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Abstract

We propose a family of stochastic models of disordered particles, obtained by clipping

a Gaussian random field with a function that is space-dependent. Depending on the

shape of the clipping function, dense or hollow particles can be modelled. We derive

general expressions for the form factor of the particles, for their average volume and

surface area, as well as for their density and surface-area distributions against the

distance to the particle centre. We also introduce a general approximation for the

form factor based on the density and surface-area distributions, which coincides with

the Guinier and Porod expressions in the limits of low and high scattering vector q. The

models are illustrated with the fitting of Small-Angle X-ray Scattering (SAXS) data

measured on Pt/Ni hollow nanoparticles. Our SAXS analysis and modelling notably

capture the collapse of the particles porosity after being used as oxygen-reduction

catalysts.
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1. Introduction

Small-angle scattering (SAS) of x-rays (SAXS) or neutrons (SANS) is a very versatile

experimental method that enables one to characterize the structure of nanomaterials

over length scales that range from 1 nm to 100 nm, in a wide variety of chemical

and physical environments (Glatter & Kratky, 1982; Stribeck, 2010). Moreover, this

can often be done in a time-resolved way both for synchrotron SAXS (Narayanan

et al., 2001; Grillo, 2009) and for SANS (Pipich et al., 2008; Carl et al., 2020). However,

a significant difficulty with small-angle scattering is the data analysis. There generally

exists a variety of structures that are compatible with a given scattering pattern

(Gommes et al., 2012), so that converting scattering data into meaningful structural

information requires models (Pedersen, 1997).

When developing models to analyse SAS data from disordered materials, one has

always to find a trade-off between conceptual simplicity and realism. The former is

needed for the robust analysis of scattering patterns with as few parameters as possible.

The latter ensures that as many structural characteristics as possible are accounted

for in the materials description. This is particularly challenging in the case of disor-

dered materials, the structure of which is partially random. For this type of materials,

stochastic models offer a practical way through the almost antagonistic requirements

of geometrical realism and mathematical simplicity (Gommes, 2018).

In this paper we introduce a family of stochastic models of either dense or hol-

low particles, obtained by clipping a Gaussian random field with a function that is

space-dependent. The well-known Gaussian random field model of biphasic materi-

als (Quiblier, 1984; Berk, 1987; Teubner, 1991; Chen et al., 1996; Levitz, 1998) is

obtained as a particular case of the present general family of models for constant clip-

ping functions. We derive general analytical expressions for volume and surface area

of the particles, for their density and area profiles, as well as for their form factors.
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The derivations are limited here to a material with uniform scattering contrast, but

the modelling procedure can be generalised to multiple phases as well. We illustrate

the practical use of these models for SAXS data analysis with the case of PtNi hollow

nanoparticles supported of carbon, used as oxygen reduction catalysts.

2. Experimental

The theoretical developments of the present paper were motivated by the SAXS anal-

ysis of PtNi hollow nanoparticles supported on Vulcan XC72 porous carbon. Details

for the preparation of PtNi nanoparticles and membrane electrode assembly (MEA)

sample can be found in Chattot et al. (2018) and Chattot et al. (2020), respectively.

Proton-Exchange Membrane (PEM) fuel-cell accelerated stress test was conducted

in a dedicated single 5 cm2 cell, controlled by a test station (FCS-4M-100W, Lean-

Cat Fuel Cell) and a Biologic SP-400 potentiostat. First, the cell was operated at

80 ◦C, under H2/Air at 150 sccm/350 sccm flow rate (atmospheric pressure) for

anode/cathode and the humidification rate was 100%. The MEA was quickly con-

ditioned for about 1h by maintaining a cell voltage of 0.6 V. Then, the gas at cathode

was switched to N2, and 5000 square wave potential cycles between 0.6 V and 1.1 V

(3s - 3s) were applied. Since the anode consisted in Pt nanoparticles in equilibrium

under H2, the cathode cell potential vs. the reversible hydrogen electrode (VRHE) can

be considered equal to the overall cell voltage. We hereafter refer to the samples before

and after the accelerated stress test as the fresh and spent catalysts, respectively.
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Fig. 1. Transmission Electron Micrographs of the PtNi hollow nanoparticles, in the
fresh (a) and spent catalysts (b). The nanoparticles are the smaller black objects
and the larger grey objects belong to the carbon support. The insets (a1 to a3)
are three magnified views of nanoparticle types coexisting in the fresh catalyst; the
scale bars in the insets are 40 nm long.

Figure 1 shows transmission electron microscopy (TEM) images of the catalysts,

before and after the stress test. The fresh catalyst contains a large number of rela-

tively well-defined hollow nanoparticles as shown in Fig. 1a2. The material is, however,

very heterogeneous as the latter well-defined nanostructures coexist with much smaller

compact objects (Fig. 1a1) as well as with larger and very distorted hollow structures

(Fig. 1a3). The nanoparticles in the spent catalyst (Fig. 1b) are also extremely dis-

torted, but they are mostly dense and slightly larger.

In addition to TEM, the collapse of the nanostructures during the stress test is con-

firmed electrochemically by CO stripping, which technique provides an independent

measurement of the surface area of the metal nanoparticles (Chattot et al., 2020).

The so-obtained area, combined with the known metal loading of 20.4 wt. %, yields

a specific surface area a = 45 ± 7 m2/gPt in the fresh catalyst. The metal surface

area per unit of mass of the entire material (carbon and metal) decreases by 54 %

during the stress test. In the meantime the specific metal loading, estimated through

STEM/X-EDS, increases to about 30 wt. % as a consequence of support oxidation.

The specific surface area of the metal particles is therefore difficult to estimate accu-

rately in the spent catalyst. As an order of magnitude, however, half of the particles
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surface is lost during the stress test.

