Mass spectrometer detector; Thermodynamic modeling; Retention equation; Method development and optimization
Abstract :
[en] This contribution evaluates the performance of two predictive approaches in calculating temperature-programmed gas chromatographic retention times under vacuum outlet conditions. In the first approach, the predictions are performed according to a thermodynamic-based model, while in the second approach the predictions are conducted by using the temperature-programmed retention time equation. These modeling approaches were evaluated on 47 test compounds belonging to different chemical classes, under different experimental conditions, namely, two modes of gas flow regulation (i.e., constant inlet pressure and constant flow rate), and different temperature programs (i.e., 7 °C/min, 5 °C/min, and 3 °C/min). Both modeling approaches gave satisfactory results and were able to accurately predict the elution profiles of the studied test compounds. The thermodynamic-based model provided more satisfying results under constant flow rate mode, with average modeling errors of 0.43%, 0.33%, and 0.15% across all the studied temperature programs. Nevertheless, under constant inlet pressure mode, lower modeling errors were achieved when using the temperature-programmed retention time equation, with average modeling errors of 0.18%, 0.18%, and 0.31% across the used temperature programs.
Disciplines :
Chemistry
Author, co-author :
Gaida, Meriem ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Franchina, Flavio ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Stefanuto, Pierre-Hugues ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Focant, Jean-François ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Language :
English
Title :
Modeling approaches for temperature-programmed gas chromatographic retention times under vacuum outlet conditions
Chemical Information Mining in a Complex World (Chimic)
Funders :
FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This research was funded by the FWO/FNRS Belgium EOS Grant 30897864 “Chemical Information Mining in a Complex World”. The authors would like to thank LECO Corporation for instrumental support.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Poole, C., Gas Chromatography. 2nd Edition, 2021, Elsevier.
Prebihalo, S.E., Berrier, K.L., Freye, C.E., Bahaghighat, H.D., Moore, N.R., Pinkerton, D.K., Synovec, R.E., Multidimensional Gas Chromatography: advances in Instrumentation, Chemometrics, and Applications. Anal. Chem. 90 (2018), 505–532, 10.1021/acs.analchem.7b04226.
P.Q. Tranchida, L. Mondello, Hyphenations of Capillary Chromatography with Mass Spectrometry, 2020. https://doi.org/10.1016/c2015-0-05862-2.
Zanella, D., Focant, J-F., Franchina, F.A., 30th Anniversary of comprehensive two-dimensional gas chromatography: latest advances. Anal. Sci. Adv. 2 (2021), 213–224, 10.1002/ansa.202000142.
Castello, G., Moretti, P., Vezzani, S., Comparison of different methods for the prediction of retention times in programmed-temperature gas chromatography. J. Chromatogr. A. 635 (1993), 103–111, 10.1016/0021-9673(93)83119-D.
Castello, G., Moretti, P., Vezzani, S., Retention models for programmed gas chromatography. J. Chromatogr. A. 1216 (2009), 1607–1623, 10.1016/j.chroma.2008.11.049.
Vezzani, S., Moretti, P., Castello, G., Fast and accurate method for the automatic prediction of programmed-temperature retention times. J. Chromatogr. A. 677 (1994), 331–343, 10.1016/0021-9673(94)80161-4.
Bautz, D.E., Dolan, J.W., Raddatz, W.D., Snyder, L.R., Computer Simulation (Based on a Linear-Elution-Strength Approximation) as an Aid for Optimizing Separations by Programmed-Temperature Gas Chromatography. Anal. Chem. 62 (1990), 1560–1567, 10.1021/ac00214a004.
Bautz, D.E., Dolan, J.W., Snyder, L.R., Computer simulation as an aid in method development for gas chromatography. J. Chromatogr. A. 541 (1991), 1–19, 10.1016/s0021-9673(01)95982-5.
