[en] The increasing demand for thinner and harder steel strips requires the introduction of flexible lubrication systems that continuously adapt the lubrication conditions in existing rolling mills to not saturate the stand capacity by excessive friction. To design these systems, this article introduces one of the most advanced models of lubricated cold rolling since it combines the following features in a single model: elasto-thermo-viscoplasticity of the strip, mixed lubrication by a thermo-piezoviscous lubricant, full-flooded lubrication or starvation, and a complete formulation of non-circular roll flattening. This model is then validated by a new semi-industrial data set, which is one of the most comprehensive ones since it includes: roughness measurements of the rolls and the strips, hardening laws of the strips by plane-strain compression tests, thermo-piezoviscous material laws of the lubricants and a large design space to isolate the influence of individual operating parameters. The results indicate that the changes of the rolling force and the forward slip with the rolling speed and the reduction can be quantitatively predicted except for the decreasing forward slip with the reduction. These predictions require to calibrate the coefficients of boundary friction, thermoplasticity and viscoplasticity for each rolled product as well as the inlet film thickness at each rolling speed, if starvation occurs. Once calibrated, the model therefore allows to predict the influences of various operating conditions, e.g. by how much the rolling force can be reduced if more lubricant becomes available at the entry of the roll bite.
Disciplines :
Materials science & engineering
Author, co-author :
Boemer, Dominik
Carretta, Yves; ArcelorMittal Maizières, > Downstream Processes, Global Research & Development
Laugier, Maxime; ArcelorMittal Maizières > Downstream Processes, Global Research & Development
Legrand, Nicolas
Papeleux, Luc ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Boman, Romain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Ponthot, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
An advanced model of lubricated cold rolling with its comprehensive pilot mill validation
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ahmed, R., Sutcliffe, M.P.F., An experimental investigation of surface pit evolution during cold-rolling or drawing of stainless steel strip. J. Tribol. 123 (2001), 1–7, 10.1115/1.1327580.
Bair, S., Mary, C., Bouscharain, N., Vergne, P., An improved Yasutomi correlation for viscosity at high pressure. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 227 (2013), 1056–1060, 10.1177/1350650112474394.
Barus, C., Isothermals, isopiestics and isometrics relative to viscosity. Am. J. Sci. 45 (1893), 87–96, 10.2475/ajs.s3-45.266.87.
Bhushan, B., Introduction to Tribology. Second ed., 2013, John Wiley & Sons.
Bland, D.R., Ford, H., Cold rolling with strip tension, Part 3 – an approximate treatment of the elastic compression of the strip in cold rolling. J. Iron Steel Inst. 171 (1952), 245–249.
Boemer, D., Numerical Modeling of Friction in Lubricated Cold Rolling. Ph.D. thesis. 2020, Université de Liège https://orbi.uliege.be/handle/2268/245441.
Boman, R., Ponthot, J.P., Numerical simulation of lubricated contact in rolling processes. J. Mater. Process. Technol. 125–126 (2002), 405–411, 10.1016/S0924-0136(02)00291-1.
Bouache, T., Legrand, N., Montmitonnet, P., A numerical heat transfer analysis in mixed film lubrication for cold strip rolling. Steeper, M., (eds.) 5th European Rolling Conference, London, 2009.
Bouscharain, N., Vergne, P., Comportement rhéologique d'huiles de laminage sous hautes pressions. Technical Report., 2013, Laboratoire de Mécanique des Contacts et des Structures, Institut Européen de Tribologie, INSA-Lyon.
Carretta, Y., Modélisation des conditions d'apparition du micro-hydrodynamisme via la méthode des éléments finis dans la perspective d'intégrer ce phénomène dans un modèle numérique de laminage à froid. Ph.D. thesis. 2014, Université de Liège (in French) http://hdl.handle.net/2268/169074.
Carretta, Y., Bech, J., Legrand, N., Laugier, M., Ponthot, J.P., Boman, R., Numerical modelling of micro-plasto-hydrodynamic lubrication in plane strip drawing. Tribol. Int. 110 (2017), 378–391, 10.1016/j.triboint.2016.10.046.
Carretta, Y., Boman, R., Stephany, A., Bouache, T., Canivenc, R., Montmitonnet, P., Legrand, N., Laugier, M., Ponthot, J.P., Thermomechanical simulation of roll forming process based on the coupling of two independent solvers. Schrefler, B., Oñate, E., Papadrakakis, M., (eds.) IV International Conference on Computational Methods for Coupled Problems in Science and Engineering, Venice, Italy, 2011, 1–11 http://hdl.handle.net/2268/90249.