The small-angle x-ray scattering (SAXS) signals from the various sample powders –

contained in either Kapton capillary (fresh catalyst) or Kapton tape (spent catalyst) –

illuminated with a 70 keV X-ray beam were collected at beamline ID31 at ESRF with

a Dectris Pilatus CdTe 2M detector positioned 6.5 m behind the sample. The signal

was protected from air-scattering by a flight tube under mild vacuum. The energy,

detector distance and tilts were calibrated using a standard Ag behenate powder and

the 2D scattering patterns were reduced to 1D curves using pyFAI software package

(Ashiotis et al., 2015). The scattering by the empty carbon support was measured on

a slightly different setup (Gommes et al., 2019). In all cases, the scattering data were

corrected for the contribution of the empty sample holder. The SAXS patterns of the

porous support as well as of the fresh and spent catalysts are shown in Figure 2.

Fig. 2. Small-angle x-ray scattering (SAXS) patterns of the fresh and spent catalysts,
as well as of the unloaded porous support. The solid black line is the model used
to extrapolate the support contribution over the same angular range as that of the
catalysts.
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3. The particle model

3.1. General procedure

We develop a general model of particles aimed at capturing the various types of

disordered structures present in the fresh and spent catalysts (see Fig. 1). The central

mathematical concept in the model is that of Gaussian Random Field (GRF) (Quiblier,

1984; Berk, 1987), which assigns to any point of space x a stochastically-defined value

Y (x). An isotropic GRF can be thought of as the following sum (Berk, 1991; Levitz,

1998)

Y (x) =

√
2

N

N∑
n=1

sin [qn · x− ϕn] (1)

where qn is a vector with random orientation and modulus q = |q| drawn from a

prescribed isotropic distribution with probability density fY (q)4πq2dq, and ϕn is a

random phase uniformly distributed in [0, 2π). In Eq. (1), the sum is over N contribu-

tions; in the limit of N →∞ the values of Y (x) are Gaussian-distributed with a mean

of zero, and the factor
√

2/N ensures that the variance is equal to one. The GRF is

therefore comprehensively characterized by the function fY (q), which we refer to as

its power-spectral density.

A characteristic of a GRF that is mathematically equivalent to fY (q) is its corre-

lation function defined as gY (r) = 〈Y (x)Y (x + r)〉 where the brackets stand for the

ensemble average, i.e. the average evaluated over different realizations. The correla-

tion function is related to the power spectral density fY (q) via the following Fourier

transform (Berk, 1991)

gY (r) =

∫ ∞
0

sin[qr]

qr
fY (q)4πq2 dq (2)

For reasons that will be clear shortly, we consider only Gaussian fields with a corre-

lation function that is quadratic for small values of r, which enables us to define the
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characteristic length lY through the relation

gY (r) ' 1− (r/lY )2 + . . . (3)

close to r = 0. Because the functions gY (r) and fY (q) are Fourier transforms of each

other, the length lY can also be obtained from the power-spectral density. The relation

is

1

l2Y
=

1

6

∫ ∞
0

q2fY (q)4πq2dq (4)

Qualitatively, the length lY can be thought of as the distance over which the values

of Y (x) change significantly.

Examples of Gaussian fields are provided in Fig. 3. Those fields are obtained with

a correlation function of the type

gY (r) = 1/ cosh

[
r

lY

√
2

]
(5)

with lY = 30 nm (Fig. 3a) and lY = 10 nm (fig. 3b). The specific function in Eq.

(5) is a particular case of a more general function used in earlier work (Gommes

& Roberts, 2008; Gommes & Roberts, 2018); it behaves as an exponential over large

distances but it is also quadratic at the origin as imposed by Eq. (3). The corresponding

power-spectral density is

fY (q) =
π3

qlY
l3Y

sinh[πqlY /(2
√

2)]

1 + cosh[πqlY /
√

2]
(6)

as obtained from a Fourier transformation of gY (r).
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Fig. 3. Modelling of disordered dense nanoparticles, with Gaussian random fields Y (x)
having characteristic lengths lY = 15 nm (a) and 5 nm (b), clipped with two different
radial functions α(r) (c and d). The resulting particles are shown in a/c, a/d, b/c
and b/d; in each case four realisations are shown to highlight the variability of the
particles within one given model. The coloured areas in c and d highlight the region
corresponding to the solid.

A classical procedure for modelling disordered co-continuous structures – such as

porous materials, emulsions, phase-separated copolymers, etc. – consists in clipping

a Gaussian field (Quiblier, 1984; Berk, 1987; Teubner, 1991). With those models, a

given phase of a material is modelled as the points of space where a GRF takes values

larger than a user-defined threshold. The particle models we discuss here are based on

a generalization of this procedure, by which the classical constant threshold is replaced

by a space-dependent function α(x) (Gommes & Pirard, 2009). In mathematical terms,

the indicator function of the particles I(x) – taking the value 1 if point x is in the
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particle and 0 otherwise – is defined as

I(x) = H [Y (x)− α(x)] (7)

where H[x] is Heaviside’s step function (equal to one for x > 0 and to zero otherwise),

Y (x) is a Gaussian random field, and α(x) is any user-specified space-dependent func-

tion.

The procedure is illustrated in Fig. 3 with a Gaussian field having a power spectral

density of the type of Eq. (6), and a linear clipping functions of the type

α(r) = α0 + r/lα (8)

where r is the distance from the origin, and lα and α0 are two parameters of the model.

As shown in Fig. 3, a variety of morphologies can be modelled with this procedure,

depending on the values of the parameters.

In the limit of infinitely large values of lα, the clipping function reduces to a constant

α0 and one recovers the classical clipped Gaussian field model (Levitz, 1998; Gommes,

2018). It is also interesting to note that the opposite limit, i.e. small values of lα

correspond to a polydisperse sphere model (see Fig. 3a/c). Spherical particles are

indeed obtained whenever the Gaussian field Y (x) is almost constant over distances

typical of α(r), which corresponds to the asymptotic limit lY /lα � 1. In that limit,

the points of space where Y (x) > α(x) make up a sphere with radius

r = lα(Y − α0) (9)

where Y is the local value of the field, which is spatially constant in the limit lY � lα.

