary gradient-based optimizer, see e.g. [40] for different possibilities.
Anyway, the stochastic gradient descent optimizer works well in this current framework as
demonstrated through different examples in the next section. Moreover, the learning rate
adaptation allows avoiding oscillations although a large initial value of the learning rate, i.e.
ηmax = 1, is used. The learning rate decay factor κ can be arbitrarily chosen smaller than 1,
but should not be too small in order to avoid a large drop in the learning rate.
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5. Numerical applications

5.1. Material network architecture

Although this work can employ an arbitrary tree structure, only the following two types
will be investigated.

Firstly, we consider a perfect tree denoted by

T perfect (n, dmax) , (75)

in which n ≥ 2 denotes the number of sub-lists in all the network interactions and dmax ≥ 2
is the deepest depth of the tree. The value of ndmax represents the total number of material
nodes. With P being the number of physical phases, the condition P ≥ n ≥ 2 must be
satisfied in order to avoid the interactions of the material nodes with the same material
behavior at the first level of interactions. This condition implies that an arbitrary perfect
n-tree can be used for any P ≥ n. Figure 5 sketches the architectures of T perfect (2, 4) and
T perfect (3, 3) as examples of perfect trees.

1 6

8 8

4 4 4 4

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 7

9 9 9

3 3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1

(a) T perfect (2, 4) (b) T perfect (3, 3)

Figure 5: Examples of a perfect tree: (a) T perfect (2, 4) and (b) T perfect (3, 3).

Secondly, we consider a random tree denoted by

T rand
(
N, nmax,1 , nmax

)
, (76)

in which N is the number of material nodes, nmax, 1 is the maximal number of the sub-lists
at the first level of the network interaction, and nmax is the corresponding value at the other
levels. The minimum number of sub-lists in a network interaction is equal to 2. Consequently,
the number of the sub material networks in each network interaction is randomly taken: (i)
between 2 and its maximum value nmax, 1 for the first level of interaction and (ii) between 2
and nmax for other levels. The two parameters nmax, 1 and nmax are considered in order to
discriminate the interaction conditions at the first level and at the other levels. Indeed, at the
first level, the condition 2 ≤ nmax, 1 ≤ P , with P being the number of physical phases, must
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be satisfied in order to avoid defining an interaction between two material nodes obeying to
the same material model. At a higher level, the value of nmax is only constrained by the
condition nmax ≥ 2. Since the tree architecture is totally random, different architectures can
be obtained with the same parameters N , nmax, 1, and nmax. Figure 6 shows two different
realizations of T rand (30, 3, 4). There exist many other possibilities to create a random tree
but this is beyond the scope of the current work.
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3 3 2
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3

1 11 1 11 1 111 1 1 11 1

3 0

1 2

1 1

3 3 3

11

(a) T rand (30, 3, 4), 1st realization (b) T rand (30, 3, 4), 2nd realization

Figure 6: Examples of random trees: (a) T rand (30, 3, 4), 1st realization and (b) T rand (30, 3, 4), 2nd realization.

Once the tree structure is available, the constitutive laws of the different constituents can
be assigned to the material nodes as previously discussed in Section 3.3. Both perfect and
random material networks are considered in this section to represent different fiber-reinforced
composites. To identify the fitting parameters of these material networks, the offline training
requires only the homogenized material tensor at zero-strain of the network, as explained in
Section 4. The offline training dataset is artificially and randomly generated by considering
random material tensors for the material phases. During the online predictions, the complete
and physical material models of the microstructure constituents are considered. The matrix
behavior is governed by a finite strain J2 elastoplastic model, see Appendix C for details,
while the fibers obey a finite strain bi-logarithmic elastic law, which corresponds to the finite
strain J2 elastoplastic model without plasticity2. To obtain the offline training data and
the reference solutions of the online predictions for comparison purpose, direct numerical
simulations (DNS) are performed using the resolution strategy of the constrained micro-scale
finite element problem as detailed in [38]. The periodic boundary condition is considered for
a general mesh setting following the interpolation method [37]. All the processes, including
both the offline training and the online predictions, are performed on a single cpu.

2A very high value of the initial yield stress governing the onset of the plastic stage is considered.
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5.2. Offline training for various microstructures

The material networks are trained for the unidirectional fiber-reinforced composite ma-
terials (abbreviated by UDC material) in the cases of two-phase and three-phase materials
under a plane strain state and for short fiber-reinforced composite materials (abbreviated by
SFC material) in the case of a two-phase material under a general three dimensional state.
The number of epochs for training is first set to a value of 50 and then extended by a value
of 50 each time. The training stops when the loss is not much improved.

The finite element meshes of the two-phase and three-phase UDC microstructures are
shown in Figs. 7(a) and (b), respectively. For the two-phase microstructure, see Fig. 7(a),
the volume fraction of the fibers is equal to 39.9% and the finite element mesh consists of
2237 six-node triangular elements. For the three-phase microstructure in which round and
elliptic fibers are present as two different fiber types, see Fig. 7(b), the volume fractions of
the round and elliptic fibers are equal to 22% and 15.1%, respectively and the finite mesh
consists of 5502 six-node triangular elements.

X

Y

Z

X

Y

Z

(a) (b)

Figure 7: UDC material - investigated microstructures: (a) two phases (39.9% fibers) and (b) three phases
(20% round fibers and 15.1% elliptic fibers).

The finite element mesh of the SFC microstructure is shown in Fig. 8, in which the
ellipsoid fibers are embedded in a matrix. The volume fraction of the fiber is equal to 20.66%
and the finite element mesh consists of 12724 uadratic tetrahedral elements.

(a) (b)

Figure 8: SFC material - investigated microstructure: (a) overall view and (b) fibers only.

The use of the non-periodic microstructures in Figs. 7(a) and Fig. 8 in this study is
motivated by the fact that the spatial arrangement of fibers in a real composite microstructure
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is normally not periodic. This corresponds to the case encountered when the microstructure
is directly extracted from real materials, e.g. via the Scanning Electron Microscope (SEM)
[41].

5.2.1. Two-phase UDC microstructure

For the two-phase UDC microstructure, see Fig. 7(a), a dataset of 300 samples is gen-
erated for the offline training. This data is divided into a training dataset consisting of 200
samples and a validation dataset consisting of 100 samples.

Histories of the average training and validation errors are reported in Fig. 9 using 50
epochs with different network architectures. Figure 9(a) represents the results with the
perfect binary trees. When the number of material nodes reaches 25 = 32, an average
error smaller than 1% is obtained. Figure 9(b) represents the results with three different
realizations of the random tree T rand (64, 2, 3). The average error after 50 epochs is also
smaller than 1% for all these three cases showing that a number of 64 material nodes is high
enough for a good prediction. Average errors smaller than 1% are also obtained with different
random architectures of 64 material nodes as shown in Fig. 9(c). When considering material
networks with a limited number of material nodes, e.g. T perfect (2, 3) and T perfect (2, 4) in Fig.
9(a), the average training and validation errors stabilize with relatively high values.
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Figure 9: Two-phase UDC microstructure - training histories under plane strain state after 50 epochs: (a)
perfect trees and (b, c) random trees as compared to T perfect (2, 6). Continuous and dashed lines represent
respectively the average training and validation errors. The 1%-error line is also reported for comparison
purpose.
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The training histories are also summarized in Tab. 1. The reached fiber volume faction is
very close to the value of 39.9% of the microstructure used for training. Moreover, the training
time is relatively small. The most time consuming case corresponds to the T perfect (2, 7) tree
and is only 74 seconds.

