Use of Capillary Zone Electrophoresis Coupled to Electrospray Mass Spectrometry for the Detection and Absolute Quantitation of Peptidoglycan-Derived Peptides in Bacterial Cytoplasmic Extracts
[en] Peptidoglycan (PGN) is an essential structure found in the bacterial cell wall. During the bacterial life cycle, PGN continuously undergoes biosynthesis and degradation to ensure bacterial growth and division. The resulting PGN fragments (muropeptides and peptides), which are generated by the bacterial autolytic system, are usually transported into the cytoplasm to be recycled. On the other hand, PGN fragments can act as messenger molecules involved in the bacterial cell wall stress response as in the case of β-lactamase induction in the presence of β-lactam antibiotic or in triggering mammalian innate immune response. During their cellular life, bacteria modulate their PGN degradation by their autolytic system or their recognition by the mammalian innate immune system by chemically modifying their PGN. Among these modifications, the amidation of the ε-carboxyl group of meso-diaminopimelic acid present in the PGN peptide chain is frequently observed. Currently, the detection and quantitation of PGN-derived peptides is still challenging because of the difficulty in separating these highly hydrophilic molecules by RP-HPLC as these compounds are eluted closely after the column void volume or coeluted in many cases. Here, we report the use of capillary zone electrophoresis coupled via an electrospray-based CE–MS interface to high-resolution mass spectrometry for the quantitation of three PGN peptides of interest and their amidated derivatives in bacterial cytoplasmic extracts. The absolute quantitation of the tripeptide based on the [13C,15N] isotopically labeled standard was also performed in crude cytoplasmic extracts of bacteria grown in the presence or absence of a β-lactam antibiotic (cephalosporin C). Despite the high complexity of the samples, the repeatability of the CZE–MS quantitation results was excellent, with relative standard deviations close to 1%. The global reproducibility of the method including biological handling was better than 20%
Research Center/Unit :
laboratoire de spectrométrie de masse (MSLab) CIP - Centre d'Ingénierie des Protéines - ULiège Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
Disciplines :
Chemistry
Author, co-author :
Delvaux, Cédric ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Dauvin, Marjorie ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines > Ph.D
Boulanger, Madeleine ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines > Ph.D
Quinton, Loïc ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique
Mengin-Lecreulx, Dominique; Université Paris-Saclay > CEA, CNRS > Institute for Integrative Biology of the Cell (I2BC)
Joris, Bernard ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Far, Johann ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Language :
English
Title :
Use of Capillary Zone Electrophoresis Coupled to Electrospray Mass Spectrometry for the Detection and Absolute Quantitation of Peptidoglycan-Derived Peptides in Bacterial Cytoplasmic Extracts
Publication date :
20 January 2021
Journal title :
Analytical Chemistry
ISSN :
0003-2700
eISSN :
1520-6882
Publisher :
American Chemical Society, United States - District of Columbia