Because Y is Gaussian-distributed with a mean of zero and a variance of one, the

particle model reduces to spheres with Gaussian-distributed radii with average 〈r〉 =

−lαα0 and variance σ2R = 〈(r − 〈r〉)2〉 = l2α.

When the field Y (x) is variable over distances comparable with lα the model

yields morphologies more complex than spheres. The variety of morphologies include
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smoothly deformed particles (Fig. 3a/d), and particles with local bulges protruding

out of the surface (Fig. 3b/c). Extremely complex, and occasionally disconnected

structures, are obtained for shallow clipping functions, that is for α0 ' 0 and lα > lY

(Fig. 3b/d).

It is useful to stress here that the small-angle scattering patterns of polydispersed

spherical particles and of distorted particles with a gaussian surface are expected to be

distinctly different. Indeed, the two types of structures might lead to similar average

density profiles but the surface area of distorted particles is necessarily larger. As a

consequence the low-q part of the scattering patterns might be similar in both cases,

but the Porod scattering in the high q regions will be different.

3.2. Hollow particles

Fig. 4. Sketch of the three clipping functions α(r) used to model dense (model A)
and hollow (models B and C) particles. The coloured areas highlight the region
corresponding to the solid.

The model described in Fig. 3 can only produce dense particles because the clipping

function takes its smallest value α = α0 at r = 0 (see Fig. 4A). From now on we refer

to that first model as model A, and we introduce two generalisations towards hollow

structures. The first generalisation is sketched in Fig. 4B. Using a clipping function

with large values for r = 0 makes the particle hollow. The corresponding clipping

function has two additional parameters αc and αs, in addition to lα and α0. Formally,
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the clipping function of our model B is defined as

α(r) =

{
αc + (r/Rs)(αs − αc) for r ≤ Rs
α0 + r/lα for r > Rs

(10)

where Rs = lα(αs − α0) can be thought of as the radial position of the shell, i.e.

where α(r) takes its lowest value αs. On the other hand, the parameter αc controls

the probability for the center of the particle to be dense or hollow. Realizations of

model B are shown in Fig. 5b, in which the hollow centres are indeed visible.

Fig. 5. Realizations of the particle models A, B and C corresponding to the clipping
functions (in a, b and c), obtained with a Gaussian field having characteristic length
lY = 10 nm. The density profiles S1(r) are shown in a1, b1 and c1, and the specific
surface profiles aV (r) are in a2, b2 and c2. The right axes display the cumulated
volumes and areas V (r) and A(r) as a function of distance from the center (in blue),
with horizontal lines calculated from Eq. (14) for the volumes, and Eq. (19) for the
areas.
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In some circumstances it might be desirable to have a model that ensures that the

inner cavity of the particle is closed. This can be achieved by modifying the clipping

procedure as sketched in Fig. 4C. In that case, two clipping functions are used and

the particle is modelled as the points of space where the Gaussian field is intermediate

between the two functions, say α(r) and β(r). In the simple case shown Fig. 4C, the

two functions are linear with the same slope, which can be written as

α(r) = α0 + r/lα

β(r) = α1 + r/lα (11)

so that the model has a total of three parameters: α0 and lα control the size and shape

of the outer surface of the particle, and α1 − α0 controls the thickness of the shell.

Realizations of this model are shown in Fig. 5c. The indicator function of model C is

formally defined as

I(x) = H[Y (x)− α(x)] (1−H[Y (x)− β(x)])

= H[Y (x)− α(x)]−H[Y (x)− β(x)] (12)

where the second equality results from assuming α(x) ≤ β(x) everywhere, which is

the case for Eq. (11). To understand why this procedure leads to hollow particles with

a continuous shell, one can notice that the clipping functions α(r) and β(r) define the

outer and inner surfaces of the particles. The condition β(r) > α(r) therefore ensures

that the inner and outer surfaces do never touch each other, so that there is no hole

in the shell.

3.3. Particles average volume and area

The volume and surface area of the particles defined in figures 3 and 5 are random

variables, because they depend on the particular realization of the Gaussian field Y (x).

This does not preclude one from calculating average values for the particles volume
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and area. For example, the volume of a particle is defined as the integral over the

entire space of the indicator function, namely

V =

∫
dVx I(x) (13)

Because the ensemble averaging commutes with the space integration, the average

volume is obtained as

〈V 〉 =

∫
dVx S1(x) (14)

where we have used the classical notation S1(x) = 〈I(x)〉 for the one-point probability

function (Torquato, 2002). The latter function is the probability for a given point of

space to be in the solid phase of the particle.

In the case of models A and B, with indicator function defined in Eq. (7), the

one-point probability function S1(x) is calculated as the probability for a Gaussian

variable to take values larger than the threshold function α(x) at that specific position.

Because the threshold is a radial function, this can be written as

S1(r) = Λ1[α(r)] (15)

where we used the notation (Roberts & Knackstedt, 1996)

Λ1[α] = 〈H[Y − α]〉 (16)

where Y is a Gaussian variable and H[x] is Heaviside’s step function. In terms of the

error function erf[x], the function Λ1 can be calculated as

Λ1[α] =
1

2
− 1

2
erf

[
α√
2

]
(17)

In the case of model C, the one-point probability function is calculated as

S1(r) = Λ1[α(r)]− Λ1[β(r)] (18)

which results from Eq. (12) with β(r) ≥ α(r). Equation 18 is the probability for a

Gaussian variable to be larger than α(r) and smaller than β(r).

IUCr macros version 2.1.6: 2014/10/01



14

The one-point probability function S1(r) is equal to the average density at distance r

from the origin, calculated over independent realizations of the particles. Examples of

average density profiles of models A, B and C are shown in Fig. 5a1 to 5c1. In the case of

model A, the average density has a maximum in the centre. By contrast the average

density of hollow-particle models B and C has a maximum at some intermediate

distance r, corresponding to the most-probable position of the shell. The particles

volumes are then obtained through Eq. (14), which in spherical coordinates writes∫
S1(r)4πr

2 dr. The cumulative volumes V (r), defined as the average particle volume

at distance lower than r to the centre, are plotted in Figs. 5a1, b1 and c1. The horizontal

asymptotes in the same graphs are the average volumes of the entire particles.