Table 1: Two-phase UDC microstructure - training results for different DMN architectures. The number of
epochs Nmax, number of fitting parameters Nf , training time T , averaging training error Cg, train, averaging
validation error Cg, test, and the predicted fiber volume fraction Vf of the DMN are reported.

DMN Nmax Nf T Cg, train Cg, test Vf
T perfect (2, 3) 50 15 5s 3.28% 3.72% 39.84%
T perfect (2, 4) 50 31 10s 2.13% 1.86% 40.30%
T perfect (2, 5) 50 63 19s 0.90% 0.92% 40.02%
T perfect (2, 6) 50 127 37s 0.55% 0.64% 39.97%
T perfect (2, 7) 50 255 74s 0.38% 0.45% 39.97%

T rand(64, 2, 3), 1st 50 116 41s 0.56% 0.82% 39.98%
T rand(64, 2, 3), 2nd 50 116 38s 0.66% 0.75% 40.05%
T rand(64, 2, 3), 3rd 50 116 41s 0.54% 0.57% 39.98%
T rand(64, 2, 4) 50 112 31s 0.65% 0.67% 40.00%
T rand(64, 2, 5) 50 109 32s 0.69% 0.87% 40.01%

5.2.2. Three-phase UDC microstructure

For the three-phase UDC microstructure, see Fig. 7(b), a dataset of 500 samples is
generated for the offline training. This data is divided into a training dataset consisting
of 400 samples and a validation dataset consisting of 100 samples. Since three phases are
present in this microstructure, this work considers not only the perfect ternary trees, i.e.
T perfect (3, •) with • being a number ranging from 3 to 7, but also perfect binary trees, i.e.
T perfect (2, •) with • being a number ranging from 6 to 9, and random trees. The random trees
in this section are limited to the cases T rand (•, 3, 3) with • being a number ranging from 81
to 729. This section aims at demonstrating the statement of Section 3 in which the material
network is formed from the viewpoint of the network interaction so that an arbitrary number
of phases can be considered for a given architecture.

Histories of the average training and validation errors of the different network architectures
are reported in Fig. 10 using 100 epochs for the different network architectures. Figure 10(a)
represents the results with the perfect ternary trees. When the number of material nodes
reaches 36 = 729, the average error becomes smaller than 1%. As demonstrated in Fig. 10(b)
for the prefect binary trees, an average error smaller than 1% is also obtained for a number
of material nodes larger than 28 = 256. The results with two different realizations of the
random tree T rand (•, 3, 3) with • being successively 81, 243, 512, and 729 are shown in Figs.
10(c) and (d), in which an average error smaller than 1% is also obtained for a number of
material nodes larger than 512. Generally, a network with limited number of material nodes
cannot correctly capture the full-field response. The training process therefore stabilizes with
a higher error when the number of material nodes decreases.
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Figure 10: Three-phase UDC microstructure - training histories under plane strain state after 100 epochs: (a)
perfect ternary trees, (b) perfect binary trees, and (c, d) random trees. Continuous and dashed lines represent
respectively the average training and validation errors. The 1%-error line is also reported for comparison
purpose.

The training histories for this three-phase UDC microstructure are also summarized in
Tab. 2. The reached fiber volume factions of the round and elliptic fibers are very close to the
values of 20% and 15.1% of the microstructure used for training, we refer to Fig. 7(b) for this
microstructure. Thanks to the efficient training framework, the training time is relatively
small with a wide range of the number of material nodes, e.g. the T perfect (3, 7) tree with
2187 material nodes requires only 1h 18min to complete the training process. The training
time for all other cases is smaller than 35 minutes. Clearly, the error of 1% can be obtained
with different network architectures as long as the number of material nodes is sufficiently
high to obtain rich enough network interactions.

5.2.3. Two-phase SFC microstructure

For the two-phase SFC microstructure, see Figs. 8(a) and (b), a dataset of 500 samples
is generated for the offline training. This data is divided into a training dataset consisting of
400 samples and a validation dataset consisting of 100 samples.

Histories of the average training error and of the average validation error are reported
in Fig. 11 using 200 epochs with perfect binary and random trees. From the errors of the
binary trees reported in Fig. 11(a), it can be seen that a good accuracy can be achieved
with 27 = 128 and 28 = 256 material nodes. For the random trees with the two different
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Table 2: Three-phase UDC microstructure - training results for different DMN architectures. The number of
epochs Nmax, number of fitting parameters Nf , training time T , averaging training error Cg, train, averaging
validation error Cg, test, and the predicted fiber volume fractions Vf of round and elliptic fibers of the DMN
are reported.

DMN Nmax Nf T Cg, train Cg, test Vf round Vf elliptic
T perfect (3, 3) 100 40 1min 6s 4.73% 4.77% 20.50% 14.75%
T perfect (3, 4) 100 121 2min 6s 2.71% 2.8% 21.43% 14.90%
T perfect (3, 5) 100 364 12min 2s 1.24% 1.33% 21.93% 15.03%
T perfect (3, 6) 100 1093 26min 28s 0.90% 0.84% 22.01% 15.00%
T perfect (3, 7) 100 3280 1h 18min 0.69% 0.67% 21.90% 15.12%

T perfect (2, 6) 100 127 1min 48s 1.41% 1.50% 21.92% 15.13%
T perfect (2, 7) 100 255 3min 44s 0.93% 1.01% 22.07% 15.01%
T perfect (2, 8) 100 511 11min 2s 0.88% 0.92% 21.97% 15.09%
T perfect (2, 9) 100 1023 20min 21s 0.72% 0.71% 21.98% 15.08%

T rand (81, 3, 3) , 1st 100 133 3min 45s 1.78% 1.66% 22.00% 15.00%
T rand (81, 3, 3) , 2nd 100 133 3min 43s 1.40% 1.59% 21.95% 15.10%
T rand (243, 3, 3) , 1st 100 403 10min 15s 0.98% 1.03% 22.00% 14.99%
T rand (243, 3, 3) , 2nd 100 403 10min 30s 1.11% 1.01% 21.99% 15.08%
T rand (512, 3, 3) , 1st 100 859 19min 11s 0.89% 0.96% 21.98% 15.10%
T rand (512, 3, 3) , 2nd 100 859 19min 11s 0.89% 0.96% 21.98% 15.10%
T rand (729, 3, 3) , 1st 100 1221 34min 35s 0.76% 0.91% 21.98% 15.07%
T rand (729, 3, 3) , 2nd 100 1223 30min 16s 0.82% 0.68% 21.94% 15.11%

realizations reported in Fig. 11(b), a similar accuracy can be obtained but this requires a
larger number of material nodes.

The training histories of this SFC microstructure are summarized in Tab. 3. The ob-
tained fiber volume faction is very close to the value of 20.66% of the microstructure used
for training. Since the matrix operations with full 3-dimensional material tensors must be
employed during the training process, the training time is much higher than the ones of the
UDC microstructures reported in Tabs. 1 and 2. A perfect binary tree requires less training
time compared to a random tree with the same number of material nodes as a result of the
three-list interactions present in the latter.

5.3. Online predictions of the trained material networks

The online predictions of the trained material network are carried out based on the
concept of the network interactions as detailed in Section 3.4. The material parameters of
the fibers and matrix are reported in Tab. 4, in which the elastic fibers are embedded in the
elastoplastic matrix without decohesion. Hard fibers are considered in the two-phase UDC
and SFC microstructures while both hard and soft fibers are considered, respectively for the
circular and elliptic inclusions, in the three-phase UDC microstructure. The microstructures
are subjected to cyclic uniaxial strain loadings: either a prescribed shear strain by imposing
the value of F01 or a prescribed tension strain by imposing the value of F00.
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Figure 11: SFC microstructure - training histories after 200 epochs: (a) perfect binary trees, and (b) random
trees. Continuous and dashed lines represent average respectively the training error and the average validation
error.

