Statista. Smartphone Users Worldwide 2016–2021. 2021. Available online: www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 1 April 2021).
Dudley, B. BP Statistical Review of World Energy, 69th ed.; BP: London, UK, 2020.
Bodaghi, H.; Mostofi, Y.; Oromiehie, A.; Zamani, Z.; Ghanbarzadeh, B.; Costa, C.; Conte, A.; Del Nobile, M.A. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT Food Sci. Technol. 2013, 50, 702–706. [CrossRef]
Kaviyarasu, K.; Mariappan, A.; Neyvasagam, K.; Ayeshamariam, A.; Pandi, P.; Palanichamy, R.R.; Gopinathan, C.; Mola, G.T.; Maaza, M. Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol-gel method. Surf. Interfaces 2017, 6, 247–255. [CrossRef]
Khamseh, S.; Alibakhshi, E.; Mahdavian, M.; Saeb, M.R.; Vahabi, H.; Kokanyan, N.; Laheurte, P. Magnetron-sputtered copper/diamond-like carbon composite thin films with super anti-corrosion properties. Surf. Coat. Technol. 2018, 333, 148–157. [CrossRef]
IBIS World. Metal Plating & Treating in the US—Market Size 2005–2027. 2021. Available online: https://www.ibisworld.com/industry-statistics/market-size/metal-plating-treating-united-states/(accessed on 19 April 2021).
Grand View Research. Automotive Chromium Market Analysis, by Application (Decorative Plating, Functional Plating), by End-Use (Two Wheelers, Passenger Vehicles, Commercial Vehicles), by Region, And Segment Forecasts, 2018–2025; Market Analysis Report; Report ID: GVR-1-68038-722-3; Grand View Research: San Francisco, CA, USA, 2017.
Gaille, B. 23 Chrome Plating Industry Statistics, Trends & Analysis. 2018. Available online: https://brandongaille.com/23-chrome-plating-industry-statistics-trends-analysis/(accessed on 19 April 2021).
Raub, C. 23—The history of electroplating. In Metal Plating and Patination; Niece, L., Craddock, P., Eds.; Butterworth-Heinemann: Oxford, UK, 1993; pp. 284–290.
Bolelli, G.; Cannillo, V.; Lusvarghi, L.; Riccò, S. Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings. Surf. Coat. Technol. 2006, 200, 2995–3009. [CrossRef]
European Commission. Study on the EUs List of Critical Raw Materials, Factsheets on Non-Critical Materials; European Commission: Brussels, Belgium, 2020.
ECHA. Annex XVII to REACH—Entry 47; ECHA: Helsinki, Finland, 2016.
Scientific Committee on Occupational Exposure Limits. SCOEL/REC/386 Chromium VI compounds Recommendation from the Scientific Committee on Occupational Exposure Limits; SCOEL: Brussels, Belgium, 2017.
Hansal, W.E.G.; Roy, S. Pulse Plating, 1st ed.; Leuze Verlag: Bad Saulgau, Germany, 2012.
Farr, J.P.G.; Larson, C. Current research and potential applications for pulsed current electrodeposition—A review. Trans. IMF 2013, 90, 20–29.
Drela, I.; Szynkarczuk, J.; Kubicki, J. Electrodeposition of chromium from Cr (III) electrolytes in the presence of chromic acid. J. Appl. Electrochem. 1989, 19, 933–936. [CrossRef]
Protsenko, V.S.; Danilov, F.I. Chromium electroplating from trivalent chromium baths as an environmentally friendly alternative to hazardous hexavalent chromium baths: Comparative study on advantages and disadvantages. Clean Technol. Environ. Policy 2014, 16, 1201–1206. [CrossRef]
Legg, K.; Graham, M.; Chang, P.; Rastagar, F.; Gonzales, A.; Sartwell, B. The replacement of electroplating. Surf. Coat. Technol. 1996, 81, 99–105. [CrossRef]
Cromomed. Analysis of Alternatives: Functional Chrome Plating. 2015. Available online: https://echa.europa.eu/documents/10162/ece8b65e-aec0-4da8-bf68-4962158a4952 (accessed on 15 April 2021).
Grove, W.R. On the electro-chemical polarity of gases. Philos. Trans. R. Soc. 1852, 142, 87–101.