The surface area of a particle is also a random variable. Its average value is calculated

as

〈A〉 =

∫
dVx aV (x) (19)

where aV (x) is the average surface area in an infinitesimal volume centred on point

x. A general expression for aV was derived by Gommes & Pirard (2009), namely

aV (x) =
23/2

πlY
exp[−α2/2]× Σ

[
lY |∇α|

2

]
(20)

where α and ∇α are the local values of the clipping function and of its gradient, and

Σ[x] is the following function

Σ[x] =
1

2
exp[−x2] +

(
x+

1

2x

) √
π

2
erf[x] (21)

In Eq. (20), the first factor is the classical expression aV = 23/2/(πlY ) exp[−α2/2] valid

for the classical clipped GRF model (Berk, 1991; Teubner, 1991), and the factor Σ

accounts for the gradient of the clipping function. The surface area profiles of models

A, B calculated from Eq. (20) are plotted in Fig. 5a2 and 5b2. In the case of model

A, the value of aV (r) is maximum at some intermediate distance r corresponding to

the average position of the particle surface. For model B, a more complex pattern
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is observed resulting from the existence of an inner and outer surfaces. In the case

of model C, there are two contributions to the local surface area density aV . The

contribution of the outer surface is calculated through Eq. (20) and that of the inner

surface is calculated through Eq. (20) with α replaced by β. In Fig. 5c2, the two

contributions cannot be discriminated because of the small thickness of the shell.

The average total surface area of a particle 〈A〉 is calculated numerically from Eqs.

(19), i.e. as
∫
aV (r)4πr2dr in spherical coordinates, with aV (r) calculated from Eq.

(20) for arbitrary clipping function α(r) and β(r). The corresponding cumulated areas

A(r), corresponding to the average surface area at distance smaller than r to the centre,

are plotted in in Figs. 5a2, b2 and c2. The horizontal lines are the asymptotes, equal

to the total surface area of the particles.

3.4. Particles form factor

The form factor P (q) is the intensity scattered by a single particle (Sivia, 2011).

In a stochastic context this is conveniently calculated in two steps, by evaluating first

the scattering amplitude A(q) and then the average value of the squared modulus

|A(q)|2. In terms of the particle indicator function I(x), the amplitude is

A(q) =

∫
dVx e

−iq·xI (x) (22)

which is a random variable because it depends on the values of the indicator function.

From Eq. (22), the scattered intensity is then calculated as

P (q) =

∫
dV1

∫
dV2 e

−iq·(x1−x2)S2 (x1,x2) (23)

which results from expressing P (q) = 〈A(q)A∗(q)〉, where the star stands for complex-

conjugation. In Eq. (23), the function S2 (x1,x2) is the two-point probability function

defined as

S2 (x1,x2) = 〈I (x1) I (x2)〉 (24)
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This ensemble average can be interpreted as the probability that the two points x1

and x2 both belong to the solid phase of the particle (Torquato, 2002).

In the present context of clipped Gaussian-field models, with indicator function

defined in Eq. (7), the two-point probability function is conveniently expressed in

terms of the following error function

Λ2[α1, α2, g12] = 〈H[Y1 − α1]H[Y2 − α2]〉 (25)

which generalises the function Λ1[α] introduced in Eq. (16) to the case of two Gaussian

variables. Equation (25) is the probability for two Gaussian variables Y1 and Y2 with

correlation g12 to simultaneously be larger than α1 and α2, respectively. In principle

this can be calculated as the two-dimensional integral of a bivariate Gaussian distri-

bution, but it is easier to evaluate it numerically via the following one-dimensional

integral (Berk, 1991; Roberts & Teubner, 1995)

Λ2[α1, α2, g12] = Λ1[α1]Λ1[α2] +
1

2π

∫ asin[g12]

0
exp

[
−α

2
1 + α2

2 − 2α1α2 sin(x)

2 cos2(x)

]
dx

(26)

With this notation, the two-point probability function of models A and B is expressed

as

S2(x1,x2) = Λ2[α(x1), α(x2), gY (r)] (27)

where r = x1−x2 is the distance between the two points, and gY (r) is the correlation

between the values of the Gaussian field at those two points, defined in Eq. (2).

It is customary in the scattering literature to define the correlation function C(r)

as the intersection volume of a particle and a copy of it that has been translated by

a distance r (Guinier & Fournet, 1955; Glatter & Kratky, 1982; Sivia, 2011). In a

stochastic context such an intersection volume is a random variable, the average value

of which is obtained as the integral of S2(x1,x2) over all pairs of points at vectorial
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distance r from one another, namely

C(r) =

∫
S2

(
x +

1

2
r,x− 1

2
r

)
dVx (28)

With this definition of C(r), the double integral in Eq. (23) reduces to the Fourier

transform of the correlation function C(r), and one recovers the classical expression

for the form factor.

In the case of models A and B the clipping functions are radial, which simplifies the

evaluation of C(r). In particular, from Eq. (27), the two-point probability S2(x1,x2)

does not depends on six variables (two points, each in three-dimensional space) but

only on three variables, namely: the radial positions of the two points r1 = |x1|

and r2 = |x2| (because the clipping function α is radial) as well as on the distance

r = |x1 − x2| between them (through the field correlation gY (r), which is also a

radial function). We write this dependence as S2{r1, r2, r}, with curled brackets. The

integral in Eq. (28) is then conveniently calculated in spherical coordinates, in which

the radial distance to the origin is ρ, and the polar angle θ is measured with respect

to the direction of r. With these coordinates, the radial positions of the two points

x + r/2 and x− r/2 are

r1 =
√
ρ2 + (r/2)2 + ρr cos(θ) (29)

r2 =
√
ρ2 + (r/2)2 − ρr cos(θ) (30)

The correlation function is then obtained as

C(r) = 4π

∫ ∞
0

ρ2dρ

∫ 1

0
dµ S2

{√
ρ2 + (r/2)2 + ρrµ,

√
ρ2 + (r/2)2 − ρrµ, r

}
(31)

which results from the integral in Eq. (28) through a change of variable µ = cos[θ].