Table 3: SFC microstructure - training results for different DMN architectures. The number of epochs Nmax,
number of fitting parameters Nf , training time T , averaging training error Cg, train, averaging validation error
Cg, test, and the predicted fiber volume fraction Vf with the DMN are reported.

DMN Nmax Nf T Cg, train Cg, test Vf
T perfect (2, 5) 200 94 17min 4.95% 4.88% 19.32%
T perfect (2, 6) 200 190 35min 2.14% 2.06% 20.80%
T perfect (2, 7) 200 382 1h9min 1.03% 1.02% 20.58%
T perfect (2, 8) 200 766 2h10min 0.86% 0.90% 20.58%

T rand (128, 2, 3) , 1st 200 348 1h36min 1.47% 1.50% 20.64%
T rand (128, 2, 3) , 2nd 200 348 1h38min 1.43% 1.45% 20.49%
T rand (256, 2, 3) , 1st 200 684 3h13min 0.92% 0.95% 20.61%
T rand (256, 2, 3) , 2nd 200 684 3h5min 0.99% 1.00% 20.72%
T rand (512, 2, 3) , 1st 200 1384 6h 0.85% 0.88% 20.68%
T rand (512, 2, 3) , 2nd 200 1384 5h 0.79% 0.83% 20.58%

In the case of the two-phase UDC microstructure, the homogenized stress evolution in
terms of the prescribed homogenized strain is shown in Fig. 12 for the trained material
networks reported in Tab. 1. The corresponding full-field results (denoted by direct numerical
simulation -DNS) are also reported for comparison purpose. For all cases, the full-field results
are well reproduced by the material networks for a sufficiently high number of material nodes
(at least 32 for this microstructure). It is shown that the material network can capture the
nonlinear behavior of the composite material with much less degrees of freedom.

In the case of the three-phase UDC microstructure, the homogenized stress responses in
terms of the prescribed homogenized strain are shown in Fig. 13 for the trained material
networks reported in Tab. 2. It is shown that material networks with deeper and richer
interactions provide better predictions disregarding their architecture.

In the case of the two-phase SFC microstructure, the homogenized stress evolution curves
in terms of the prescribed homogenized strain are shown in Fig. 14 for the trained material
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Figure 12: Two-phase UDC microstructure - comparison of the results predicted by the material network
with different architectures and by the direct numerical simulation (DNS) under pure shear (a, c, e) and
tension (b, d, f).
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Figure 13: Three-phase UDC microstructure - comparison of the results predicted by the material network
with different architectures and by the direct numerical simulation (DNS) under pure shear (a, c, e, g) and
tension (b, d, f, h).
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Table 4: Material parameters for fibers and matrix

Bulk modulus Shear modulus Isotropic flow stress
K [GPa] µ [GPa] τy (γ) [MPa]

(γ - equivalent plastic strain)
Hard fibers 17.78 7.68 +∞
Soft fibers 0.13 0.7 +∞
Matrix 2.67 1.23 100 + 64γ

networks reported in Tab. 3. For all cases, the DNS is well captured by the material networks.

5.4. Computational cost

The use of the deep material networks allows accelerating the prediction of the microstruc-
ture nonlinear response. The computational efficiency in comparison with the full-field finite
element resolution (so-called direct numerical simulation - DNS) is characterized by a speedup
factor, which is defined as

Speedup =
TDNS

TDMN

, (77)

where TDNS and TDMN denote the wall-clock times required to complete DNS and DMN
predictions, respectively.

The computational time for generating the offline training dataset and for the direct
numerical simulations are summarized in Tab. 5. The three-dimensional finite element
simulations in the case of the SFC microstructure require much more computational time
than the two-dimensional finite element simulations of the UDC microstructures.

Table 5: Computational time for generating the offline training dataset and for the direct numerical simula-
tions (DNS).

Training Shearing DNS Tensile DNS
dataset (Ns) (Average) (Average)

Two-phase UDC 0.15h (300 samples) 0.25h 0.5h
Three-phase UDC 0.75h (500 samples) 0.4h 0.7h
Two-phase SFC 150h (400 samples) 12h 22h

The speedup obtained by the DMN is shown in Fig. 15 for the online predictions reported
in Figs. 12, 13, and 14 respectively for the two-phase UDC, three-phase UDC, and two-phase
SFC microstructures in comparison with their corresponding DNS reported in Tab. 5. It
can be seen that the DMN predictions are much faster than the DNS, especially for the
SFC microstructure with a speedup larger than 1000. A higher speedup is obtained with a
smaller number of the material nodes. When the number of the material nodes increases, the
speedup decreases as the number of material nodes reflects the complexity of the material
network, i.e. a larger number of material nodes leads to more degrees of freedom and more
evaluations of the local constitutive behavior. Although the DMN requires the creation of
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Figure 14: SFC microstructure - comparison of the results predicted by the material network with different
network architectures and by the direct numerical simulation (DNS) under pure shear (a, c, e) and tension
(b, d, f).
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the offline dataset and training, their use provides a promising computational efficiency since
the network is trained only once with the homogenised material tensors at zero-strain as data
and can subsequently be used as a predictive model for different constitutive behaviors and
loading paths.
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Figure 15: Speedup of DMNs: (a) two-phase UDC microstructure for the predictions reported in Fig. 12, (b)
three-phase UDC microstructure for the predictions reported in Fig. 13, and (c) two-phase SFC microstruc-
ture for the predictions reported in Fig. 14.

5.5. Two-scale simulation of an open-hole sample

The trained DMNs are now used as a reduced order model of the corresponding homog-
enization problem in a multiscale simulation. In this section, the simulation of an open
hole sample performed in [27] is reconsidered. The result obtained with a fully coupled FE2

analysis is compared to the ones obtained using the DMNs.

Table 6: Open-hole sample - material parameters for fibers and matrix in the multiscale simulation [27].

Bulk modulus Shear modulus Isotropic flow stress
K [GPa] µ [GPa] τy (γ) [MPa]

(γ - equivalent plastic strain)
Fibers 16.67 12.5 +∞
Matrix 2.5 1.15 100 + 20 [1− exp (−30γ)]
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Figure 16: Open-hole sample following [27]: (a) multiscale setting and (b) prescribed displacement at the
top boundary of the sample. The microstructure volume element corresponds to the one shown in Fig. 7(a)
in Section 5.2.
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Figure 17: Open-hole sample - comparison between the FE2 and the finite element simulation using the DMN
as a surrogate: reaction force versus prescribed displacement curves.

The multiscale setting of the open-hole sample is illustrated in Fig. 16(a). The sample
is loaded on its top edge under the prescribed displacement depicted in Fig. 16(b). Because
of the geometrical and loading symmetries, only one quarter of the sample is modeled. The
material properties of the matrix and fibers used in the work [27] are reported in Tab. 6.
Since the microscopic volume element used in the multiscale analysis was used to train the
DMNs in Section 5.2.1, these trained DMNs can be readily used in this section for the
multiscale analyzes, without requiring additional training although the material parameters
have changed. The reference solution, a concurrent FE2 analysis was conducted in [27] in
which the micromechanics model is solved using the finite element method in a concurrent
way with the macro-scale problem. The result in terms of the reaction force versus prescribed
displacement is reported in Fig. 17. The simulations obtained with successively T perfect (2, 3),
T perfect (2, 5), T perfect (2, 6), and T perfect (2, 7) are also depicted. The models T perfect (2, 3) and
T perfect (2, 5) overestimate the reference solution while the other two models T perfect (2, 6) and
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Figure 18: Open-hole sample - comparison between the FE2 and the finite element simulation using
T perfect (2, 7) as the surrogate: (a, b) distribution of the macroscopic Green-Lagrange equivalent strain Ēeq,
and (c, d) distribution of the macroscopic von Mises equivalent stress σ̄VM . The loading points A and B are
reported in Fig. 17.