Rogers, H. J. Bacterial Growth and the Cell Envelope. Bacteriol. Rev. 1970, 34, 194-214, 10.1128/mmbr.34.2.194-214.1970
Vollmer, W.; Bertsche, U. Murein (Peptidoglycan) Structure, Architecture and Biosynthesis in Escherichia Coli. Biochim. Biophys. Acta Biomembr. 2008, 1778, 1714-1734, 10.1016/j.bbamem.2007.06.007
De Jonge, B. L.; Chang, Y. S.; Gage, D.; Tomasz, A. Peptidoglycan Composition of a Highly Methicillin-Resistant Staphylococcus Aureus Strain. The Role of Penicillin Binding Protein 2A. J. Biol. Chem. 1992, 267, 11248-11254, 10.1016/s0021-9258(19)49903-1
Barreteau, H.; Kovač, A.; Boniface, A.; Sova, M.; Gobec, S.; Blanot, D. Cytoplasmic Steps of Peptidoglycan Biosynthesis. FEMS Microbiol. Rev. 2008, 32, 168-207, 10.1111/j.1574-6976.2008.00104.x
Park, J. T.; Uehara, T. How Bacteria Consume Their Own Exoskeletons (Turnover and Recycling of Cell Wall Peptidoglycan). Microbiol. Mol. Biol. Rev. 2008, 72, 211-227, 10.1128/mmbr.00027-07
Goodell, E. W. Recycling of Murein by Escherichia Coli. J. Bacteriol. 1985, 163, 305-310, 10.1128/jb.163.1.305-310.1985
Mauck, J.; Chan, L.; Glaser, L. Turnover of the Cell Wall of Gram-Positive Bacteria. J. Biol. Chem. 1971, 246, 1820-1827, 10.1016/s0021-9258(18)62382-8
Mauck, J.; Glaser, L. Turnover of the Cell Wall of Bacillus Subtilis W-23 during Logarithmic Growth. Biochem. Biophys. Res. Commun. 1970, 39, 699-706, 10.1016/0006-291x(70)90261-5
Boudreau, M. A.; Fisher, J. F.; Mobashery, S. Messenger Functions of the Bacterial Cell Wall-Derived Muropeptides. Biochemistry 2012, 51, 2974-2990, 10.1021/bi300174x
Juan, C.; Torrens, G.; González-Nicolau, M.; Oliver, A. Diversity and Regulation of Intrinsic β-Lactamases from Non-Fermenting and Other Gram-Negative Opportunistic Pathogens. FEMS Microbiol. Rev. 2017, 41, 781-815, 10.1093/femsre/fux043
Amoroso, A.; Boudet, J.; Berzigotti, S.; Duval, V.; Teller, N.; Mengin-Lecreulx, D.; Luxen, A.; Simorre, J.-P.; Joris, B. A Peptidoglycan Fragment Triggers β-Lactam Resistance in Bacillus Licheniformis. PLoS Pathog. 2012, 8, e1002571 10.1371/journal.ppat.1002571
Atrih, A.; Bacher, G.; Allmaier, G.; Williamson, M. P.; Foster, S. J. Analysis of Peptidoglycan Structure from Vegetative Cells of Bacillus Subtilis 168 and Role of PBP 5 in Peptidoglycan Maturation. J. Bacteriol. 1999, 181, 3956-3966, 10.1128/jb.181.13.3956-3966.1999
Warth, A. D.; Strominger, J. L. Structure of the Peptidoglycan from Vegetative Cell Walls of Bacillus Subtilis. Biochemistry 1971, 10, 4349-4358, 10.1021/bi00800a001
Schleifer, K. H.; Kandler, O. Peptidoglycan Types of Bacterial Cell Walls and Their Taxonomic Implications. Bacteriol. Rev. 1972, 36, 407, 10.1128/br.36.4.407-477.1972
Dajkovic, A.; Tesson, B.; Chauhan, S.; Courtin, P.; Keary, R.; Flores, P.; Marlière, C.; Filipe, S. R.; Chapot-Chartier, M.-P.; Carballido-Lopez, R. Hydrolysis of Peptidoglycan Is Modulated by Amidation of Meso-Diaminopimelic Acid and Mg2+ in Bacillus Subtilis. Mol. Microbiol. 2017, 104, 972-988, 10.1111/mmi.13673
Girardin, S. E.; Travassos, L. H.; Hervé, M.; Blanot, D.; Boneca, I. G.; Philpott, D. J.; Sansonetti, P. J.; Mengin-Lecreulx, D. Peptidoglycan Molecular Requirements Allowing Detection by Nod1 and Nod2. J. Biol. Chem. 2003, 278, 41702-41708, 10.1074/jbc.m307198200
Bernard, E.; Rolain, T.; Courtin, P.; Hols, P.; Chapot-Chartier, M.-P. Identification of the Amidotransferase AsnB1 as Being Responsible for Meso-Diaminopimelic Acid Amidation in Lactobacillus Plantarum Peptidoglycan. J. Bacteriol. 2011, 193, 6323-6330, 10.1128/jb.05060-11