The form factor is then obtained as a Fourier transform, i.e.

P (q) =

∫ ∞
0

sin[qr]

qr
C(r)4πr2dr (32)
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which holds for any statistically isotropic particles. The correlation functions and form

factors of model A are illustrated in Fig. 6 with a few examples. Although the model

is formally identical to the one shown in Fig. 3, different values of the parameters α0,

lα and lY were used here to demonstrate the versatility of the model.

Fig. 6. Correlation functions and form factors for dense particles (model A) with:
(a) α0 = −2, lY = lα/2; (b) α0 = −5, lY = lα/2; (c) α0 = −2, lY = 2lα; (d)
α0 = −5, lY = 2lα, and the value of lα chosen to have a volume of 8000 nm3. The
coloured lines are the exact results and the black lines are the approximate form
factors calculated through Eq. (40). For each set of parameters, three independent
realizations are shown.

The mathematical expressions obtained here are valid for any radial clipping func-

tion α(r), which includes model B of hollow particles as in Eq. (10). However, in the

case of model C with two clipping functions α(r) and β(r) a different procedure is

needed. The two-point probability function of model C is calculated as

S2(x1,x2) = Λ2[α(x1), α(x2), gY (r)]− Λ2[α(x1), β(x2), gY (r)]
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− Λ2[β(x1), α(x2), gY (r)] + Λ2[β(x1), β(x2), gY (r)] (33)

This equation results from Eq. (24) with the indicator function of model C taken

from Eq. (12). The correlation function C(r) is then evaluated via Eq. (28), which

leads to four contributions similar to Eq. (31). Examples of hollow particles with their

correlation functions are shown in Fig. 7.

Fig. 7. Correlation functions and form factors for hollow particles obtained through
model B with αc = 4, αs = 0 and lY = 30 nm (a) and lY = 10 nm (b), as well as
through model C with lY = 20 nm and α1 = −2 (c) and α1 = −2.5 (d). In all cases
α0 = −3 and lα = 3.75 nm. The coloured lines are the exact results and the black
lines are the approximate form factors calculated through Eq. (40). The dashed line
is a 1/q2 trend, distinctive of scattering by thin films. For each set of parameters,
three independent realisations are shown.

The form factors of both dense and hollow particles (Figs. 6 and 7) exhibit a flat

plateau at small q and a Porod-like q−4 scattering at high q. The shape of the particles

is manisfest in the intermediate q range, with occasional oscillations in P (q) in case of

IUCr macros version 2.1.6: 2014/10/01



20

more ordered structures, as in Fig. 6b. An interesting characteristic of model C (Fig.

7c and 7d) is the presence of an intermediate range of q with a scattering proportional

to q−2. This power law is typical of scattering by thin films (Ciccariello et al., 2016),

and it accounts for the shell of the hollow particle. When the shell becomes thinner

the high-q limit of the q−2 extends to higher values of q, as is visible when comparing

Figs. 7c and 7d.

4. Discussion

4.1. Approximate expression for the form factor

The exact expression of the form factor P (q) derived in Sec 3.4 can be cumbersome

to use in practice because it involves a sequence of numerical integrations. First the

two-point probability function S2(x1,x2) is calculated as a one-dimensional integral

through Eq. (26). Then that function is integrated over a two-dimensional domain

through Eq. (31). Finally the result has then to undergo a Fourier transformation to

evaluate P (q). Here, we introduce a general approximation for the form factor of any

particle in terms of the radial density and specific area profiles S1(r) and aV (r) (see

Fig. 5). In addition to its practical usefulness (e.g. in the context of a data fitting

procedure), the approximate expression developed here helps us validate the exact

analytical results of Sec. 3.4.

Our approximation is based on the following two mathematical constraints that any

two-point correlation function S2(x1,x2) must satisfy (Ciccariello & Benedetti, 1985;

Torquato, 2002). First, in the case where the two points are far away from each other,

the values of the indicator function at x1 and x2 are statistically independent from

each other, which leads to

S2(x1,x2) ' S1(x1)S1(x2) (34)

Second, when x1 and x2 are close to each other, the correlation decreases propor-
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tionally to the distance x1 − x2 and to the local value of the specific surface area.

Specifically, using the notation x2 = x1 + rω̂ where ω̂ is a unit vector, the following

relation holds

1

4π

∫
dω̂ S2(x1,x1 + rω̂) ' S1(x1)−

aV (x1)

4
r (35)

for small values of r (Gommes & Pirard, 2009). In this equation, the left-hand side is

the average value of S2(x1,x2) over all points x2 at a distance r from x1, and aV (x1)

is the specific surface area at point x1. In the particular case of clipped Gaussian fields

the local surface area can be calculated through Eq. (20), but Eq. (35) applies to any

two-phase structure.

The two constraints in Eqs. (34) and (35) are valid for large and small distances r,

respectively. The approximation we introduce consists in assuming that the transition

between the two regimes is exponential and isotropic, namely

S2(x1,x2) ' S1(x1)S1(x2) + S1(x1) [1− S1(x1)] exp

[−|x1 − x2|
l(x1)

]
(36)

This general functional form ensures that S2(x2,x2) = S1(x2) and that S2(x1,x2) =

S1(x1)S1(x2) for |x1 − x2| � l(x1). Moreover, if the local characteristic length that

enters the exponential is chosen to be

l(x) = 4
S1(x)[1− S1(x)]

aV (x)
(37)

one can check that Eq. (35) is satisfied for small values of r.