T perfect (2, 7) provide good predictions.
Figure 18 compares the distributions of the macroscopic strain and stress obtained with

the FE2 simulation and with the simulation using T perfect (2, 7) as a surrogate. The macro-
scopic Green-Lagrange equivalent strain Ēeq and the macroscopic von Mises equivalent stress
σ̄VM distributions are depicted for two loading levels denoted by “Point A” and “Point B”
in Fig. 17 and are computed by

Ēeq =

√
2

3
Ēdev

GL : Ēdev
GL and σ̄VM =

√
3

2
σ̄dev : σ̄dev , (78)

with ĒGL =
1

2

(
F̄T · F̄− I

)
and σ̄ =

(
det F̄

)−1
P̄ · F̄T ,

where Ēdev
GL and σ̄dev are respectively the deviatoric parts of the macroscopic Green-Lagrange

strain tensor ĒGL and of the macroscopic Cauchy stress tensor σ̄, and F̄ and P̄ are respec-
tively the macroscopic deformation gradient and the first Piola-Kirchhoff stress tensors. It
can be seen that the model using T perfect (2, 7) as a surrogate can predict the strain and stress
distributions in good agreement with the ones of the FE2 simulation. At “Point A”, the strain
and stress distributions obtained with these two models are almost identical as shown in Figs.
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Figure 19: Open-hole sample - local equivalent plastic strain computed for the macroscopic point close to
the hole in the high strain region: (a, b) predicted by the micro-scale BVP resolution of the FE2 analysis,
and (c, d) at the material nodes of the DMN surrogate, in which case the circle sizes represent the volume
fractions of the material nodes. The loading points A and B are reported in Fig. 17.
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18(a) and (c). At “Point B”, while the stress distributions are similar as seen in Fig. 18(d),
the model using T perfect (2, 7) as a surrogate slightly underestimates the strain distribution
inside the band with high deformations compared to the FE2 model as shown in Fig. 18(b).
The extrapolation capability of the DMN is demonstrated since the DMN training considers
only the material operators at zero-strain, while elastoplastic behaviors are considered for the
online prediction. However, in the case of micro-structure evolution during the deformation,
this extrapolation accuracy could be reduced. In this case, the offline training should be
enriched with the nonlinear behaviors to better capture the interaction between the material
nodes. Considering a macroscopic point close to the hole in the high strain region, the local
equivalent plastic strains predicted by the micro-scale BVP resolution in the FE2 analysis
are compared in Fig. 19 to the level of plastic strain reached in the material nodes of the
DMN. The levels of plastic strain in the micro-scale BVP and in the DMN material nodes
are of equivalent magnitude for the two loading levels “Point A” and “Point B”.

Table 7: Open-hole sample - computational cost of the multiscale simulations.

Offline sampling Training Online
FE2 [27] - - 18000 hour-cpu

Recurrent Neural Network [27] 18000 hour-cpu 3 day-cpu 0.5 hour-cpu
T perfect (2, 3) < 10 minute-cpu < 2 minute-cpu 0.4 hour-cpu
T perfect (2, 5) < 10 minute-cpu < 2 minute-cpu 3 hour-cpu
T perfect (2, 6) < 10 minute-cpu < 2 minute-cpu 15 hour-cpu
T perfect (2, 7) < 10 minute-cpu < 2 minute-cpu 34 hour-cpu

The computational cost breakdown for multiscale analyzes with the different methodolo-
gies is reported in Tab. 7. The computation time of the FE2 approach took around 30 h
using 600 processors on a cluster. For comparison, the simulation using the Recurrent Neural
Network (RNN) as surrogate developed in [27] required around one half hour on a single cpu,
but required a considerable time to generate the training data (generation of 9000 loading
paths with around 2 hour per path) and to train the RNN (around 3 days on a single pro-
cessor). The computational efficiency of the simulations using DMNs as surrogates is here
demonstrated. Although a larger amount of computational time is required for online simu-
lations, e.g. it took 15 hours and 34 hours to complete the simulations with T perfect (2, 6) and
T perfect (2, 7) respectively, the training time is relatively small. Moreover, if the RNN-based
surrogate model [27] provides a high speedup, the prediction becomes inaccurate when ex-
trapolating beyond the offline sampling space. The DMN-based surrogate models can resolve
this problem as the creation of the offline training data do not require iterative resolutions,
but only the evaluation of the homogenized material tensor at zero-strain.

6. Conclusion

In this work, the framework of material network is revisited. The material network is
formed from the discrete material nodes under the viewpoint of the hierarchical network in-
teractions. This viewpoint allows not only easily evaluating the response of material networks
with an arbitrary constitutive law considered at each material node, through the resolution
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of well-defined governing equations, but also considering an arbitrary number of phases in-
dependently of the network architecture. The predictive capability of the material network
is then guaranteed for sufficiently deep and rich network interactions.

We also provide a complete and efficient offline training procedure for the material net-
works. The training procedure works with an arbitrary number of phases and with an
arbitrary DMN architecture. In order to accelerate the training process, a fast algorithm
to estimate the DMN homogenized material tensor at zero-strain is based on the analytical
resolution strategy of a multiple-phase laminate. Finally, the training procedure based on
a simple adaptive scheme of the stochastic gradient descent is proposed to minimize a cost
function defined on the training dataset. Through the numerical applications, the capabil-
ity of the offline training procedure is demonstrated as it can be performed at a reduced
computational cost.

The DMNs was then used as surrogates of the computational micromechanics models in
multiscale simulations. Once trained, the DMNs can be used to predict the homogenized
response with a good accuracy and in much lower computational time as compared to the
use of a direct finite element simulation of microscale BVP. In this work, only J2 plasticity
model is considered. In the future, the DMN should be extended for more complex material
laws, e.g. damage and failure. A remaining important challenge is to extend the method
to cases in which the microstructure evolves with the deformation, as in the cases of porous
materials under large deformation.

Data availability

The raw/processed data required to reproduce these findings is available on [42] under
the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

Appendix A. Vector, matrix representations of arbitrary second-order and fourth-
order tensors

An arbitrary second-order tensor H can be rewritten as a column vector A of 9 compo-
nents, with

vec (H) = A↔ Hij = Ai+3j . (A.1)

Similarly, an arbitrary fourth-order tensor T can rewritten as a square matrix B of 81 com-
ponents, with

mat (T) = B↔ Tijkl = Bpq with p = i+ 3j and q = k + 3l . (A.2)

The reciprocal operators vec−1 (•) and mat−1 (•) can be directly deduced. One has the
following property

vec (T : H) = mat (T) vec (H) . (A.3)
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Appendix B. Material tensor derivations at zero-strain for training purpose

In this section we assume infinitesimal symmetric strain and stress tensors in order to
evaluate the material tensor at zero-strain state. We use respectively the notations σ and ε
for the infinitesimal symmetric stress and strain tensors.