Tolley, H.D., Tolley, S.E., Wang, A., Lee, M.L., Moving thermal gradients in gas chromatography. J. Chromatogr. A. 1374 (2014), 189–198, 10.1016/j.chroma.2014.10.090.
Leppert, J., Müller, P.J., Chopra, M.D., Blumberg, L.M., Boeker, P., Simulation of spatial thermal gradient gas chromatography. J. Chromatogr. A., 460985, 2020, 1620, 10.1016/j.chroma.2020.460985.
Kováts, E., Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta. 206 (1958), 1915–1932, 10.1002/hlca.19580410703.
van Den Dool, H., Dec. Kratz, P., A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A. 11 (1963), 463–471, 10.1016/s0021-9673(01)80947-x.
Chen, J.P., Liang, X.M., Zhang, Q., Zhang, L.F., Prediction of GC retention values under various column temperature conditions from temperature programmed data. Chromatographia 53 (2001), 539–547, 10.1007/BF02491619.
Berngård, A., Colmsjö, A., Wrangskog, K., Prediction of Temperature-Programmed Retention Indexes for Polynuclear Aromatic Hydrocarbons in Gas Chromatography. Anal. Chem. 66 (1994), 4288–4294, 10.1021/ac00095a027.
Poole, C.F., Poole, S.K., Column selectivity from the perspective of the solvation parameter model. J. Chromatogr. A. 965 (2002), 263–299, 10.1016/S0021-9673(01)01361-9.
Gray, G.M., The structural identification of some naturally occurring branched chain fatty aldehydes. J. Chromatogr. A. 6 (1961), 236–242, 10.1016/s0021-9673(61)80248-3.
West, P.W., Sen, B., Sant, B.R., Mallik, K.L., Sen Gupta, J.G., A catalog of retention times of a number of organic compounds. J. Chromatogr. A. 6 (1961), 220–235, 10.1016/s0021-9673(61)80247-1.
Ghasemi, J., Asadpour, S., Abdolmaleki, A., Prediction of gas chromatography/electron capture detector retention times of chlorinated pesticides, herbicides, and organohalides by multivariate chemometrics methods. Anal. Chim. Acta. 588 (2007), 200–206, 10.1016/j.aca.2007.02.027.
Lu, C., Jalbout, A.F., Adamowicz, L., Wang, Y., Yin, C., QSRR study for gas and liquid chromatographic retention indices of polyhalogenated biphenyls using two 2D descriptors. Chromatographia 66 (2007), 717–724, 10.1365/s10337-007-0382-8.
Tello, A.M., Lebrón-Aguilar, R., Quintanilla-López, J.E., Santiuste, J.M., Isothermal retention indices on poly(3-cyanopropylmethylsiloxane) stationary phases. J. Chromatogr. A. 1216 (2009), 1630–1639, 10.1016/j.chroma.2008.10.025.
Liu, F., Liang, Y., Cao, C., Zhou, N., QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices. Talanta 72 (2007), 1307–1315, 10.1016/j.talanta.2007.01.038.
Hu, R., Yin, C., Wang, Y., Lu, C., Ge, T., QSPR study on GC relative retention time of organic pesticides on different chromatographic columns. J. Sep. Sci. 31 (2008), 2434–2443, 10.1002/jssc.200800026.
Zhang, X., Ding, L., Sun, Z., Song, L., Sun, T., Study on quantitative structure-retention relationships for hydrocarbons in FCC gasoline. Chromatographia 70 (2009), 511–518, 10.1365/s10337-009-1174-0.
Gupta, V.K., Khani, H., Ahmadi-Roudi, B., Mirakhorli, S., Fereyduni, E., Agarwal, S., Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks. Talanta 83 (2011), 1014–1022, 10.1016/j.talanta.2010.11.017.
D'Archivio, A.A., Incani, A., Ruggieri, F., Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks. J. Chromatogr. A. 1218 (2011), 8679–8690, 10.1016/j.chroma.2011.09.071.