Evaluating the Fourier transform of Eq. (36) via Eq. (23) provides the following

approximation for the form factor

P (q) = P1(q) + 8π

∫
dVx

S1(x)[1− S1(x)]l3(x)

[1 + [ql(x)]2]2
(38)

The first contribution is the Fourier transform of the particle average density, namely

P1(q) =

∣∣∣∣∫ dVx e
−iq·xS1(x)

∣∣∣∣2 (39)
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which is a low-q approximation. The second contribution is a high-q correction that

accounts for the possible presence of many solid/void interfaces at a scale much smaller

than that of the particle as a whole. As a consequence of the exponential approximation

introduced in Eq. (36), this is calculated here as a sum of Debye-Bueche contributions

of all the infinitesimal volumes that make up the particle (Gommes, 2018).

In the particular case of statistically isotropic particles, which is notably the case

for all models considered in Sec. 3, the approximate form factor simplifies to

P (q) = P1(q) + 8π

∫ ∞
0

4πr2dr
S1(r)[1− S1(r)]l3(r)

[1 + [ql(r)]2]2
(40)

with

P1(q) =

∣∣∣∣∫ ∞
0

4πr2dr
sin(qr)

qr
S1(r)

∣∣∣∣2 (41)

Equation (40) is plotted as solid black lines in Fig. 6 in the case of model A of dense

particles, and in Fig. 7 for hollow particles. Globally, the approximate form factor in

Eq. (40) captures reasonably well the exact value for small and large values of q. In

particular, the asymptotic form of Eq. (40) reduces to Porod’s law

P (q) = 2π
〈A〉
q4

(42)

for high values of q, where 〈A〉 =
∫

dVx aV (x) is the average total surface area of

the particles. Expectedly, deviations between exact and approximate form factors are

observed for intermediate values of q. This is notably the case for model C hollow

particles, for which the q−2 intermediate scattering is not captured (see Fig. 7d).

It is interesting to note that the contribution P1(q) to the approximate form factor

in Eq. (40) depends only on the average density of the particles S1(r). That specific

contribution to the scattering does therefore not depend on the characteristic length

of the Gaussian field lY . Accordingly, the contribution P1(q) alone would not enable

one to discriminate, say, the scattering of polydispersed sphere from that of Gaus-

sian particles with distorted surface. However, the second contribution to Eq. (40)
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is calculated from the specific surface area profile aV (r). That term enables one to

discriminate geometrical distorsion from mere polydispersity, based on the high-q part

of the SAS signal.

4.2. Fitting the SAXS of supported hollow nanoparticles

The Gaussian-field models of particles were used to analyse the SAXS patterns of

the fresh and spent catalysts presented in Sec. 2. For that purpose, it is necessary to

account first for the relative contribution of the particles and of the porous carbon

support to the measured scattered intensity. The total scattering is (Gommes et al.,

2019)

I(q) = ρ2sIs(q) + ρ2pθpP (q) (43)

where ρs and ρp are the electron densities of the material that make up the solid

and the particles, respectively; Is(q) is the scattering contribution of the solid; θp is

the average number of particles per unit volume of the entire material, and P (q) is

their form factor. In general, the scattering by supported nanoparticles contains cross-

correlation terms, which are ignored in Eq. (43). This approximation is valid in the

case of low loading of the support, i.e. if the average electron density of the pore-filling

phase (as if the particles were homogeneously dispersed in the pores) is much lower

than that of the solid phase of the support (Gommes et al., 2019). As we shall discuss

shortly, this applies to the catalysts of Sec. 2.

The scattering by the support is modelled as a Debye-Bueche contribution

Is(q) =
8πφs(1− φs)l3D
(1 + (qlD)2)2

+
b

q2
(44)

where φs is the volume fraction of the solid, lD is a characteristic length of the material,

and the second contribution proportional to b accounts for the turbostratic structure

of carbon (Perret & Ruland, 1968). The solid contribution was fitted to the SAXS

data of the empty support as thoroughly explained in Gommes et al. (2019); the best

IUCr macros version 2.1.6: 2014/10/01



24

fit is shown in Fig. 2 as a solid black line corresponding to parameters φs = 0.17,

lD = 158 Å and b = 1.85 Å. Although there is evidence that the support partially

oxydises during the stress test, we assume here that its structure remains unchanged

so that we can use the support contribution to the SAXS is the same in the fresh and

spent catalysts.

The other material constants that enter Eq. (43) are the electron densities of the

support and of the particles, ρs and ρp, and the particle concentration θp. The electron

densities are assumed to be ρs = 0.9 Faraday/cm3 for the carbon support and ρp = 8.6

Faraday/cm3 for the particles, assuming they are made up of pure Pt with traces of

Ni (Gommes et al., 2019). The particle concentration θp is calculated from the known

metal loading and the average particle volume 〈V 〉. Assuming that the carbon making

up the support has specific mass of 2 g/cm3 and that the particles consist mostly of

Pt with specific mass of 21.5 g/cm3, the overall loading of 20.4 wt. % Pt/C converts

to a volume fraction φp ' 0.004, which means that the metal occupies about 0.4 % of

the entire volume of the material. Using that value, the particle concentration is then

calculated as a function of the average particle volume as

θp =
φp
〈V 〉

(45)

Incidentally, from the volume fraction of metal φp one calculates that the average

electron density of the pore-filling phase is 0.04 Faraday/cm3, which is much smaller

than the electron density of carbon, and justifies ignoring cross-correlation effects in

Eq. (43).

IUCr macros version 2.1.6: 2014/10/01



25

Fig. 8. Fitting of the SAXS of the fresh (a) and spent (b) catalysts (see Figs. 1 and
2) with a polydispersed hollow sphere model. The crosses are the data and the
blue line is the best fit, with the contributions of the solid support in black and of
the particles in red. In each case five realisations of the particle model are shown,
together with their projections.

