[en] A family of stochastic models of disordered particles is proposed, obtained by clipping a Gaussian random field with a function that is space dependent. Depending on the shape of the clipping function, dense or hollow particles can be modelled. General expressions are derived for the form factor of the particles, for their average volume and surface area, and for their density and surface-area distributions against the distance to the particle centre. A general approximation for the form factor is also introduced, based on the density and surface-area distributions, which coincides with the Guinier and Porod expressions in the limits of low and high scattering vector magnitude q. The models are illustrated with the fitting of small-angle X-ray scattering (SAXS) data measured on Pt/Ni hollow nanoparticles. The SAXS analysis and modelling notably capture the collapse of the particles' porosity after being used as oxygen-reduction catalysts.
Disciplines :
Materials science & engineering
Author, co-author :
Gommes, Cédric ; Université de Liège - ULiège > Department of Chemical Engineering > Department of Chemical Engineering
Chattot, R; Université Joseph Fourier - Grenoble 1 - UJF
Drnec, J; European Synchrotron Radiation Facility
Language :
English
Title :
Stochastic models of dense or hollow nanoparticles and their scattering properties
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ashiotis, G., Deschildre, A., Nawaz, Z., Wright, J. P., Karkoulis, D., Picca, F. E. & Kieffer, J. (2015). J. Appl. Cryst. 48, 510-519.
Berk, N. F. (1987). Phys. Rev. Lett. 58, 2718-2721.
Berk, N. F. (1991). Phys. Rev. A, 44, 5069-5079.
Carl, N., Müller, W., Schweins, R. & Huber, K. (2020). Langmuir, 36, 223-231.
Chattot, R., Le Bacq, O., Beermann, V., Kühl, S., Herranz, J., Henning, S., Kühn, L., Asset, T., Guétaz, L., Renou, G., Drnec, J., Bordet, P., Pasturel, A., Eychmüller, A., Schmidt, T. J., Strasser, P., Dubau, L. & Maillard, F. (2018). Nat. Mater. 17, 827-833.
Chattot, R., Martens, I., Scohy, M., Drnec, J., Maillard, F. & Dubau, L. (2020). ACS Energy Lett. 5, 162-169.
Chen, S. H., Lee, D. D., Kimishima, K., Jinnai, H. & Hashimoto, T. (1996). Phys. Rev. E, 54, 6526-6531.
Ciccariello, S. & Benedetti, A. (1985). J. Appl. Cryst. 18, 219-229.
Ciccariello, S., Goodisman, J. & Brumberger, H. (1988). J. Appl. Cryst. 21, 117-128.
Ciccariello, S., Riello, P. & Benedetti, A. (2016). J. Appl. Cryst. 49, 260-276.
Glatter, O. & Kratky, O. (1982). Small Angle X-ray Scattering. New York: Academic Press.
Gommes, C. J. (2013). J. Appl. Cryst. 46, 493-504.
Gommes, C. J. (2018). Microporous Mesoporous Mater. 257, 62-78.
Gommes, C. J., Asset, T. & Drnec, J. (2019). J. Appl. Cryst. 52, 507-519.
Gommes, C. J., Jiao, Y. & Torquato, S. (2012). Phys. Rev. E, 85, 051140.
Gommes, C. J. & Pirard, J. P. (2009). Phys. Rev. E, 80, 061401.
Gommes, C. J. & Roberts, A. P. (2008). Phys. Rev. E, 77, 041409.
Gommes, C. J. & Roberts, A. P. (2018). Phys. Chem. Chem. Phys. 20, 13646-13659.
Grillo, I. (2009). Curr. Opin. Colloid Interface Sci. 14, 402-408.
Guinier, A. & Fournet, G. (1955). Small Angle Scattering of X-rays. New York: John Wiley.
Levitz, P. (1998). Adv. Colloid Interface Sci. 76-77, 71-106.
Narayanan, T., Diat, O. & Bösecke, P. (2001). Nucl. Instrum. Methods Phys. Res. A, 467-468, 1005-1009.
Pedersen, J. S. (1997). Adv. Colloid Interface Sci. 70, 171-210.
Perret, R. & Ruland, W. (1968). J. Appl. Cryst. 1, 308-313.
Pipich, V., Balz, M., Wolf, S. E., Tremel, W. & Schwahn, D. (2008). J. Am. Chem. Soc. 130, 6879-6892.
Quiblier, J. A. (1984). J. Colloid Interface Sci. 98, 84-102.
Roberts, A. & Knackstedt, M. A. (1996). Phys. Rev. E, 54, 2313-2328.
Roberts, A. P. & Teubner, M. (1995). Phys. Rev. E, 51, 4141-4154.
Sivia, D. S. (2011). Elementary Scattering Theory. Oxford University Press.
Stribeck, N. (2010). X-ray Scattering of Soft Matter. Berlin: Springer.
Teubner, M. (1991). Europhys. Lett. 14, 403-408.
Torquato, S. (2002). Random Heterogeneous Materials. New York: Springer.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.