Appendix B.1. Vector and matrix representations of tensors at zero-strain

The operator [•] is introduced as follows:

• With a vector a:

[a] =


[
a0 a1

]T
if plane strain state[

a0 a1 a2

]T
otherwise

. (B.1)

• With the true deformation tensor ε:

[ε] =


[
ε00 ε11 2ε01

]T
if plane strain state[

ε00 ε11 ε22 2ε01 2ε02 2ε12

]T
otherwise

. (B.2)

• With the Cauchy stress tensor σ:

[σ] =


[
σ00 σ11 σ01

]T
if plane strain state[

σ00 σ11 σ22 σ01 σ02 σ12

]T
otherwise

. (B.3)

• With the material tensor C:

[C] =



C0000 C0011 C0001

C1100 C1111 C1101

C0100 C0111 C0101

 if plane strain state



C0000 C0011 C0022 C0001 C0002 C0012

C1100 C1111 C1122 C1101 C1102 C1112

C2200 C2211 C2222 C2201 C2202 C2212

C0100 C0111 C0122 C0101 C0102 C0112

C0200 C0211 C0222 C0201 C0202 C0212

C1200 C1211 C1222 C1201 C1202 C1212


otherwise

. (B.4)

The stress-strain relation is preserved with the operator [•], i.e.

[σ] = [C : ε] = [C] [ε] . (B.5)
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Moreover, one has the following properties

[a⊗s N] = H [a] and [σ ·N] = HT [σ] , (B.6)

where [a⊗s N] is considered as a strain tensor, ⊗s denotes the symmetric dyadic tensor
product, i.e. c⊗sd = 1

2
(cidj + cjdi) for two arbitrary vectors c and d, and where H = H (N)

is detailed as

H (N) =



N0 0

0 N1

N1 N0

 if plane strain state



N0 0 0

0 N1 0

0 0 N2

N1 N0 0

N2 0 N0

0 N2 N1


otherwise

. (B.7)

Appendix B.2. Material sampling in the plane strain state

For plane strain problems, Ns samples Xs with s = 0 , . . . , Ns − 1 are directly generated.
For this purpose, the orthotropic material tensor of each phase is written as

[
C(i)
]

=

C
(i)
00 C

(i)
01 0

C
(i)
01 C

(i)
11 0

0 0 C
(i)
22

 with i = 0, . . . , P − 1 , (B.8)

where the conditions C
(i)
00C

(i)
11 −

(
C

(i)
01

)2

> 0 and C
(i)
22 > 0, with i = 0, . . . , P − 1, are used to

obtain a positive definite matrix. To avoid scaling issues, i.e. considering the pair [C(0), . . .,
C(P−1)] versus the pair [γC(0), . . . ,γC(P−1)] for γ 6= 0, one first generates

C
(0)
00 = 1 and ln

(
C

(i)
00

C
(i−1)
00

)
∈ U (−1, 1) with i = 1, . . . , P − 1 , (B.9)

and the other components are then generated as

ln

(
C

(i)
11

C
(i)
00

)
∈ U (−1, 1) ,

C
(i)
01√

C
(i)
00 C

(i)
11

∈ U (0, 0.9) , and ln

(
C

(i)
22√

C
(i)
00 C

(i)
11

)
∈ U (−1, 1) , (B.10)

for i = 0, . . . , P − 1,

where U (a, b) stands for a uniform distribution in the range [a, b].
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Appendix B.3. Zero-strain material tensor of a network interaction

Let us consider the DMN M defined by the list K of material nodes and the fitting
parameters F . Let us consider an arbitrary sub material network with its list of indexes
Kp

d for a node located at depth d and position p in the DMN tree structure as illustrated in
Fig. 2. We denote ε̄ (Kp

d), σ̄ (Kp
d), and C̄ (Kp

d;F) respectively the homogenized infinitesimal
symmetric strain tensor, homogenized Cauchy stress tensor, and the homogenized zero-strain
material tensor of the sub-material network Kp

d. One has3

ε̄ (Kp
d) =

1

S (Kp
d)

∑
i∈Kp

d

W iεi , and σ̄ (Kp
d) =

1

S (Kp
d)

∑
i∈Kp

d

W iσi , (B.11)

where εi and σi are respectively the strain and stress at the material node i. The material
tensor for the sub material network of nodes indexed in Kp

d leads to the following relation

σ̄ (Kp
d) = C̄ (Kp

d;F) : ε̄ (Kp
d) . (B.12)

One assumes that there exists a network interaction m created from np
d (np

d ≥ 2) non-
overlapping sub-lists Krm+k

d+1 with k = 0 , . . . , np
d − 1, in which rm =

∑p−1
k=0 n

k
d denotes the

location of the first sub-list of this interaction at the depth d + 1. One thus has Kp
d =

Krm
d+1 ∪ . . . ∪ K

rm+np
d−1

d+1 . This network interaction is formed following the direction Nm and
induces np

d−1 interaction mechanisms indexed from qm to qm+np
d−2. This network interaction

contributes to the deformation gradient of each material node in Kp
d following Eq. (35) as4

ε̄
(
Krm

d+1

)
= ε̄ (Kp

d) +
1

S
(
Krm

d+1

)aqm ⊗s Nm ,

ε̄
(
Krm+1

d+1

)
= ε̄ (Kp

d) +
1

S
(
Krm+1

d+1

) (aqm+1 − aqm)⊗s Nm ,

...

ε̄
(
Krm+np

d−1

d+1

)
= ε̄ (Kp

d) +
1

S
(
Krm+np

d−1

d+1

) (−aqm+np
d−2
)
⊗s Nm ,

(B.13)

where ⊗s denotes the symmetric dyadic tensor product, i.e. c⊗s d = 1
2

(cidj + cjdi) for two
arbitrary vectors c and d. Equation (36) is rewritten in terms of the Cauchy stress tensors,
yielding (

σ̄
(
Krm+k

d+1

)
− σ̄

(
Krm+k+1

d+1

))
·Nm = 0 with k = 0 , . . . , np

d − 2 , (B.14)

with, as a result of Eq. (B.12),

σ̄
(
Krm+k

d+1

)
= C̄

(
Krm+k

d+1 ;F
)

: ε̄
(
Krm+k

d+1

)
with k = 0 , . . . , np

d − 1 . (B.15)

3Eqs. (19, 20) are used but with the infinetesimal symmetric strain and Cauchy stress measures.
4The symmetric infinitesimal strain tensor ε is estimated from the deformation gradient tensor F using

the relation ε = 1
2

(
FT + F

)
− I.
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Besides, since Krm+k
d+1 , with k = 0 , . . . , np

d − 1, are np
d non-overlapping sub-lists of Kp

d, one
always has

ε̄ (Kp
d) =

np
d−1∑
k=0

fp,k
d ε̄

(
Krm+k

d+1

)
, and (B.16)

σ̄ (Kp
d) =

np
d−1∑
k=0

fp,k
d σ̄

(
Krm+k

d+1

)
, (B.17)

where

fp,k
d =

S
(
Krm+k

d+1

)
S (Kp

d)
for k = 0 , . . . , np

d − 1 . (B.18)

Clearly the values of ε̄
(
Krm+k

d+1

)
with k = 0 , . . . , np

d−1 following Eq. (B.13) automatically
satisfy Eq. (B.16). Using Eqs. (B.13, B.15), Eq. (B.14) results into a linear system of np

d− 1
equations whose unknowns are

bqm+k =
aqm+k

S (Kp
d)

with k = 0 , . . . , np
d − 2 . (B.19)

From this solution, one can obtain, as shown below, the material tensor (66), which is rewrit-
ten here as [

C̄p
d

]
= Hnp

d

([
C̄rm

d+1

]
, . . . ,

[
C̄rm+np

d−1

d+1

]
, fp,0

d , . . . , f
p,np

d−1

d ,Nm
)

(B.20)

where the notation C̄ (Ks
r;F) is replaced by C̄s

r for an arbitrary material network Ks
r for

simplicity; the bijective operator [•] is introduced to convert this fourth-order tensor into a
symmetric matrix following Voigt’s notations, see Appendix B.1 for details; and Hnp

d
is a

functional operator used to refer to the case of np
d sub-lists.