As a benchmark for our analysis, we first fit the SAXS of the catalysts with a

classical spherical-shell model (Pedersen, 1997). For the fitting, the inner radii Ri

of the particles are assumed to be distributed according to a gamma distribution,

having average inner radius 〈Ri〉 and shape parameter k. For large values of k the

gamma distribution is narrowly peaked around the average value, and the distribution

broadens with decreasing k. The lowest admissible value is k = 1, for which the gamma

distribution reduces to an exponential. Moreover, all particles are assumed to have the

same shell thickness t independently of their inner radius. The fitting of the SAXS data

with three adjustable parameters – 〈Ri〉, k and t – is shown in Fig. 8. For both the fresh

and spent catalysts, the procedure converges to the lowest admissible value for the
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shape parameter of the distribution, k = 1, which points to extremely polydispersed

structures. The values of the other fitted parameters are gathered in Tab. 1.

Assuming that the particles are made of pure Pt, the geometrical surface areas

can be calculated from the model parameters (Gommes, 2018), yielding the values

a = 51 m2/gPt and a = 21 m2/gPt in the fresh and spent catalysts. These values

compare well with those obtained from CO stripping reported in Sec. 2, namely 45

± 7 m2/gPt in the fresh catalyst and a value approximately two times smaller in the

spent catalyst. In addition, we also use the fitted parameter to calculate the following

two global shape descriptors. The average chord length of the particles lC is calculated

as lC = 4〈V 〉/〈A〉, where 〈V 〉 and 〈A〉 are the average particle volume and areas. The

sphericity ψ is calculated as ψ = π1/3(6〈V 〉)2/3/〈A〉, and it takes values between 0

and 1. The value ψ = 1 corresponds to a sphere, and values smaller than 1 point

to particles with a surface area much larger than the sphere with the same volume.

The average chord length lC and the sphericity ψ are distinct and complementary

characteristics of the particles. The average chord length characterises the size of solid

parts of the particle. The sphericity is a dimensionless quantity that is independent of

the particle size: it is a measure of how compact an object is, independently of its size.

The values of ψ reported in Tab. 1 for the spherical-shell model are relatively close to

1. This is a consequence of the shell thickness t being larger than the average inner

radius 〈Ri〉. Globally, the fitting of the SAXS with the spherical-shell model suggests

that the particles becomes larger and more compact during the accelerated stress test.
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Table 1. Values of the model parameters (spherical shell as well as stochastic models B and

C) obtained from the least-square fits of the SAXS data on the fresh and spent catalysts. For

each model the specific surface area a, the average chord length lC , and the sphericity ψ is

calculated from the fitted parameters. The statistical uncertainty on all fitted parameters is

lower than 1 %.

Fresh Catalyst Spent Catalyst

S
p

h
er

ic
al

sh
el

l 〈Ri〉 (Å) 10 15
k (-) 1a 1a

t (Å) 21 54
a (m2/gPt) 51 21
lC (Å) 3.6 8.9
ψ (-) 0.85 0.93

M
o
d

el
B

lY (Å) 40 95
lα (Å) 91 164
α0 (-) 0 -0.2
Rs (Å) 85 89
a (m2/gPt) 53 20
lC (Å) 3.5 9.1
ψ (-) 0.32 0.39

M
o
d

el
C

lY (Å) 139 96
lα (Å) 128 167
α0 (-) -1.18 -0.15
α1 (-) -0.87 2
a (m2/gPt) 54 21
lC (Å) 3.5 9.1
ψ (-) 0.16 0.4

a lowest value allowed

Although the spherical-shell model fits fairly the SAXS data, it forces the reality

into a type of structure that is not representative of all particles in the samples. The

spherical shell could at best describe the type of particles shown in inset a2 of Fig.

1, which are not the only type of structures present in the fresh catalyst. Moreover,

these hollow structures seem to be altogether absent in the spent catalyst (Fig. 1b).

We therefore also fitted the SAXS data with the stochastic models presented in Sec.

3.2. Model B is in general described by 5 parameters: the characteristic length of the

Gaussian field lY , the two parameters lα and α0 that describe the outer surface of the

particle (similar to those of model A), and the two parameters αs and αc that describe

the inner hollow core. In order to reduce the number of fitting parameters to 4, we

impose that the absolute value of the slope of α(r) is the same on both sides of Rs (see
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Fig. 4). This is equivalent to assuming that the inner and outer limits of the shell are of

comparable sharpness. Mathematically, we use the the radial position of the shell Rs

as a fitting parameter, from which one evaluates αs = α0+Rs/lα and αc = αs+Rs/lα.

The best fits are illustrated in Fig. 9, and the corresponding parameters are in Tab.

1. The SAXS data were also fitted with model C of hollow particle, and the best fits

are shown in Fig. 10. Model C has a total of four parameter: the characteristic length

lY of the Gaussian field, the characteristic length of the clipping function lα, and the

two values α0 and α1. The best fits are illustrated in Fig. 10, and the corresponding

parameters are in Tab. 1.

Fig. 9. Fitting of the SAXS of the fresh (a) and spent (b) catalysts (see Figs. 1 and 2)
with stochastic model B (see Fig. 5). The crosses are the data and the blue line is
the best fit, with the contributions of the solid support in black and of the particles
in red. In each case five realisations of the particle model are shown, together with
their projections.
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Fig. 10. Fitting of the SAXS of the fresh (a) and spent (b) catalysts (see Figs. 1 and
2) with stochastic model C (see Fig. 5). The crosses are the data and the blue line is
the best fit, with the contributions of the solid support in black and of the particles
in red. In each case five realisations of the particle model are shown, together with
their projections.

When comparing the outcome of the SAXS fitting with models B and C, it is

interesting to note that the two models yield very similar particle morphologies for

the spent catalysts (see Figs 9b and 10b). The realisations and their projections shown

in the figure are also qualitatively similar to those visible in TEM micrographs (Fig

1b). Mathematically, the two models are strictly equivalent in the limit of very small

values of Rs (model B) or large values of α1 (model C), in which case they reduce to

model A of dense nanoparticles. The values of the fitted parameters in Tab. 1 show

that this is approximately the case for the spent catalyst. The average density profiles

in Fig. 11 hint at slightly hollow particles for model B and dense particles for model

C. These differences appear to be very minor based on the values of the sphericity,
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which hint at relatively dense structures in the spent catalyst for both models B and

C.

