Alloway T. P., Alloway R. G., (2009). Investigating the predictive roles of working memory and IQ in academic attainment. J. Exp. Child Psychol. 106, 20–29. 10.1016/j.jecp.2009.11.00320018296
Aunio P., Ee J., Lim S. E. A., Hautamäki J., Van Luit J., (2004). Young children's number sense in Finland, Hong Kong, and Singapore. Int. J. Early Years Educ. 12, 195–216. 10.1080/0966976042000268681
Aunio P., Hautamäki J., Heiskari P., Van Luit J. E. H., (2006). The early numeracy test in Finnish: Children's norms. Scandinavian J. Psychology. 47, 369–378. 10.1111/j.1467-9450.2006.00538.x16987206
Aunio P., Korhonen J., Ragpot L., Törmänen M., Mononen R., Henning E., (2019). Multi-factorial approach to early numeracy – the effects of cognitive skills, language factors and kindergarten attendance on early numeracy performance of South African first graders. Int. J. Educ. Res. 97, 65–76. 10.1016/j.ijer.2019.06.011
Aunio P., Niemivirta M., (2010). Predicting children's mathematical performance in grade one by early numeracy. Learn. Individ. Differ. 20, 427–435. 10.1016/j.lindif.2010.06.003
Berch D. B., (2005). Making sense of number sense: implications for children with mathematical disabilities. J. Learn. Disbil. 38, 333–339. 10.1177/0022219405038004090116122065
Betts J., Pickart M., Heistad D., (2011). Investigating early literacy and numeracy: exploring the utility of the bifactor model. Sch. Psychol. Q. 26, 97–107. 10.1037/a0022987
Birnbaum A., (1968). Some latent trait models and their use in inferring an examinee's ability, in Statistical Theories of Mental Test Scores, eds Lord F. M., Novick M. R., (Reading, MA: Addison-Wesley), 397–479.
Bjorklund D. F., Harnishfeger K. K., (1990). The resources construct in cognitive development: diverse sources of evidence and a theory of inefficient inhibition. Dev. Rev. 10, 48–71. 10.1016/0273-2297(90)90004-N
Bonifay W., Lane S. P., Reise S. P., (2017). Three concerns with applying a bifactor model as a structure of psychopathology. Clin. Psychol. Sci. 5, 184–186. 10.1177/2167702616657069
Borsboom D., (2017). A network theory of mental disorders. World Psychiatry 16, 5–13. 10.1002/wps.20375
Brown T. A., (2015). Confirmatory Factor Analysis for Applied Research. New York, NY: The Guilford Press.
Brunner M., (2008). No g in education? Learn. Individ. Differ. 18, 152–165. 10.1016/j.lindif.2007.08.005
Bull R., Espy K. A., Wiebe S. A., (2008). Short-term memory, working memory, and executive functioning in preschoolers: longitudinal predictors of mathematical achievement at age 7 years. Dev. Neuropsychol. 33, 205–228. 10.1080/8756564080198231218473197
Canivez G. L., (2016). Bifactor modeling in construct validation of multifactored tests: Implications for multidimensionality and test interpretation, in Principles and Methods of Test Construction: Standards and Recent Advancements, eds Schweizer K., DiStefano C., (Gottingen: Hogrefe), 247–271.
Case L. P., Harris K. R., Graham S., (1992). Improving the mathematical problem-solving skills of students with learning disabilities: self-regulated strategy development. J. Spec. Educ. 26, 1–19. 10.1177/002246699202600101
Chen F. F., (2007). Sensitivity of goodness of fit indexes to lack of measurement. Struct. Equat. Model. 14, 464–504. 10.1080/10705510701301834
Chu F. C., vanMarle K., Geary D. C., (2015). Early numerical foundations of young children's mathematical development. J. Exp. Child Psychol. 132, 205–212. 10.1016/j.jecp.2015.01.00625705049
Cimino A. N., Killian M. O., Von Ende A. K., Segal E. A., (2020). Measurement models in social work research: a data-based illustration of four confirmatory factor models and their conceptual application. Br. J. Soc. Work 50, 282–301. 10.1093/bjsw/bcz164
Cirino P. T., (2011). The interrelationships of mathematical precursors in kindergarten. J. Exp. Child Psychol. 4, 713–733. 10.1016/j.jecp.2010.11.00421194711
Clements D. H., Sarama J., (2007). Effects of a preschool mathematics curriculum: Summative research on the Building Blocks project. J. Res. Math. Educ. 38, 136–163.