Ebrahimi-Najafabadi, H., McGinitie, T.M., Harynuk, J.J., Quantitative structure-retention relationship modeling of gas chromatographic retention times based on thermodynamic data. J. Chromatogr. A. 1358 (2014), 225–231, 10.1016/j.chroma.2014.06.071.
Poole, C.F., Evaluation of the solvation parameter model as a quantitative structure-retention relationship model for gas and liquid chromatography. J. Chromatogr. A. 1626 (2020), 1–11, 10.1016/j.chroma.2020.461308.
Lebrón-Aguilar, R., Quintanilla-López, J.E., Tello, A.M., Santiuste, J.M., Isothermal retention indices on poly(3,3,3-trifluoropropylmethylsiloxane) stationary phases. J. Chromatogr. A. 1160 (2007), 276–288, 10.1016/j.chroma.2007.05.025.
Héberger, K., Kowalska, T., Thermodynamic properties of alkylbenzenes from retention - Boiling point correlations in gas chromatography. Chromatographia 44 (1997), 179–186, 10.1007/BF02466453.
Héberger, K., Kowalska, T., Thermodynamic significance of boiling point correlations for alkylbenzenes in gas chromatography. Extension of Trouton's rule. J. Chromatogr. A. 845 (1999), 13–20, 10.1016/S0021-9673(99)00289-7.
Pérez-Parajón, J.M., Santiuste, J.M., Takács, J.M., Prediction of the retention indices of benzene and methylbenzenes based on their retention data-physico chemical properties relationship. Chromatographia 60 (2004), 199–206, 10.1365/s10337-004-0353-2.
Snijders, H., Janssen, H.G., Cramers, C., Optimization of temperature-programmed gas chromatographic separations I. Prediction of retention times and peak widths from retention indices. J. Chromatogr. A. 718 (1995), 339–355, 10.1016/0021-9673(95)00692-3.
Vezzani, S., Moretti, P., Castello, G., Automatic prediction of retention times in multi-linear programmed temperature analyses. J. Chromatogr. A. 767 (1997), 115–125, 10.1016/S0021-9673(96)01043-6.
Vezzani, S., Moretti, P., Mazzi, M., Castello, G., Prediction of retention times in linear gradient temperature and pressure programmed analysis on capillary columns. J. Chromatogr. A. 1055 (2004), 151–158, 10.1016/j.chroma.2004.09.038.
Gerbino, T.C., Castello, G., Pettinati, U., Prediction of the retention of polynuclear aromatic hydrocarbons in programmed-temperature gas chromatography. J. Chromatogr. A. 634 (1993), 338–344, 10.1016/0021-9673(93)83023-L.
Karolat, B., Harynuk, J., Prediction of gas chromatographic retention time via an additive thermodynamic model. J. Chromatogr. A. 1217 (2010), 4862–4867, 10.1016/j.chroma.2010.05.037.
Aldaeus, F., Thewalim, Y., Colmsjö, A., Prediction of retention times of polycyclic aromatic hydrocarbons and n-alkanes in temperature-programmed gas chromatography. Anal. Bioanal. Chem. 389 (2007), 941–950, 10.1007/s00216-007-1528-0.
Thewalim, Y., Aldaeus, F., Colmsjö, A., Retention time prediction of compounds in Grob standard mixture for apolar capillary columns in temperature-programmed gas chromatography. Anal. Bioanal. Chem. 393 (2009), 327–334, 10.1007/s00216-008-2295-2.
Stevenson, K.A.J.M., Harynuk, J.J., Thermodynamics-based modelling of gas chromatography separations across column geometries and systems, including the prediction of peak widths. J. Sep. Sci. 42 (2019), 2013–2022, 10.1002/jssc.201801294.
Dorman, F.L., Schettler, P.D., Vogt, L.A., Cochran, J.W., Using computer modeling to predict and optimize separations for comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 1186 (2008), 196–201, 10.1016/j.chroma.2007.12.039.