Fig. 11. Average density profiles corresponding to the three models fitted to the SAXS
data of the fresh (a) and spent (b) catalysts.

In the case of the fresh catalysts, the morphologies obtained through the fitting of

models B and C are distinctly different as visible from the realisations in Figs. 9a

and 10a. Model B seems to yield a structure consisting in disordered parts randomly

distributed in space. On a closer examination, however, the density profile (Fig. 11a)

is seen to exhibit a clear maximum with S1 ' 0.2 at a distance of approximately 80

Å from the centre. The structure can therefore be thought of as a hollow nanoparticle

with approximate diameter of 160 Å and a 80 %-porous shell. With such high porosity

the shell is actually made up of disconnected lumps. Such disconnected structure is

physically unrealistic. The overall quality of the fit hints at the fact that all connected

parts of the shell do not carry sufficient statistical weight to contribute significantly

to the scattering pattern. It has also to be kept in mind that the catalyst is extremely

heterogeneous as it contains objects with very different sizes (see Fig. 1a1-a3). The

fitting procedure accounts in a statistical way for the scattering by all the different
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types of structures in the sample.

Contrary to model B, the very construction of model C guarantees the connectivity

of the particle shell. The least-square fit copes with this structural constraint by pro-

ducing objects that are significantly larger than those of model B, but very distorted

and with a very thin shell (Fig. 10a). It is the size of the local bulges in these bigger

objects that compares with the structures captured by model B. The different types

of structures produced by models B and C are further illustrated with the density

profiles shown in Fig. 11a.

It is interesting to compare the outputs of the spherical-shell model and of the two

stochastic models. Some features, such as the specific surface area a and the average

chord length lC are remarkably consistent throughout all models. (see Tab. 1) This

was expected because they can both be expressed in terms of the surface-to-volume

ratio of the particles, which can in principle be obtained from a Porod analysis of

the scattering patterns without any model. (Ciccariello et al., 1988; Gommes, 2018)

Moreover, the values are also consistent with those obtained independently from CO

stripping (see Sec. 2).

By contrast, other characteristics are strongly dependent on the model, as is notably

the case for the sphericity ψ. These differences point to the qualitatively different types

of structures that are implicitly assumed when one chooses a specific model over

another one. In particular, based on the values of ψ, the spherical shells are relatively

compact objects when compared to stochastic models B and C, and model C is the

least compact structure. As a consequence, stochastic models B and C predict objects

that are much larger than the spherical-shell model. This is particularly clear when

comparing the density profiles in Fig. 11. Moreover the spherical-shell model strongly

underestimates the size of the particles, as is apparent when comparing the density

profiles with the insets of Fig. 1 One has therefore to conclude that the structures
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captured by the spherical-shell model are merely local features of the bigger structures

that are better captured by the two stochastic models.

5. Conclusions

We have developed and discussed a family of stochastic models of disordered particles.

The models generalise the classical clipped Gaussian-field models of continuous struc-

tures by using a space-dependent clipping function instead of a constant. Depending

on the clipping procedure a variety of morphologies can be produced. The focus of

the present work was on dense and hollow nanostructures, but the same procedure

can be used for other types of more complex structures. All the analytical formulae

derived here for the volume (Eqs. 14 and 15), area (Eqs. 19 and 20), and correlation

function (Eq. 31) are valid for any radial clipping function α(r). The generalisation to

anisotropic structures is straightforward, only numerically more cumbersome. This can

also be generalised towards polyphasic structures with no more conceptual difficulties

than for deterministic models. A possibility consists in modelling the scattering-length

density of the material as a piecewise-constant function, with each region of constant

density being defined stochastically (Gommes, 2013).

Although the data analysis procedure developed in the paper produces realistic

real-space illustrations of the structure, one has to keep in mind that this is achieved

through a modelling. Models cannot be avoided in this context because there are

generally a large number of structures compatible with any given correlation function

(Gommes et al., 2012). The very purpose of models is to bias the reconstruction

process so as to reduce its degeneracy. In classical deterministic models, the bias is

generally towards geometrical simplicity. With stochastic models, the bias is towards

geometrical disorder. Preferring one approach over the other is a matter of modelling

choice, which has to be based on the specific type of material being investigated.
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In the case of stochastic models, the morphological significance of the parameters

is occasionally difficult to visualise. In particular the models capture the variability of

the structures from one particle to the next, which is why several independent realisa-

tions were systematically shown for any given set of parameters. A convenient way to

visualise the average geometry of a given particle model is through their density and

surface-area profiles, for which we obtained general expressions. We also derived an

approximation of the form factor based on the latter two profiles, which coincides with

Porod’s and Guinier’s laws in the limits of high and low values of q, respectively. That

approximation (Eq. 40) is particularly useful in the context of data fitting because

it can be evaluated much faster than the exact expression, which requires numeri-

cally evaluating a two-dimensional integral followed by Fourier transformation. In our

fitting procedure, the approximation was used for the coarse and manual screening

of the parameters, followed by the proper least-square minimisation with the exact

expression.

We used the developed models to analyse the SAXS data of two PtNi hollow

nanoparticles samples, before and after being used during oxygen-reduction catalysis,

which were both known from microscopy to have very disordered and heterogeneous

structures. The data can be reasonably fitted with a classical spherical shell form fac-

tor, but this procedure forces the data into a model that is geometrically too simple

In consequence, the fitted structure has little qualitative resemblance with the actual

sample and the sizes are systematically underestimated. By contrast, the stochastic

models yield more realistic geometries.
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Synopsis

We propose a versatile model of disordered nanoparticles for the purpose of analysing small-
angle scattering data. Our approach generalises the classical clipped Gaussian field models of
random structures, by allowing the clipping function to be space dependent.
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