Clements D. H., Sarama J., (2011). Early childhood mathematics intervention. Science 333, 968–970. 10.1126/science.1204537
de Chambrier A.-F., Baye A., Tinnes-Vigne M., Tazouti Y., Vlassis J., Poncelet D., et al. (2021). Enhancing children?s numerical skills through a play-based intervention at kindergarten and at home: a quasi-experimental study. Early Childhood Research Quarterly. 54, 164–178. https://doi.org/10.1016/j.ecresq.2020.09.003
Dehaene S., (1997). The Number Sense: How the Mind Creates Mathematics. New York, NY: Oxford University Press.
Dehaene S., (2001). Precis of the number sense. Mind Lang. 16, 16–36. 10.1111/1468-0017.00154
Dickerson Mayes S., Calhoun S. L., Bixler E. O., Zimmerman D. N., (2009). IQ and neuropsychological predictors of academic achievement. Learn. Individ. Differ. 19, 238–241. 10.1016/j.lindif.2008.09.001
Dierendonck C., Milmeister P., Kerger S., Poncelet D., (2019). Examining the measure of student engagement in the classroom using the bifactor model: increased validity when predicting misconduct at school. Int. J. Behav. Dev. 24, 279–286. 10.1177/0165025419876360
Duncan G. J., Dowsett C. J., Claessens A., Magnuson K., Huston A. C., Klebanov P., et al. (2007). School readiness and later achievement. Dev. Psychol. 43, 1428–1446. 10.1037/0012-1649.43.6.1428
Enders C. K., (2010). Applied Missing Data Analysis. New York, NY: Guilford.
Epskamp S., (2020a). Psychometric network models from time-series and panel data. Psychometrika 85, 1–26. 10.1007/s11336-020-09697-332162233
Epskamp S., (2020b). Psychonetrics: Structural Equation Modeling and Confirmatory Network Analysis. R Package Version 0.7.1. Available online at: https://cran.r-project.org/web/packages/psychonetrics/index.html
Espy K. A., McDiarmid M. M., Cwik M. F., Stalets M. M., Hamby A., Senn T. E., (2004). The contribution of executive functions to emergent mathematical skills in preschool children. Dev. Neuropsychol. 26, 465–486. 10.1207/s15326942dn2601_615276905
Fadda D., Scalas F., Meleddu M., Morin A. J. S., (2017). A bifactor-ESEM representation of the Questionnaire for Eudaimonic Wellbeing. Pers. Individ. Dif. 116, 216–222. 10.1016/j.paid.2017.04.06232218760
Fried E. I., van Borkulo C. D., Cramer A. O. J., Boschloo L., Schoevers R. A., Borsboom D., (2017). Mental disorders as networks of problems: a review of recent insights. Soc. Psychiatry Psychiatr. Epidemiol. 52, 1–10. 10.1007/s00127-016-1319-z27921134
Frye D., Baroody A. J., Burchinal M., Carver S. M., Jordan N. C., McDowell J., et al. (2013). Teaching Math to Young Children: A Practice Guide (NCEE 2014-4005). Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance. Retrieved from: https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/early_math_pg_111313.pdf
Fuson K. C., (1988). Children's Counting and Concept of Number. New York, NY: Springer Verlag.
Geary D. C., (1995). Reflections of evolution and culture in children's cognition: implications for mathematical development and instruction. Am. Psychol. 50, 24–37. 10.1037/0003-066X.50.1.247872578
Geary D. C., Hoard M. K., Byrd-Craven J., DeSoto M., (2004). Strategy choices in simple and complex addition: contributions of working memory and counting knowledge for children with mathematical disability. J. Exp. Child Psychol. 88, 121–151. 10.1016/j.jecp.2004.03.00215157755
Gelman R., Gallistel C., (1978). The Child's Understanding of Number. Cambridge, MA: Harvard University Press.