Carretta, Y., Boman, R., Stephany, A., Legrand, N., Laugier, M., Ponthot, J.P., Metalub – a slab method software for the numerical simulation of mixed lubrication regime in cold strip rolling. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 225 (2011), 894–904, 10.1177/1350650111410126.
Cassarini, S., Modélisation du film lubrifiant dans la zone d'entrée pour la lubrification par émulsion en laminage à froid. Ph.D. thesis. 2007, École Nationale Supérieure des Mines de Paris (in French) https://hal.archives-ouvertes.fr/tel-00180820/.
Christensen, H., Stochastic models for hydrodynamic lubrication of rough surfaces. Proc. Inst. Mech. Eng. 184 (1970), 1013–1022, 10.1243/PIME_PROC_1969_184_074_02.
Counhaye, C., Modélisation et contrôle industriel de la géométrie des aciers laminés à froid. Ph.D. thesis. 2000, Université de Liège.
European Union, Regulation (EC) No 443/2009 of the European Parliament and of the Council of 23 April 2009 Setting Emission Performance Standards for New Passenger Cars as Part of the Community's Integrated Approach to Reduce CO 2 Emissions From Light-Duty Vehicles. 2009 http://data.europa.eu/eli/reg/2009/443/2018-05-17.
Fujita, N., Kimura, Y., Kobayashi, K., Itoh, K., Amanuma, Y., Sodani, Y., Dynamic control of lubrication characteristics in high speed tandem cold rolling. J. Mater. Process. Technol. 229 (2016), 407–416, 10.1016/j.jmatprotec.2015.09.042.
Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations. 1971, Prentice-Hall.
Guillaument, R., Modélisation globale de l'alimentation d'une emprise lubrifiée par émulsion: simulation numérique directe et analyse physique des phénomènes. Ph.D. thesis. 2010, Université Bordeaux I (in French) http://ori-oai.u-bordeaux1.fr/pdf/2010/GUILLAUMENT_ROMAIN_2010.pdf.
Guillaument, R., Vincent, S., Caltagirone, J.P., Plate-out modelling for cold-rolling systems lubricated with oil-in-water emulsions. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 225 (2011), 905–914, 10.1177/1350650111411245.
Hitchcock, J.H., Elastic Deformation of Rolls During Cold-Rolling. Roll Neck Bearings. Report of A.S.M.E. Special Research Committee on Heavy-Duty Anti-friction Bearings., 1935, 33–41.
Hunter, A.K., Ultrasonic Measurements of the Strip Thickness, Lubricant Film Thickness, Roll Deflection and Roll Stress in the Roll Bite in the Cold Rolling of Steel. Ph.D. thesis. 2018, The University of Sheffield http://etheses.whiterose.ac.uk/22009/.
Jeunechamps, P.P., Simulation numérique à l'aide d'algorithmes thermomécaniques implicites, de matériaux endommageables pouvant subir de grandes vitesses de déformation. Ph.D. thesis. 2008, Université de Liège (in French) http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-10232008-102329/unrestricted/TheseJeunechamps.pdf.
Johnson, G.R., Cook, W.H., A constitutive model and data for metals subjected to large strains, high-strain rates and high-temperatures. Proceedings of the 7th International Symposium on Ballistics, 1983, 541–547 https://ia800102.us.archive.org/9/items/AConstitutiveModelAndDataForMetals/A%20constitutive%20model%20and%20data%20for%20metals_text.pdf.
Jortner, S., Osterle, J.F., Zorowski, C.F., An analysis of cold strip rolling. Int. J. Mech. Sci. 2 (1960), 179–194, 10.1016/0020-7403(60)90003-5.
Kimura, Y., Fujita, N., Matsubara, Y., Kobayashi, K., Amanuma, Y., Yoshioka, O., Sodani, Y., High-speed rolling by hybrid-lubrication system in tandem cold rolling mills. J. Mater. Process. Technol. 216 (2015), 357–368, 10.1016/j.jmatprotec.2014.10.002.
Korzekwa, D.A., Dawson, P.R., Wilson, W.R.D., Surface asperity deformation during sheet forming. Int. J. Mech. Sci. 34 (1992), 521–539, 10.1016/0020-7403(92)90028-f.