In the following sections, the analytical form of H2 is first derived in the case of a two-
list interaction. Then this solution is extended to the general case Hnp

d
with np

d > 2 of a
multiple-list interaction.

Appendix B.3.1. Analytical solution for a two-list interaction

In this section, only indexes representing the order of sub-lists are kept for ease of read-
ability. In order to find the analytical form of the functional operator H2 expressed in Eq.
(B.20), Eqs. (B.12 - B.17) are rewritten for the case of a two-list interaction, leading to

47



following equations

σ̄ = C̄ : ε̄ , (B.21)

ε̄0 = ε̄+
1

f 0
b⊗s N , (B.22)

ε̄1 = ε̄− 1

f 1
b⊗s N , (B.23)(

σ̄0 − σ̄1
)
·N = 0 , (B.24)

σ̄0 = C̄0 : ε̄0 , (B.25)

σ̄1 = C̄1 : ε̄1 , (B.26)

ε̄ = f 0ε̄0 + f 1ε̄1 , and (B.27)

σ̄ = f 0σ̄0 + f 1σ̄1 , (B.28)

where f 1 = 1− f 0 and where Eq. (B.19) has been used. The operator H2 is defined as

H2 =
∂σ̄

∂ε̄
. (B.29)

Using the bijective operator [•], see Appendix B.1 for details, and the property

[b⊗s N] = H [b] , (B.30)

where the matrix H depends only on N, we refer to Eq. (B.7) in Appendix B.1 for its
detailed expression, Eqs. (B.22, B.23) become

[ε̄0] = [ε̄] +
1

f 0
H [b]

[ε̄1] = [ε̄]−
1

f 1
H [b]

. (B.31)

Moreover, Eq. (B.24) is rewritten as

HT
([
C̄0
] [
ε̄0
]
−
[
C̄1
]

:
[
ε̄1
])

= 0 , (B.32)

in which the property [σ ·N] = HT [σ] is used, see Appendix B.1 for details. Using Eqs.
(B.31), Eq. (B.32) becomes

HT
([
C̄0
]
−
[
C̄1
])

[ε̄] + HT

(
1

f 0
C̄0 +

1

f 1
C̄1

)
H [b] = 0 . (B.33)

The equation above leads to the solution of b:

[b] = −f 0f 1S−1HT
([
C̄0
]
−
[
C̄1
])

[ε̄] , (B.34)
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where

S = HT
(
f 1
[
C̄0
]

+ f 0
[
C̄1
])

H . (B.35)

As a result, Eq. (B.29) can be detailed as

H2 ≡
[
C̄
]

=
∂ [σ̄]

∂ [ε̄]
= f 0

[
C̄0
]

+ f 1
[
C̄1
]
− f 0f 1

([
C̄0
]
−
[
C̄1
])

Q
([
C̄0
]
−
[
C̄1
])
, (B.36)

where

Q = HS−1HT . (B.37)

Equation (B.36) can be rewritten under the indexed form as[
C̄
]
ij

= f 0
[
C̄0
]
ij

+ f 1
[
C̄1
]
ij
− f 0f 1

[
∆C̄
]
ik
Qkl

[
∆C̄
]
lj
, (B.38)

where ∆C̄ = C̄0 − C̄1, and the indexes range from 0 to 5 as these matrices are expressed in
the 6-dimension space. This consideration is applied in the remaining part of this section.

The derivatives of
[
C̄
]

with respect to the inputs in the relation (B.38) are computed as
follows:

(I) With respect to C0 and C1:

∂
[
C̄
]
ij

∂
[
C̄0
]
pq

= f 0Iijpq − f 0f 1IikpqQkl

[
∆C̄
]
lj
− f 0f 1

[
∆C̄
]
ik
QklIljpq (B.39)

−f 0f 1
[
∆C̄
]
ik

∂Qkl

∂
[
C̄0
]
pq

[
∆C̄
]
lj
, and

∂
[
C̄
]
ij

∂
[
C̄1
]
pq

= f 1Iijpq + f 0f 1IikpqQkl

[
∆C̄
]
lj

+ f 0f 1
[
∆C̄
]
ik
QklIljpq (B.40)

−f 0f 1
[
∆C̄
]
ik

∂Qkl

∂
[
C̄1
]
pq

[
∆C̄
]
lj
,

where I is the symmetric fourth order tensor in a 6-dimension space, i.e.

Iijpq =
1

2
(δipδjq + δiqδjp) with δij =

{
1 if i = j

0 if i 6= j
, (B.41)

and the terms
∂Qkl

∂
[
C̄i
]
pq

with i = 0, 1 are estimated using Eq. (B.37) as

∂Qkl

∂
[
C̄i
]
pq

= Hkr
∂S−1

rs

∂Sab

∂Sab

∂
[
C̄i
]
pq

Hls . (B.42)
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In this last equation, one has

∂S−1
ij

∂Skl

= −1

2

(
S−1
ik S

−1
lj + S−1

il S
−1
kj

)
, (B.43)

and Eq. (B.35) results into

∂Sij

∂
[
C̄0
]
pq

= f1HkiIklpqHlj , and (B.44)

∂Sij

∂
[
C̄1
]
pq

= f0HkiIklpqHlj . (B.45)

(II) With respect to f 0 and f 1:

∂
[
C̄
]
ij

∂f 0
=

[
C̄0
]
ij
− f 1

[
∆C̄
]
ik
Qkl

[
∆C̄
]
lj

(B.46)

−f 0f 1
[
∆C̄
]
ik

∂Qkl

∂f 0

[
∆C̄
]
lj
, and

∂
[
C̄
]
ij

∂f 1
=

[
C̄1
]
ij
− f 0 [∆C]ikQkl

[
∆C̄
]
lj

(B.47)

−f 0f 1
[
∆C̄
]
ik

∂Qkl

∂f 1

[
∆C̄
]
lj
,

where

∂Qkl

∂f i
= Hkr

∂S−1
rs

∂Sab

∂Sab

∂f i
Hls with i = 0, 1 . (B.48)

In the last equation, the term
∂S−1

rs

∂Sab

is estimated using Eq. (B.43), and one has

∂Sij

∂f 0
= Hki

[
C̄1
]
kl
Hlj , and

∂Sij

∂f 1
= Hki

[
C̄0
]
kl
Hlj , (B.49)

as a result of Eq. (B.35).