Gersten R., Jordan N. C., Flojo J. R., (2005). Early identification and interventions for students with mathematics difficulties. J. Learn. Disabil. 38, 293–304. 10.1177/0022219405038004030116122059
Ginsburg H. P., Baroody A. J., (2003). Test of Early Mathematics Ability, 3rd Edn (TEMA-3). Austin, TX: Pro-Ed.
Ginsburg H. P., Lee J. S., Boyd J. S., (2008). Mathematics education for young children: what it is and how to promote it. Soc. Policy Rep. 22, 1–23. 10.1002/j.2379-3988.2008.tb00054.x
Green C. T., Bunge S., Chiongbian V. B., Barrow M., Ferrer E., (2018). Fluid reasoning predicts future mathematical performance among children and adolescents. J. Exp. Child Psychol. 157, 125–143. 10.1016/j.jecp.2016.12.00528152390
Gu H., Wen Z., Fan X., (2020). Investigating the multidimensionality of the Work-Related Flow Inventory (WOLF): a bifactor exploratory structural equation modeling framework. Front. Psychol. 11:740. 10.3389/fpsyg.2020.0074032435216
Guyon H., Falissard B., Kop J.-L., (2017). Modeling psychological attributes in psychology – an epistemological discussion: network analysis vs. latent variables. Front. Psychol. 8:798. 10.3389/fpsyg.2017.0079828572780
Hirsch S., Lambert K., Coppens K., Moeller K., (2018). Basic numerical competences in large-scale assessment data: structure and long-term relevance. J. Exp. Child Psychol. 167, 32–48. 10.1016/j.jecp.2017.09.01529154029
Hornung C., Schiltz C., Brunner M., Martin R., (2014). Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Front. Psychol. 5:272. 10.3389/fpsyg.2014.0027224772098
Houdé O., Pineau A., Leroux G., Poirel N., Perchey G., Lanoë C., et al. (2011). Functional MRI study of Piaget's conservation-of-number task in preschool and school-age children: a neo-Piagetian approach. J. Exp. Child Psychol. 110, 332–346. 10.1016/j.jecp.2011.04.00821636095
Hu L.-T., Bentler P. M., (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equat. Model. 6, 1–55. 10.1080/10705519909540118
Jennrich R. I., Bentler P. M., (2011). Exploratory bi-factor analysis. Psychometrika 76, 537–549. 10.1007/s11336-011-9218-4
Jordan N. C., Glutting J., Ramineni C., (2010). The importance of number sense to mathematics achievement in first and third grades. Learn. Individ. Differ. 20, 82–88. 10.1016/j.lindif.2009.07.00420401327
Jordan N. C., Kaplan D., Ramineni C., Locuniak M. N., (2009). Early math matters: kindergarten number competence and later mathematics outcomes. Dev. Psychol. 45, 850–867. 10.1037/a001493919413436
Juel C., Minden-Cupp C., (2000). Learning to read words: linguis tic units and instructional strategies. Read. Res. Q. 35, 128–134. 10.1598/RRQ.35.4.2
Kan K.-J., de Jonge H., van der Maas H. L. J., Levine S. Z., Epskamp S., (2020). How to compare psychometric factor and network models. J. Intelligence 8:35. 10.3390/jintelligence804003533023229
Kan K.-J., van der Maas H. L. J., Levine S. Z., (2019). Extending psychometric network analysis: empirical evidence against g in favor of mutualism? Intelligence 73, 52–62. 10.1016/j.intell.2018.12.004
Kleemans T., Segers E., Verhoeven L., (2011). Cognitive and linguistic precursors to numeracy in kindergarten: evidence from first and second language learners. Learn. Individ. Differ. 21, 555–561. 10.1016/j.lindif.2011.07.008
Krajewski K., Schneider W., (2009). Exploring the impact of phonological awareness, visual–spatial working memory, and preschool quantity-number competencies on mathematics achievement in elementary school: findings from a 3-year- longitudinal study. J. Exp. Child Psychol. 103, 516–531. 10.1016/j.jecp.2009.03.00919427646
Kroesbergen E. H., Van Luit J. E. H., Van Lieshout C. D. M., Van Loosbroek E., Van de Rijt B. A. M., (2009). Individual differences in early numeracy. The role of executive functions and subitizing. J. Psychoeduc. Assess. 27, 226–236. 10.1177/0734282908330586
Kyttälä M., Aunio P., Lehto J. E., Van Luit J. E. H., Hautamäki J., (2003). Visuospatial working memory and early numeracy. Educ. Child Psychol. 20, 65–76.