Krimpelstätter, K., Non-circular Arc Temper Rolling Model Considering Radial and Circumferential Work Roll Displacements. Ph.D. thesis. 2005, Johannes Kepler Universität Linz.
Laugier, M., Boman, R., Legrand, N., Ponthot, J.P., Tornicelli, M., Bech, J.I., Carretta, Y., Micro-plasto-hydrodynamic lubrication. A fundamental mechanism in cold rolling. Adv. Mater. Res. 966–967 (2014), 228–241, 10.4028/www.scientific.net/amr.966-967.228.
Laugier, M., Tornicelli, M., Cebey, J., Schiavone, L., Lopez Peris, D., Devolder, A., Guillard, R., Kop, F., Flexible lubrication for controlling friction in cold rolling, crucial to be successful for AHSS challenge. Proceedings of the METEC and 2nd ESTAD, Düsseldorf, Germany, 2015, 1–8.
Laugier, M., Tornicelli, M., Leligois, C.S., Bouquegneau, D., Launet, D., Alvarez, J.A., Flexible lubrication concept. The future of cold rolling lubrication. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 225 (2011), 949–958, 10.1177/1350650111414514.
Legrand, N., Masson, P., Amrane, L., Santi, I., Chauviré, M., Vermot des Roches, L., Cold double reduction rolling for packaging steels: towards a better lubrication control by emulsion. Rev. Métall. 104 (2007), 43–50, 10.1051/metal:2007103.
Legrand, N., Patrault, D., Labbe, N., Gade, D., Piesak, D., Jonsson, N.G., Nilsson, A., Horsky, J., Luks, T., Montmitonnet, P., Canivenc, R., Joyce, R.D., Hunter, A., Pinna, C., Maurin, L., Advanced Roll Gap Sensors for Enhanced Hot and Cold Rolling Processes (Rollgap Sensors). Technical Report., 2015, Research Fund for Coal and Steel, European Commission, 10.2777/90436.
Lin, H.S., Marsault, N., Wilson, W.R.D., A mixed lubrication model for cold strip rolling – Part I: Theoretical. Tribol. Trans. 41 (1998), 317–326, 10.1080/10402009808983754.
Liu, Y.J., Tieu, A.K., A thermal mixed film lubrication model in cold rolling. J. Mater. Process. Technol. 130–131 (2002), 202–207, 10.1016/S0924-0136(02)00720-3.
Marsault, N., Modélisation du régime de lubrification mixte en laminage à froid. Ph.D. thesis. 1998, École Nationale Supérieure des Mines de Paris (in French).
Meindl, W., Walzenabplattung unter Berücksichtigung der Kontaktschubspannungen. Ph.D. thesis. 2001, Johannes Kepler Universität Linz (in German).
Mizuno, T., Okamoto, M., Effects of lubricant viscosity at pressure and sliding velocity on lubrication conditions in the compression-friction test on sheet metals. J. Lubr. Technol. 104 (1982), 53–59, 10.1115/1.3253164.
Montmitonnet, P., Hot and cold strip rolling processes. Comput. Methods Appl. Mech. Eng. 195 (2006), 6604–6625, 10.1016/j.cma.2005.10.014.
Montmitonnet, P., Fourment, L., Ripert, U., Ngo, Q.T., Ehrlacher, A., State of the art in rolling process modelling. BHM, Berg- und Hüttenmännische Monatshefte 161 (2016), 396–404, 10.1007/s00501-016-0520-4.
Montmitonnet, P., Stephany, A., Cassarini, S., Ponthot, J.P., Laugier, M., Legrand, N., Modelling of metal forming lubrication by O/W emulsions. Azushima, A., (eds.) Proceedings of the 3rd International Conference on Tribology in Manufacturing Processes, Yokohama, Japan, 2007, 85–90.
Orowan, E., The calculation of roll pressure in hot and cold flat rolling. Proc. Inst. Mech. Eng. 150 (1943), 140–167, 10.1243/pime_proc_1943_150_025_02.
Patir, N., Cheng, H.S., An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J. Lubr. Technol. 100 (1978), 12–17, 10.1115/1.3453103.
Patir, N., Cheng, H.S., Application of average flow model to lubrication between rough sliding surfaces. J. Lubr. Technol. 101 (1979), 220–229, 10.1115/1.3453329.