Greene, J.E. Review article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. J. Vac. Sci. Technol. A 2017, 35, 05C204. [CrossRef]
Hull, A. The magnetron. J. Am. Inst. Electr. Eng. 1921, 40, 715–723. [CrossRef]
Epke, S.D.; Jimenez, F.J.; Field, D.J.; Davis, M.J.; Dew, S.K. Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system. J. Vac. Sci. Technol. A 2009, 27, 1275.
Aubert, A.; Gillet, R.; Gaucher, A.; Terrat, J.P. Hard chrome coatings deposited by physical vapour deposition. Thin Solid Film. 1983, 108, 165–172. [CrossRef]
Paturaud, C.; Farges, G.; Sainte Catherine, M.C.; Machet, J. Correlation between hardness and embedded argon content of magnetron sputtered chromium films. Thin Solid Film. 1999, 347, 46–55. [CrossRef]
Rigi, V.J.C.; Jayaraj, M.K.; Saji, K.J. Envisaging radio frequency magnetron sputtering as an efficient method for large scale deposition of homogeneous two dimensional MoS2. Appl. Surf. Sci. 2020, 529, 147158. [CrossRef]
Weirather, T.; Czettl, C.; Polcik, P.; Kathrein, M.; Mitterer, C. Industrial-scale sputter deposition of Cr1−xAlxN coatings with 0.21 ≤ x ≤ 0.74 from segmented targets. Surf. Coat. Technol. 2013, 232, 303–310. [CrossRef]
Sidelev, D.V.; Bleykher, G.A.; Bestetti, M.; Krivobokov, V.P.; Vicenzo, A.; Franz, S.; Brunella, M.F. A comparative study on the properties of chromium coatings deposited by magnetron sputtering with hot and cooled target. Vacuum 2017, 143, 479–485. [CrossRef]
Correia, F.C.; Bundaleski, N.; Teodoro, O.M.N.D.; Correia, M.R.; Rebouta, L.; Mendes, A.; Tavares, C.J. XPS analysis of ZnO: Ga films deposited by magnetron sputtering: Substrate bias effect. Appl. Surf. Sci. 2018, 458, 1043–1049. [CrossRef]
Domanowski, P.; Wawrzak, A. Automation of thin film deposition process based on magnetron sputtering. J. Mach. Eng. 2012, 12, 111–119.
Sidorova, S.; Koupstov, A.D.; Pronin, M.A. Problems and solutions of automation of magnetron sputtering process in vac-uum. In Advances in Automation. RusAutoCon 2019, Proceedings of the Lecture Notes in Electrical Engineering 2020, Sochi, Russia, 8–14 September 2019; Radionov, A., Karandaev, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 641, pp. 944–952.
Kapopara, J.M.; Patel, N.P.; Kotadiya, D.J.; Patel, A.R.; Chauhan, K.V.; Rawal, S.K. FEA Analysis of Zirconium Nitride Coatings Prepared by RF Magnetron Sputtering: CFD Approach. Mater. Today Proc. 2017, 5 Pt I, 5338–5342. [CrossRef]
Mahieu, S.; Buyle, G.; Depla, D.; Heirwegh, S.; Ghekiere, P.; De Gryse, R. Monte Carlo simulation of the transport of atoms on DC magnetron sputtering. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2006, 243, 313–319. [CrossRef]
Alami, J.; Bolz, S.; Sarakinos, K. High power pulsed magnetron sputtering: Fundamentals and applications. J. Alloys Compd. 2009, 483, 530–534. [CrossRef]
Krishnan, N.; Vardelle, A.; Legoux, J. A life cycle comparison of hard chrome and thermal sprayed coatings: A case example of aircraft landing gears. In International Thermal Spray, ITSC 2008, Thermal Spray Crossing Borders; DVS: Düsseldorf, Germany, 2008.
Serres, N.; Hlawka, F.; Costil, S.; Langlade, C.; Machi, F. Corrosion properties of in situ laser remelted NiCrBSi coatings comparison with hard chromium coatings. J. Mater. Process. Technol. 2011, 211, 133–140. [CrossRef]
Rodriguez, R.; Espada, J.J.; Gallardo, M.; Molina, R.; López-Muñoz, M.J. Life cycle assessment and techno-economic evaluation of alternatives for the treatment of wastewater in a chrome-plating industry. J. Clean. Prod. 2018, 172, 2351–2362. [CrossRef]
Benveniste, G.; Baldo, G.; Perucca, M.; Ruggeri, B. LCA comparative analysis of different technologies for surface functionalization. In Proceedings of the 3rd International Conference on Life Cycle Management, Zürich, Switzerland, 27–29 August 2007.