Le Corre M., Van de Walle G., Brannon E. M., Carey S., (2006). Re-visiting the competence/performance debate in the acquisition of the counting principles. Cogn. Psychol. 52, 130–169. 10.1016/j.cogpsych.2005.07.00216364281
Lee Y.-S., Lembke E., Moore D., Ginsburg H. P., Pappas S., (2012). Item-level and construct evaluation of early numeracy curriculum-based measures. Assess. Effect. Interv. 37, 107–117. 10.1177/1534508411431255
LeFevre J. A., Fast L., Skwarchuk S. L., Smith-Chant B. L., Bisanz J., Kamawar D., et al. (2010). Pathways to mathematics: longitudinal predictors of performance. Child Dev. 81, 1753–1767. 10.1111/j.1467-8624.2010.01508.x21077862
Little T. D., (2013). Longitudinal Structural Equation Modeling. New York, NY: The Guilford Press.
MacCallum R. C., Wegener D. T., Uchino B. N., Fabrigar L. R., (1993). The problem of equivalent models in applications of covariance structure analysis. Psychol. Bull. 114, 185–199. 10.1037/0033-2909.114.1.1858346326
Marsh H. W., Hau K.-T., Wen Z., (2004). In search of golden rules: comment on hypothesis-testing approaches to cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler (1999). Struct. Equat. Model. 11, 320–341. 10.1207/s15328007sem1103_2
Marsh H. W., Muthén B., Asparouhov T., Lüdtke O., Robitzsch A., Morin A. J. S., et al. (2009). Exploratory structural equation modeling, integrating CFA and EFA: application to students' evaluations of university teaching. Struct. Equat. Model. 16, 439–476. 10.1080/10705510903008220
Mazzocco M. M. M., Claessens A., (2020). Introduction to the special issue: parents supporting early mathematical thinking. Early Child. Res. Q. 50, 1–3. 10.1016/j.ecresq.2019.07.007
McDonald R. P., (1970). Theoretical foundations of principal factor analysis and alpha factor analysis. Br. J. Math. Stat. Psychol. 23, 1–21. 10.1111/j.2044-8317.1970.tb00432.x
Milburn T. F., Lonigan C. J., DeFlorio L., Klein A., (2019). Dimensionality of preschoolers' informal mathematical abilities. Early Child. Res. Q. 47, 487–495. 10.1016/j.ecresq.2018.07.00632461711
Millsap R. E., (2011). Statistical Approaches to Measurement Invariance. New York, NY: Taylor and Francis.
Morin A. J. S., Arens A. K., Marsh H. W., (2016a). A bifactor exploratory structural equation modeling framework for the identification of distinct sources of construct-relevant psychometric multidimensionality. Struct. Equat. Model. 23, 116–139. 10.1080/10705511.2014.961800
Morin A. J. S., Arens A. K., Tran A., Caci H., (2016b). Exploring sources of construct relevant multidimensionality in psychiatric measurement: a tutorial and illustration using the Composite Scale of Morningness. Int. J. Methods Psychiatr. Res. 25, 277–288. 10.1002/mpr.148526265387
Morin A. J. S., Myers N. D., Lee S., (2020). Modern factor analytic techniques: bifactor models, exploratory structural equation modeling (ESEM) and bifactor-ESEM, in Handbook of Sport Psychology, 4th Edn, 1044–1073. eds Tenenbaum G., Eklund R. C., (London: Wiley).