(III) With respect to N:

∂
[
C̄
]
ij

∂Np

= −f 0f 1
[
∆C̄
]
ik

∂Qkl

∂Np

[
∆C̄
]
lj
, (B.50)

where
∂Qij

∂Np

is estimated using Eq. (B.37) as

∂Qij

∂Np

=
∂Hik

∂Np

S−1
kl Hjl +HikS

−1
kl

∂Hjl

∂Np

+Hik
∂S−1

kl

∂Srs

∂Srs

∂Np

Hjl . (B.51)
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In this last equation, the term
∂S−1

kl

∂Srs

is given by Eq. (B.43) and one has as a result of

Eq. (B.35) the following equation

∂Sij

∂Np

=
∂Hki

∂Np

(
f 1
[
C̄0
]
kl

+ f 0
[
C̄1
]
kl

)
Hlj (B.52)

+Hki

(
f 1
[
C̄0
]
kl

+ f 0
[
C̄1
]
kl

) ∂Hlj

∂Np

,

where the expression of H is given in Eq. (B.7), leading to

– For the plane strain state:

∂H

∂N0

=

1 0
0 0
0 1

 , ∂H

∂N1

=

0 0
0 1
1 0

 , and
∂H

∂N2

= 0 . (B.53)

– For the general state:

∂H

∂N0

=


1 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0

 ,
∂H

∂N1

=


0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 0 1

 , and
∂H

∂N2

=


0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0

 . (B.54)

Appendix B.3.2. Analytical solution for a multiple-list interaction

The operator Hnp
d

with np
d > 2 of a multiple-list interaction can be obtained as an extension

of the solution H2 of a two-list interaction. Since Krm
d+1 ∩ K

rm+1
d+1 = ∅, the two first equations

in the set of Eqs. (B.13) lead to the following relations

ε̄
(
Krm

d+1 ∪ K
rm+1
d+1

)
=

S
(
Krm

d+1

)
S
(
Krm

d+1 ∪ K
rm+1
d+1

) ε̄ (Krm
d+1

)
+

S
(
Krm+1

d+1

)
S
(
Krm

d+1 ∪ K
rm+1
d+1

) ε̄ (Krm+1
d+1

)
= ε̄ (Kp

d) +
1

S
(
Krm

d+1 ∪ K
rm+1
d+1

)aqm+1 ⊗Nm , (B.55)

and

σ̄
(
Krm

d+1 ∪ K
rm+1
d+1

)
=

S
(
Krm

d+1

)
S
(
Krm

d+1 ∪ K
rm+1
d+1

)σ̄ (Krm
d+1

)
+

S
(
Krm+1

d+1

)
S
(
Krm

d+1 ∪ K
rm+1
d+1

)σ̄ (Krm+1
d+1

)
=

fp,0
d

fp,0
d + fp,1

d

σ̄
(
Krm

d+1

)
+

fp,1
d

fp,0
d + fp,1

d

σ̄
(
Krm+1

d+1

)
. (B.56)
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Moreover, using this last result, the balance condition expressed in Eq. (B.14) for the two
lists Krm

d+1, Krm+1
d+1 reads

σ̄
(
Krm

d+1 ∪ K
rm+1
d+1

)
·Nm = σ̄

(
Krm

d+1

)
·Nm = σ̄

(
Krm+1

d+1

)
·Nm . (B.57)

Consequently, Eqs. (B.55, B.56, B.57) imply that the interaction between Krm
d+1, Krm+1

d+1 ,

Krm+2
d+1 , . . ., Krm+np

d−1

d+1 with np
d > 2 is equivalent to the interaction between Krm

d+1 ∪ K
rm+1
d+1 ,

Krm+2
d+1 , . . ., Krm+np

d−1

d+1 , i.e. Eq. (B.20) can be rewritten as[
C̄ (Kp

d;F)
]

= Hnp
d−1

([
C̄
(
Krm

d+1 ∪ K
rm+1
d+1 ;F

)]
,
[
C̄
(
Krm+2

d+1 ;F
)]
, . . . ,

[
C̄
(
Krm+np

d−1

d+1 ;F
)]

, fp,0
d + fp,1

d , fp,2
d , . . . , f

p,np
d−1

d ,Nm
)
, (B.58)

where
[
C̄
(
Krm

d+1 ∪ K
rm+1
d+1 ;F

)]
corresponds to the solution of the two-list interaction between

Krm
d+1 and Krm+1

d+1 as[
C̄
(
Krm

d+1 ∪ K
rm+1
d+1 ;F

)]
= H2

([
C̄
(
Krm

d+1;F
)]
,
[
C̄
(
Krm+1

d+1 ;F
)]
, f̂p,0

d , f̂p,1
d ,Nm

)
, (B.59)

with

f̂p,0
d =

fp,0
d

fp,0
d + fp,1

d

and f̂p,1
d =

fp,1
d

fp,0
d + fp,1

d

= 1− f̂p,0
d . (B.60)

Clearly, Eq. (B.58) can be recursively applied until reaching the operator H2. Therefore it
suffices to provide the solution for the case H2 in order to evaluate Eq. (B.20) in the case
np
d > 2 by recursively applying Eq. (B.58). Equation (B.59) corresponds to an explicit form

of the functional operator H2 given in Appendix B.3.1, in which the derivatives ∂H2

∂[C̄rm
d+1]

,

∂H2

∂[C̄rm+1
d+1 ]

, ∂H2

∂f̂p,0
d

, ∂H2

∂f̂p,1
d

, ∂H2

∂Nm
0

, ∂H2

∂Nm
1

, and ∂H2

∂Nm
2

are detailed.

Equation (B.20) is evaluated by recursively applying Eqs. (B.58, B.59). For ease of
implementation, in the remaining of this section, only indexes representing the order of the
sub-material networks in Eq. (B.20) are kept, i.e.

Hn = Hn

([
C̄0
]
, . . . ,

[
C̄n−1

]
, f 0, . . . , fn−1,N

)
. (B.61)

When n > 2, Eq. (B.58) is rewritten as

Hn = Hn−1

H2,
[
C̄2
]
, . . . ,

[
C̄n−1

]︸ ︷︷ ︸
remaining n− 2 sub-lists

, f 0 + f 1, f 2, . . . , fn−1︸ ︷︷ ︸
remaining n− 2 sub-lists

,N

 . (B.62)

where H2 is detailed by Eq. (B.36) and can be rewritten under a functional form

H2 = H2

([
C̄0
]
,
[
C̄1
]
,

f 0

f 0 + f 1
,

f 1

f 0 + f 1
,N

)
. (B.63)
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In order to evaluate Hn, Eq. (B.63) is applied for the (k + 1)th sub-list and the material
network made from all sub-lists indexed from 0 to k, and starting for k = 0 until reaching
k = n− 2. This procedure is detailed as follows:

(I) start with
[
C̄0,0

]
=
[
C̄0
]
;

(II) for k from 0 to n− 2:

(i) compute the function value:[
C̄0,k+1

]
= H2

([
C̄0,k

]
,
[
C̄k+1

]
, f 0,k+1, f 1,k+1,N

)
, (B.64)

where the function H2 is given in Eq. (B.36) and

f 0,k+1 =

∑k
l=0 f

l∑k+1
l=0 f

l
and f 1,k+1 =

fk+1∑k+1
l=0 f

l
= 1− f 0,k+1 ; (B.65)

(ii) compute the derivatives of the elastic operator (B.64) using the derivatives of the
operator H2 explicited in Appendix B.3.1:

Ak =
∂[C̄0,k+1]
∂[C̄0,k]

,Bk =
∂[C̄0,k+1]
∂[C̄k+1]

,Fk
0 =

∂[C̄0,k+1]
∂f0,k+1 ,Fk

1 =
∂[C̄0,k+1]
∂f1,k+1 ,

Nk
0 =

∂[C̄0,k+1]
∂N0

,Nk
1 =

∂[C̄0,k+1]
∂N1

, and Nk
2 =

∂[C̄0,k+1]
∂N2

,

in which Ak and Bk are viewed as fourth-order symmetric tensors while Fk
0, Fk

1,
Nk

0, Nk
1, and Nk

2 are viewed as second-order symmetric tensors in the 6-dimensional
space. The tensor operations with these quantities are then simply extended from
the ones in the conventional 3-dimensional space by varying the indexes from 0 to
5;