Bugg, T. D. H.; Braddick, D.; Dowson, C. G.; Roper, D. I. Bacterial Cell Wall Assembly: Still an Attractive Antibacterial Target. Trends Biotechnol. 2011, 29, 167-173, 10.1016/j.tibtech.2010.12.006
Bravo, A.; Ruiz-Cruz, S.; Alkorta, I.; Espinosa, M. When Humans Met Superbugs: Strategies to Tackle Bacterial Resistances to Antibiotics. Biomol. Concepts 2018, 9, 216-226, 10.1515/bmc-2018-0021
Boulanger, M.; Delvaux, C.; Quinton, L.; Joris, B.; Pauw, E. De.; Far, J. Bacillus Licheniformis Peptidoglycan Characterization by CZE-MS: Assessment with the Benchmark RP-HPLC-MS Method. Electrophoresis 2019, 40, 2672-2682, 10.1002/elps.201970176
Jantos-Siwy, J.; Schiffer, E.; Brand, K.; Schumann, G.; Rossing, K.; Delles, C.; Mischak, H.; Metzger, J. Quantitative Urinary Proteome Analysis for Biomarker Evaluation in Chronic Kidney Disease. J. Proteome Res. 2008, 8, 268-281, 10.1021/pr800401m
Zhu, G.; Sun, L.; Linkous, T.; Kernaghan, D.; McGivney, J. B.; Dovichi, N. J. Absolute Quantitation of Host Cell Proteins in Recombinant Human Monoclonal Antibodies with an Automated CZE-ESI-MS/MS System. Electrophoresis 2014, 35, 1448-1452, 10.1002/elps.201300545
Ong, S.-E.; Mann, M. Mass Spectrometry-Based Proteomics Turns Quantitative. Nat. Chem. Biol. 2005, 1, 252, 10.1038/nchembio736
Ong, S.; Foster, L. J.; Mann, M. Mass Spectrometric-Based Approaches in Quantitative Proteomics. Methods 2003, 29, 124-130, 10.1016/s1046-2023(02)00303-1
Simon, J. F.; Lamborelle, N.; Zervosen, A.; Lemaire, C.; Joris, B.; Luxen, A. Development of Solid-Supported Methodology for the Preparation of Peptidoglycan Fragments Containing (2S, 6R)-Diaminopimelic Acid. Tetrahedron Lett. 2016, 57, 1572-1575, 10.1016/j.tetlet.2016.02.098
Pennartz, A.; Généreux, C.; Parquet, C.; Mengin-Lecreulx, D.; Joris, B. Substrate-Induced Inactivation of the Escherichia Coli AmiD N-Acetylmuramoyl-L-Alanine Amidase Highlights a New Strategy to Inhibit This Class of Enzyme. Antimicrob. Agents Chemother. 2009, 53, 2991-2997, 10.1128/aac.01520-07
Koch, A. L.; Woeste, S. Elasticity of the Sacculus of Escherichia Coli. J. Bacteriol. 1992, 174, 4811-4819, 10.1128/jb.174.14.4811-4819.1992
Delvaux, C.; Massonnet, P.; Kune, C.; Haler, J. R. N.; Upert, G.; Mourier, G.; Gilles, N.; Quinton, L.; De Pauw, E.; Far, J. Combination of Capillary Zone Electrophoresis-Mass Spectrometry, Ion Mobility-Mass Spectrometry, and Theoretical Calculations for Cysteine Connectivity Identification in Peptides Bearing Two Intramolecular Disulfide Bonds. Anal. Chem. 2019, 92, 2425-2434, 10.1021/acs.analchem.9b03206
Hanke, S.; Besir, H.; Oesterhelt, D.; Mann, M. Absolute SILAC for Accurate Quantitation of Proteins in Complex Mixtures Down to the Attomole Level. J. Proteome Res. 2008, 7, 1118-1130, 10.1021/pr7007175
Golding, I.; Paulsson, J.; Zawilski, S. M.; Cox, E. C. Real-Time Kinetics of Gene Activity in Individual Bacteria. Cell 2005, 123, 1025-1036, 10.1016/j.cell.2005.09.031
Cai, L.; Friedman, N.; Xie, X. S. Stochastic Protein Expression in Individual Cells at the Single Molecule Level. Nature 2006, 440, 358-362, 10.1038/nature04599
Cho, H.; Uehara, T.; Bernhardt, T. G. Beta-Lactam Antibiotics Induce a Lethal Malfunctioning of the Bacterial Cell Wall Synthesis Machinery. Cell 2014, 159, 1300-1311, 10.1016/j.cell.2014.11.017