Mou Y., Zhang B., Piazza M., Hyde D. C., (2021). Comparing set-to-number and number-to-set measures of cardinal number knowledge in preschool children using latent variable modeling. Early Child. Res. Q. 45, 125–135. 10.1016/j.ecresq.2020.05.016
Murray A. L., Johnson W., (2013). The limitations of model fit in comparing the bi-factor versus higher-order models of human cognitive ability structure. Intelligence 41, 407–422. 10.1016/j.intell.2013.06.004
Muthen L., Muthen B., (2012–2019). Mplus Statistical Analysis With Latent Variables: User's Guide. Los Angeles, CA: Muthen and Muthen.
National Council of Teachers of Mathematics (2006). Curriculum Focal Points for Prekindergarten Through Grade 8 Mathematics: A Quest for Coherence. Retrieved from: https://www.nctm.org/Publications/teaching-children-mathematics/2006/Vol13/Issue3/Curriculum-Focal-Points-for-Pre-K-Grade-8-Mathematics_-A-Quest-for-Coherence/ (accessed May 28, 2021).
National Early Literacy Panel (2008). Developing Early Literacy: Report of the National Early Literacy Panel. Washington, DC: National Institute for Literacy. Retrieved from: https://lincs.ed.gov/publications/pdf/NELPReport09.pdf
National Mathematics Advisory Panel (2008). Foundations for Success: The Final Report of the National Mathematics Advisory Panel. U.S. Department of Education, Washington, DC.
National Research Council (2009). Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity. Washington, DC: National Academies Press.
Perreira T. A., Morin A. J. S., Hebert M., Gillet N., Houle S. A., Berta W., (2018). The short form of the Workplace Affective Commitment Multidimensional Questionnaire (WACMQ-S): a bifactor-ESEM approach among healthcare professionals. J. Vocat. Behav. 106, 62–83. 10.1016/j.jvb.2017.12.004
Purpura D. J., Lonigan C. J., (2013). Informal numeracy skills: the structure and relations among numbering, relations, and arithmetic operations in preschool. Am. Educ. Res. J. 50, 178–209. 10.3102/0002831212465332
Raghubar K. P., Barnes M. A., (2017). Early numeracy skills in preschool-aged children: a review of neurocognitive findings and implications for assessment and intervention. Clin. Neuropsychol. 31, 329–351. 10.1080/13854046.2016.125938727875931
Reise S. P., (2012). The rediscovery of bifactor measurement models. Multivariate Behav. Res. 47, 667–696. 10.1080/00273171.2012.715555
Ryoo J. H., Molfese V. J., Brown E. T., Karp K. S., Welch G. W., Bovaird J. A., (2015). Examining factor structures on the Test of Early Mathematics Ability – 3: a longitudinal approach. Learn. Individ. Differ. 41, 21–29. 10.1016/j.lindif.2015.06.003
Sánchez-Oliva D., Morin A. J., Teixeira P. J., Carraça E. V., Palmeira A. L., Silva M. N., (2017). A bifactor exploratory structural equation modeling representation of the structure of the basic psychological needs at work scale. J. Vocat. Behav. 98, 173–187. 10.1016/j.jvb.2016.12.001
Scalise N., Daubert E. N., Ramani G. B., (2017). Narrowing the early mathematics gap: a play-based intervention to promote low-income preschoolers' number skills. J. Num. Cogn. 3, 559–581. 10.5964/jnc.v3i3.72
Sellbom M., Tellegen A., (2019). Factor analysis in psychological assessment research: common pitfalls and recommendations. Psychol. Assess. 31, 1428–1441. 10.1037/pas000062331120298
Siegler R. S., Ramani G. B., (2009). Playing linear number board games - but not circular ones - improves low-income preschoolers' numerical understanding. J. Educ. Psychol. 101, 545–560. 10.1037/a0014239
Sowinski C., LeFevre J.-A., Skwarchuk S.-L., Kamawar D., Bisanz J., Smith-Chant B., (2015). Refining the quantitative pathway of the Pathways to mathematics model. J. Exp. Child Psychol. 131, 73–93. 10.1016/j.jecp.2014.11.00425521665
Starkey P., Klein A., Wakeley A., (2004). Enhancing young children's mathematical knowledge through a pre-kindergarten mathematics intervention. Early Child. Res. Q. 19, 99–120. 10.1016/j.ecresq.2004.01.002
Storch S. A., Whitehurst G. J., (2002). Oral language and code-related precursors to reading: Evidence from a longitudinal structural model. Dev. Psychol. 38, 934–947. 10.1037/0012-1649.38.6.93412428705
Thomas A., Hoareau L., Luxembourger C., Jarlégan A., Hubert B., Tazouti Y., (2018). Composition et Structuration des Différentes Dimensions de la Littératie et la Numératie Émergentes. Communication orale présentée au 10e colloque international RIPSYDEVE, Lille.