Peklenik, J., New developments in surface characterization and measurements by means of random process analysis. Proc. Inst. Mech. Eng. 182 (1967), 108–126, 10.1243/pime_conf_1967_182_309_02.
Pullen, J., Williamson, J.B.P., On the plastic contact of rough surfaces. Proc. R. Soc. Lond. Ser. A 327 (1972), 159–173, 10.1098/rspa.1972.0038.
Rittel, D., Zhang, L.H., Osovski, S., The dependence of the Taylor-Quinney coefficient on the dynamic loading mode. J. Mech. Phys. Solids 107 (2017), 96–114, 10.1016/j.jmps.2017.06.016.
Roberts, W.L., Cold Rolling of Steel. 1978, Marcel Dekker, New York.
Roelands, C.J.A., Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils. Ph.D. thesis. 1966, Technische Hogeschool Delft http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-01222009-191452/unrestricted/AnSyThese_doc_V1.pdf.
Shigaki, Y., Nakhoul, R., Montmitonnet, P., Numerical treatments of slipping/no-slip zones in cold rolling of thin sheets with heavy roll deformation. Lubricants 3 (2015), 113–131, 10.3390/lubricants3020113.
Stephany, A., Contribution à l’étude numérique de la lubrification en régime mixte en laminage à froid. Ph.D. thesis. 2008, Université de Liège (in French) http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-01222009-191452/unrestricted/AnSyThese_doc_V1.pdf.
Stephany, A., Ponthot, J.P., Collette, C., Schelings, J., Efficient algorithmic approach for mixed-lubrication in cold rolling. J. Mater. Process. Technol. 153–154 (2004), 307–313, 10.1016/j.jmatprotec.2004.04.310.
Stoer, J., Bulirsch, R., Introduction to Numerical Analysis. Third ed., 2002, Springer, 10.1007/978-0-387-21738-3.
Sutcliffe, M.P.F., Surface asperity deformation in metal forming processes. Int. J. Mech. Sci. 30 (1988), 847–868, 10.1016/0020-7403(88)90010-0.
Sutcliffe, M.P.F., Flattening of random rough surfaces in metal-forming processes. J. Tribol. 121 (1999), 433–440, 10.1115/1.2834086.
Sutcliffe, M.P.F., Chapter 4 – Surface finish and friction in cold metal rolling. Lenard, J.G., (eds.) Metal Forming Science and Practice, 2002, Elsevier Trade Monographs, 19–59, 10.1016/B978-008044024-8/50004-7.
Tabary, P.E., Sutcliffe, M.P.F., Porral, F., Deneuville, P., Measurements of friction in cold metal rolling. J. Tribol. 118 (1996), 629–636, 10.1115/1.2831584.
Tsao, Y.H., Sargent, L.B. Jr., A mixed lubrication model for cold rolling of metals. ASLE Trans. 20 (1977), 55–63, 10.1080/05698197708982817.
Tseng, A.A., A numerical heat transfer analysis of strip rolling. J. Heat Transf. 106 (1984), 512–517, 10.1115/1.3246708.
Tseng, A.A., Thermal modeling of roll and strip interface in rolling processes: Part 1 – review. Numer. Heat Transf. 35 (1999), 115–133, 10.1080/104077899275281.
von Karman, T., Beitrag zur Theorie des Walzvorgangs. Z. Angew. Math. Mech. 5 (1925), 139–141.
Wilson, W.R.D., Friction models for metal forming in the boundary lubrication regime. J. Eng. Mater. Technol. 113 (1991), 60–68, 10.1115/1.2903383.
Wilson, W.R.D., Marsault, N., Partial hydrodynamic lubrication with large fractional contact areas. J. Tribol. 120 (1998), 16–20, 10.1115/1.2834180.
Wilson, W.R.D., Sheu, S., Real area of contact and boundary friction in metal forming. Int. J. Mech. Sci. 30 (1988), 475–489, 10.1016/0020-7403(88)90002-1.
Wilson, W.R.D., Walowit, J.A., An isothermal hydrodynamic lubrication theory for strip rolling with front and back tension. Proceedings of Tribology Convention, Douglas, Isle of Man, UK, 1971, 164–172.
Zhu, D., Biresaw, G., Clark, S.J., Kasun, T.J., Elastohydrodynamic lubrication with O/W emulsions. J. Tribol. 116 (1994), 310–319, 10.1115/1.2927216.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.