(III) evaluate the homogenized material tensor Hn =
[
C̄0,n−1

]
;

(IV) compute the derivatives of Hn with respect to the inputs
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(i) with respect to C̄i with i = 0, . . . , n− 1:

∂Hn

∂
[
C̄n−1

] = Bn−2 , (B.66)

∂Hn

∂
[
C̄n−2

] = An−2 : Bn−3 , (B.67)

∂Hn

∂
[
C̄n−3

] = An−2 : An−3 : Bn−4 , (B.68)

... (B.69)

∂Hn

∂
[
C̄1
] = An−2 : An−3 : · · ·A1 : B0 , and (B.70)

∂Hn

∂
[
C̄0
] = An−2 : An−3 : · · · : A0 ; (B.71)

(ii) with respect to fk with k = 0, . . . , n− 1:

∂Hn

∂fk
= Fn−2

0

∂f 0,n−1
0

∂fk
+ Fn−2

1

∂f (1,n−1)

∂fk
(B.72)

+An−2 :

(
Fn−3

0

∂f (0,n−2)

∂fk
+ Fn−3

1

∂f (1,n−2)

∂fk

)
+An−2 : An−3 :

(
Fn−4

0

∂f 0,n−3

∂fk
+ Fn−4

1

∂f 1,n−3

∂fk

)
...

+An−2 : An−3 : · · · : A1 :

(
F0

0

∂f 0,1

∂fk
+ F0

1

∂f 1,1

∂fk

)
,

where the derivatives ∂f0,l

∂fk and ∂f1,l

∂fk with l = 1, . . . , n− 1 and k = 0, . . . , n− 1 can

be easily estimated using Eq. (B.65);

(iii) with respect to N:

∂Hn

∂Nl

= Nn−2
l + An−2 : Nn−3

l + An−2 : An−3 : Nn−4
l +

. . .+ An−2 : An−3 : · · · : A1 : N0
l with l = 0, 1, 2 ; (B.73)

(IV) exit.

Using the procedure described here above, the function (B.20) and its derivatives required
for the DMN training are implicitly available.

Appendix B.4. Homogenized tangent operator and its derivative with respect to the fitting
parameters

Since each sub-list in the right hand side of Eq. (66) continues to be sub-divided through
network interactions until all the sub-lists contain only one material node, the material tensor
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C̄ (K;F) ≡ C̄ ≡ C̄0
0 can be estimated by recursively applying Eq. (66) depth-by-depth from

the deepest depth, where the node elastic tangent operators are known. A procedure for
estimating both C̄ and ∂C̄/∂F based on the depth lists described by Eq. (38) is proposed.
The evaluation procedure starts from the depth list Ddmax−1 (since Ddmax does not contain
any network interaction) and progresses to the depth list D0 as follows:

(I) initialize d = dmax − 1;

(II) for each sub material network Kp
d in the list Dd:

(i) if Kp
d contains only one material node i:

[Cp
d] =

[
Ci
]

and
∂ [Cp

d]

∂F = 0 . (B.74)

(ii) if Kp
d contains more than one material node:

(a) there exists a network interaction m whose interaction direction is Nm and
which is created from np

d (np
d ≥ 2) non-overlapping sub-lists Krm+k

d+1 with k =

0 , . . . , np
d − 1 and rm =

∑p−1
k=0 n

k
d denoting the location of the first sub-list of

this interaction at the depth d+ 1, and satisfying Kp
d = Krm

d+1∪ . . .∪K
rm+np

d−1

d+1 ;

(b) compute [Cp
d] following Eq. (66);

(c) compute
∂ [Cp

d]

∂F as follows:

∂ [Cp
d]

∂F =

np
d−1∑
k=0

∂ [Cp
d]

∂
[
Crm+k

d+1

] :
∂
[
Crm+k

d+1

]
∂F +

np
d−1∑
k=0

∂ [Cp
d]

∂f p,k
d

∂f p,k
d

∂F +
2∑

l=0

∂ [Cp
d]

∂N j
l

∂Nm
l

∂F ,

(B.75)

in which

(a) the values of
[
Crm+k

d+1

]
and of

∂[Crm+k
d+1 ]
∂F with k = 0 , . . . , np

d − 1 are known from
the recursive process;

(b) the fourth-order tensor notation is an abuse of notation for the term
∂[Cp

d]
∂[Crm+k

d+1 ]
and the double-dot product (:) is applied for this fourth-order tensor and each

component of the block vector
∂[Crm+k

d+1 ]
∂F ;

(c) the terms
∂[Cp

d]
∂[Crm+k

d+1 ]
,

∂[Cp
d]

∂fp,k
d

with k = 0, . . . , np
d − 1 and

∂[Cp
d]

∂Nm
l

with l = 0, 1, 2

result from the solution of the network interaction given by Eq. (66) and are
computed following Appendix B.3;

(d) the terms
∂fp,k

d

∂F with k = 0, . . . , np
d − 1 can be easily estimated from Eqs. (59,

67) which are rewritten as

fp,k
d =

∑
i∈Krm+k

d+1
relus (zi)∑

i∈Kp
d

relus (zi)
, (B.76)
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in which the positive value of W i = relus (zi) is enforced;

(e) the term
∂Nj

l

∂F with l = 0, 1, 2 is estimated using Eq. (60);

(III) if d = 0, go to (IV) else assign d = d− 1 and go to (II);

(IV) exit.

Appendix C. J2 elastoplastic model at finite strains

The deformation gradient F is decomposed into its reversible elastic part Fe and its
irreversible plastic part Fp such that F = Fe · Fp. The elastic potential energy is defined as

ψ(Ce) =
K

2
ln2 J +

µ

4
(ln Ce)dev : (ln Ce)dev , (C.1)

where Ce = FeT ·Fe, and K, and µ correspond to the bulk and shear modulii of the material.
The first Piola-Kirchhoff stress tensor P derives from the elastic potential (C.1) under an
elastic state, i.e. at constant Fp, yielding

P =
∂ψ (F; Fp)

∂F
= KF-T ln J + µFe ·

[
Ce−1 · (ln Ce)dev

]
· Fp -T . (C.2)

The elastic part Fe and the plastic part Fp of the deformation gradient are obtained through
a J2 plastic flow expressed in terms of the Kirchhoff stress. The Kirchhoff stress κ = P · FT

is first computed using Eq. (C.2) as

κ = K ln JI + µFe ·
[
Ce−1 · (ln Ce)dev

]
· Fe T . (C.3)

The equivalent von Mises stress is then calculated through the deviatoric part of κ, i.e.

τeq =
√

3
2
κdev : κdev. According to the J2-plasticity theory, the von Mises stress criterion

reads

f = τeq − τ 0
y −R(γ) ≤ 0 , (C.4)

where f is the yield surface, τ 0
y is the initial yield stress, γ is the equivalent plastic strain and

R(γ) is the isotropic hardening stress. The evolution of Fp is governed by the associative
plastic flow theory following

Ḟp = γ̇N · Fp , (C.5)

where N is the normal to the yield surface, see [43] for more details.
The input parameters of this J2 plasticity model including the bulk modulus K, the shear

modulus µ, and the parameters specifying the isotropic flow stress τy (γ) = τ 0
y + R(γ). The

elastic behavior can be degenerated by simply considering τ 0
y = +∞.

The numerical integration of the plastic problem follows a predictor-corrector scheme as
described in [43], in which the expresion of L = ∂P

∂F
is derived.
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