Toth-Kiraly I., Neff K. D., (2021). Is self-compassion universal? Support for the measurement invariance of the Self-Compassion Scale across populations. Assessment 28, 169–185. 10.1177/107319112092623232475146
Träff U., (2007). The contribution of working memory to children's mathematical word problem solving. Appl. Cogn. Psychol 21, 1201–1216. 10.1002/acp.1317
van Bork R., Epskamp S., Rhemtulla M., Borsboom D., van der Maas H. L. J., (2017). What is the p-factor of psychopathology? Some risks of general factor modeling. Theory Psychol. 27, 759–773. 10.1177/0959354317737185
van der Linden W., (Ed.). (2017). Handbook of Item Response Theory, Vol. 3: Applications, 1st Edn. Boca Raton, FL: Chapman and Hall/CRC.
van der Maas H. L., Molenaar D., Maris G., Kievit R. A., Borsboom D., (2011). Cognitive psychology meets psychometric theory: on the relation between process models for decision making and latent variable models for individual differences. Psychol. Rev. 118, 339–356. 10.1037/a002274921401290
van der Maas H. L. J., Dolan C. V., Grasman R. P. P. P., Wicherts J. M., Huizenga H. M., Raijmakers M. E. J., (2006). A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychol. Rev. 113, 842–861. 10.1037/0033-295X.113.4.84217014305
Van Nieuwenhoven C., Grégoire J., Noël M.-P., (2001). TEDI-MATH, Test Diagnostique des Apprentissages de Base en Mathématiques. Paris: Editions du Centre de Psychologie Appliquée.
Van Rinsveld A., Brunner M., Landerl K., Schiltz C., Ugen S., (2015). The relation between language and arithmetic in bilinguals: insights from different stages of language acquisition. Front. Psychol. 6:265. 10.3389/fpsyg.2015.0026525821442
Watts T. W., Duncan G. J., Siegler R. S., Davis-Kean P. E., (2014). What's past is prologue: relations between early mathematics knowledge and high school achievement. Educ. Res. 43, 352–360. 10.3102/0013189X1455366026806961
Williams L. J., (2012). Equivalent models: concepts, problems, alternatives, in Handbook of Structural Equation Modeling, ed Hoyle R. H., (New York, NY: The Guilford Press), 247–260.
Wynn K., (1992). Children's acquisition of the number words and the counting system. Cogn. Psychol. 24, 220–251. 10.1016/0010-0285(92)90008-P
Zhang B., Sun T., Cao M., Drasgow F., (2020). Using bifactor models to examine the predictive validity of hierarchical constructs: pros, cons, and solutions. Organ. Res. Methods. 24(3): 530–571. 10.1177/1094428120915522
Zheng X., Swanson H. L., Marcoulides G. A., (2011). Working memory components as predictors of children's mathematical word problem solving. J. Exp. Child Psychol. 110, 481–498. 10.1016/j.jecp.2011.06.00121782198