European Committee for Standardisation. ISO 14040—Environmental Management—Life Cycle Assessment—Principle and Framework; Beuth Verlag GmbH: Berlin, Germany, 2006.
European Committee for Standardisation. ISO 14044—Environmental Management—Life Cycle Assessment—Requirements and Guidelines; Beuth Verlag GmbH: Berlin, Germany, 2006.
Advance Rubtech. List of Hard Chrome Plated Rolls. 2020. Available online: https://rubberrollermanufacturers.com/hard-chrome-plated-roll/(accessed on 12 March 2020).
National Institute for Public Health and the Environment. ReCiPe Characterisation Factors and Normalization Scores. 2020. Available online: https://www.rivm.nl/en/life-cycle-assessment-lca/downloads (accessed on 25 June 2021).
Small Industries Service Institute. Hard Chrome Plating; Plant Rep; SISI: Ahmedabad, India, 2003.
MSME-DI. Hard Chromium Plating Plant Report, Metal Finishing Division; Micro, Small and Medium Enterprises—Development Institute (MSME-DI): Agra, India, 2011.
Lauer, M. Methodology Guideline on Techno-Economic Assessment (TEA). Report Generated in the Framework of ThermalNet WP3B Economics; Intelligent Energy Europe: Brussels, Belgium, 2008.
De Visscher, J.-L. Informal Interview about Chromium Plating in the Company le Chromage Dur, 2019.
Pizzol, M.; Christensen, P.; Schmidt, J.; Thomsen, M. Eco-toxicological impact of “metals” on the aquatic and terrestrial ecosystem: A comparison between eight different methodologies for Life Cycle Impact Assessment (LCIA). J. Clean. Prod. 2011, 19, 687–698. [CrossRef]
Gibb, H.J.; Lees, P.S.J.; Wang, J.; OLeary, K.G. Extended followup of a cohort of chromium production workers. Am. J. Ind. Med. 2015, 58, 905–913. [CrossRef]
Park, R.M.; Bena, J.F.; Stayner, L.T.; Smith, R.J.; Gibb, H.J.; Lees, P.S.J. Hexavalent chromium and lung cancer in the chromate industry: A quantitative risk assessment. Risk Anal. 2004, 24, 1099–1108. [CrossRef]
Venkatramreddy, V.; Vutukuru, S.S.; Tchounwou, P.B. Ecotoxicology of Hexavalent Chromium in Freshwater Fish: A Critical Review. Rev. Environ. Health 2009, 24, 129–145.
Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [CrossRef]
Stout, M.D.; Herbert, R.A.; Kissling, G.E.; Collins, B.J.; Travlos, G.S.; Witt, K.L.; Melnick, R.L.; Abdo, K.M.; Malarkey, D.E.; Hooth, M.J. Hexavalent chromium is carcinogenic to F344/N rats and B6C3F1 mice after chronic oral exposure. Environ. Health Perspect. 2009, 117, 716–722. [CrossRef] [PubMed]
Linos, A.; Petralias, A.; Christophi, C.A.; Christoforidou, E.; Kouroutou, P.; Stoltidis, M.; Veloudaki, A.; Tzala, E.; Makris, K.C.; Karagas, M.R. Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece—An ecological study. Environ. Health 2011, 10, 1–8. [CrossRef]
Proctor, D.M.; Otani, J.M.; Finley, B.L.; Paustenbach, D.J.; Bland, J.A.; Speizer, N.; Sargent, E.V. Is Hexavalent chromium carcinogenic via ingestion? A weight-of-evidence review. J. Toxicol. Environ. Health 2011, 65 Pt A, 701–746. [CrossRef]
US EPA. Toxicological Review of Trivalent Chromium; US Environment Protection Agency: Washington, DC, USA, 1998.