McGinitie, T.M., Karolat, B.R., Whale, C., Harynuk, J.J., Influence of carrier gas on the prediction of gas chromatographic retention times based on thermodynamic parameters. J. Chromatogr. A. 1218 (2011), 3241–3246, 10.1016/j.chroma.2010.09.068.
McGinitie, T.M., Ebrahimi-Najafabadi, H., Harynuk, J.J., A standardized method for the calibration of thermodynamic data for the prediction of gas chromatographic retention times. J. Chromatogr. A. 1330 (2014), 69–73, 10.1016/j.chroma.2014.01.019.
Thewalim, Y., Bruno, O., Colmsjö, A., Study of the gas chromatographic behavior of selected alcohols and amines. Anal. Bioanal. Chem. 399 (2011), 1335–1345, 10.1007/s00216-010-4418-9.
Clarke, E.C.W., Glew, D.N., Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc., 62, 1966, 539, 10.1039/tf9666200539.
Blumberg, L.M., Distribution-centric 3-parameter thermodynamic models of partition gas chromatography. J. Chromatogr. A. 1491 (2017), 159–170, 10.1016/j.chroma.2017.02.047.
Smith, H., Zellers, E.T., Sacks, R., High-speed, vacuum-outlet GC using atmospheric-pressure air as carrier gas. Anal. Chem. 71 (1999), 1610–1616, 10.1021/ac981153w.
Nahir, T.M., Morales, K.M., Constant holdup times in gas chromatography by programming of column temperature and inlet pressure. Anal. Chem. 72 (2000), 4667–4670, 10.1021/ac0004153.
Blumberg, L.M., Temperature-Programmed Gas Chromatography. 1st ed., 2010, Weinheim, 10.1002/9783527632145.
Habgood, H.W., Harris, W.E., Retention Temperature and Column Efficiency in Programmed Temperature Gas Chromatography. Anal. Chem. 32 (1960), 450–453, 10.1021/ac60160a001.
Calvin Giddings, J., Retention times in programmed temperature gas chromatography. J. Chromatogr. A. 4 (1960), 11–20, 10.1016/s0021-9673(01)98364-5.
Claumann, C.A., Wüst Zibetti, A., Bolzan, A., Machado, R.A.F., Pinto, L.T., Fast and accurate numerical method for predicting gas chromatography retention time. J. Chromatogr. A. 1406 (2015), 258–265, 10.1016/j.chroma.2015.06.004.
Sanz, J., Martínez-Castro, I., Reglero, G., Cabezudo, M.D., Prediction of the separation in gas chromatography. Application to the Analysis of Mixtures with Mixed Stationary Phases and Temperature Programming. Anal. Chim. Acta. 194 (1987), 91–98, 10.1016/S0003-2670(00)84762-5.
Boswell, P.G., Carr, P.W., Cohen, J.D., Hegeman, A.D., Easy and accurate calculation of programmed temperature gas chromatographic retention times by back-calculation of temperature and hold-up time profiles. J. Chromatogr. A. 1263 (2012), 179–188, 10.1016/j.chroma.2012.09.048.
Barnes, B.B., Wilson, M.B., Carr, P.W., Vitha, M.F., Broeckling, C.D., Heuberger, A.L., Prenni, J., Janis, G.C., Corcoran, H., Snow, N.H., Chopra, S., Dhandapani, R., Tawfall, A., Sumner, L.W., Boswell, P.G., Retention projection enables reliable use of shared gas chromatographic retention data across laboratories, instruments, and methods. Anal. Chem. 85 (2013), 11650–11657, 10.1021/ac4033615.
Wilson, M.B., Barnes, B.B., Boswell, P.G., What experimental factors influence the accuracy of retention projections in gas chromatography-mass spectrometry?. J. Chromatogr. A. 1373 (2014), 179–189, 10.1016/j.chroma.2014.11.030.
Tukey, J.W., Exploratory Data Analysis. 1977, Addison-Wesley Publishing Company.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.