Wilbur, S.; Abadin, H.; Fay, M.; Yu, D.; Tencza, B.; Ingerman, L.; Klotzbach, J.; James, S. Toxicological Profile for Chromium; U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2012; pp. 38–46.
Harscoet, E.; Froelich, D. Use of LCA to evaluate the environmental benefits of substituting chromic acid anodizing (CAA). J. Clean. Prod. 2007, 16, 1294–1305. [CrossRef]
Kowalski, Z.; Kulczycka, J.; Wzorek, Z. Life cycle assessment of different variants of sodium chromate production in Poland. J. Clean. Prod. 2007, 15, 28–37. [CrossRef]
European Commission. Impact Assessment Accompanying the Document “Proposal for a Directive of the European Parliament and of the Council Amending Directive 2004/37/EC on the Protection of Workers from the Risks Related to Exposure to Carcinogens or Mutagens at Work(…); European Commission: Brussels, Belgium, 2016.
Eurostat. Labour Costs in the EU: Hourly Labour Costs Ranged from €4.9 to €42.5 across the EU Member States in 2017. Lowest in Bulgaria and Romania, highest in Denmark and Belgium; Eurostat: Luxemburg, 2018.
CRM Group. Informal Discussion with CRM Scientists Based on Equipment Invoices Collected at CRM Group; CRM Group: Liège, Belgium, 2020.
AJA International Inc. Sputtering Systems Catalog. 2020. Available online: www.ajaint.com/sputtering-systems.html (accessed on 5 April 2021).
Hedberg, J.; Fransson, K.; Prideaux, S.; Roos, S.; Jönsson, C.; Wallinder, I.O. Improving the life cycle impact assessment of metal ecotoxicity: Importance of chromium speciation, water chemistry, and metal release. Sustainability 2019, 11, 1655. [CrossRef]
Palmer, C.D.; Puls, R.W. Natural Attenuation of Hexavalent Chromium in Groundwater and Soils; EPA Ground Water Issue; Superfund Technology Support Center for Ground Water, Robert S. Kerr Environmental Research Laboratory: Washington, DC, USA, 1994.
Lin, C.-J. The chemical transformations of chromium in natural waters—A model study. Water Air Soil Pollut. 2002, 139, 137–158. [CrossRef]
Adam, V.; Loyaux-Lawniczak, S.; Quaranta, G. Terrestrial and aquatic ecotoxicity assessment of Cr(VI) by the ReCiPe method calculation (LCIA): Application on an old industrial contaminated site. Environ. Sci. Pollut. Res. 2012, 20, 3312–3321. [CrossRef]
Gibb, H.J.; Lees, P.S.J.; Pinsky, P.F.; Rooney, B.C. Lung cancer among workers in chromium chemical production. Am. J. Ind. Med. 2000, 38, 115–126. [CrossRef]
European Parliament. Motion for a Resolution Pursuant to Rule 112(2) and (3) of the Rules of Procedure on the Draft Commission Implementing Decision Partially Granting an Authorisation under Regulation (EC) No 1907/2006 of the European Parliament and of the Council …. 2020. Available online: https://www.europarl.europa.eu/doceo/document/B-9-2020-0202_EN.html (accessed on 8 July 2021).
Germann, S.; Konzelmann, I.; Chiolero, A. Estimating the lifetime risk of cancer in one region of Switzerland: Arnaud Chiolero. Eur. J. Public Health 2017, 27. [CrossRef]
Lung Cancer Europe. LuCe Report on Lung Cancer, LuCe. Public Communication 2016. Available online: https://www. lungcancereurope.eu/wp-content/uploads/2017/10/LuCE-Report-final.pdf (accessed on 8 July 2021).
Hones, P.; Sanjines, R.; Levy, F. Characterization of sputter-deposited chromium nitride thin films for hard coatings. Surf. Coat. Technol. 1997, 94–95, 398–402. [CrossRef]
Lausmann, G. Electrolytically deposited hard chrome. Curr. Ind. Pract. 1996, 86–87 Pt 2, 814–820.
Sarakinos, K.; Alami, J.; Konstantinidis, S. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf. Coat. Technol. 2010, 204, 1661–1684. [CrossRef]
Picas, J.; Forn, A.; Matthäus, G. HVOF Coatings as an alternative to hard chrome for pistons and valve. Wear 2006, 261, 477–484. [CrossRef]