[en] GW170817 has led to the first example of multi-messenger astronomy with observations from gravitational wave interferometers and electromagnetic telescopes combined to characterise the source. However, detections of the early inspiral phase by the gravitational wave detectors would allow the observation of the earlier stages of the merger in the electromagnetic band, improving multi-messenger astronomy and giving access to new information. In this paper, we introduce a new machine-learning-based approach to produce early-warning alerts for an inspiraling binary neutron star system, based only on the early inspiral part of the signal. We give a proof of concept to show the possibility to use a combination of small convolutional neural networks trained on the whitened detector strain in the time domain to detect and classify early inspirals. Each of those is targeting a specific range of chirp masses dividing the binary neutron star category into three sub-classes: light, intermediate and heavy.
In this work, we focus on one LIGO detector at design sensitivity and generate noise from the design power spectral density. We show that within this setup it is possible to produce an early alert up to 100 seconds before the merger for the best-case scenario.
We also present some future upgrades that will enhance the detection capabilities of our convolutional neural networks. Finally, we also show that the current number of detections for a realistic binary neutron star population is comparable to that of matched filtering and that there is a high probability to detect GW170817- and GW190425-like events at design sensitivity.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Baltus, Grégory ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Cudell, Jean-René ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Janquart, Justin; Utrecht University > Utrecht University > Institute for Gravitational and Subatomic Physic > PhD
Lopez, Melissa; Utrecht University, > Utrecht University, > Institute for Gravitational and Subatomic Physic > PhD
Reza, Amit; Utrecht University > Utrecht University > Institute for Gravitational and Subatomic Physic > Post doctorant
Caudill, Sarah; Utrecht University > Utrecht University > Institute for Gravitational and Subatomic Physic > Professor
Language :
English
Title :
Convolutional neural networks for the detection of the early inspiral of a gravitational-wave signal
Publication date :
18 May 2021
Journal title :
Physical Review. D, Particles, Fields, Gravitation, and Cosmology
ISSN :
1550-7998
eISSN :
1550-2368
Publisher :
American Physical Society, College Park, United States - Maryland
C. Meegan, G. Lichti, P. Bhat, E. Bissaldi, M. S. Briggs, V. Connaughton, R. Diehl, G. Fishman, J. Greiner, A. S. Hoover, Astrophys. J. 702, 791 (2009). ASJOAB 0004-637X 10.1088/0004-637X/702/1/791
V. Savchenko, C. Ferrigno, E. Kuulkers, A. Bazzano, E. Bozzo, S. Brandt, J. Chenevez, T.-L. Courvoisier, R. Diehl, A. Domingo, Astrophys. J. Lett. 848, L15 (2017). AJLEEY 2041-8213 10.3847/2041-8213/aa8f94
B. Abbott (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 119, 161101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101
B. Abbott, Astrophys. J. 875, 161 (2019). ASJOAB 0004-637X 10.3847/1538-4357/ab0e8f
B. Abbott, Astrophys. J. Lett. 848, L12 (2017). AJLEEY 2041-8213 10.3847/2041-8213/aa91c9
S. Akcay, Ann. Phys. (Amsterdam) 531, 1800365 (2019). APNYA6 0003-4916
P. Cowperthwaite, E. Berger, V. Villar, B. Metzger, M. Nicholl, R. Chornock, P. Blanchard, W. Fong, R. Margutti, M. Soares-Santos, Astrophys. J. Lett. 848, L17 (2017). AJLEEY 2041-8213 10.3847/2041-8213/aa8fc7
M. Soares-Santos, A. Palmese, W. Hartley, J. Annis, J. Garcia-Bellido, O. Lahav, Z. Doctor, M. Fishbach, D. Holz, H. Lin, Astrophys. J. Lett. 876, L7 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab14f1
M. Fishbach, R. Gray, I. M. Hernandez, H. Qi, A. Sur, F. Acernese, L. Aiello, A. Allocca, M. Aloy, A. Amato, Astrophys. J. Lett. 871, L13 (2019). AJLEEY 2041-8213 10.3847/2041-8213/aaf96e
E. Berti, K. Yagi, and N. Yunes, Gen. Relativ. Gravit. 50, 46 (2018). GRGVA8 0001-7701 10.1007/s10714-018-2362-8
B. Abbott (LIGO Scientific and Virgo Collaborations), Phys. Rev. D 100, 104036 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.104036
B. Abbott, Nature (London) 551, 85 (2017). NATUAS 0028-0836 10.1038/nature24471
D. N. Burrows, Space Sci. Rev. 120, 165 (2005). SPSRA4 0038-6308 10.1007/s11214-005-5097-2
T. Tsutsui, A. Nishizawa, and S. Morisaki, arXiv:2011.06130 [Phys. Rev. D (to be published)].
K. Cannon, R. Cariou, A. Chapman, M. Crispin-Ortuzar, N. Fotopoulos, M. Frei, C. Hanna, E. Kara, D. Keppel, L. Liao, Astrophys. J. 748, 136 (2012). ASJOAB 0004-637X 10.1088/0004-637X/748/2/136
S. A. Usman, A. H. Nitz, I. W. Harry, C. M. Biwer, D. A. Brown, M. Cabero, C. D. Capano, T. Dal Canton, T. Dent, S. Fairhurst, Classical Quant. Grav. 33, 215004 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/21/215004
T. Dal Canton, A. H. Nitz, A. P. Lundgren, A. B. Nielsen, D. A. Brown, T. Dent, I. W. Harry, B. Krishnan, A. J. Miller, K. Wette, Phys. Rev. D 90, 082004 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.90.082004
C. Messick, K. Blackburn, P. Brady, P. Brockill, K. Cannon, R. Cariou, S. Caudill, S. J. Chamberlin, J. D. E. Creighton, R. Everett, Phys. Rev. D 95, 042001 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.042001
S. Sachdev, S. Caudill, H. Fong, R. K. Lo, C. Messick, D. Mukherjee, R. Magee, L. Tsukada, K. Blackburn, P. Brady, arXiv:1901.08580.
A. H. Nitz, T. Dal Canton, D. Davis, and S. Reyes, Phys. Rev. D 98, 024050 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.024050
T. Adams, D. Buskulic, V. Germain, G. M. Guidi, F. Marion, M. Montani, B. Mours, F. Piergiovanni, and G. Wang, Classical Quant. Grav. 33, 175012 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/17/175012
Q. Chu, arXiv:2011.06787 [Phys. Rev. D (to be published)].
S. Sachdev, R. Magee, C. Hanna, K. Cannon, L. Singer, J. R. SK, D. Mukherjee, S. Caudill, C. Chan, J. D. E. Creighton, Astrophys. J. 905, L25 (2020). ASJOAB 0004-637X 10.3847/2041-8213/abc753
D. George and E. Huerta, Phys. Rev. D 97, 044039 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.044039
D. George and E. Huerta, Phys. Lett. B 778, 64 (2018). PYLBAJ 0370-2693 10.1016/j.physletb.2017.12.053
H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Phys. Rev. Lett. 120, 141103 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.141103
W. Wei and E. Huerta, Phys. Lett. B 816, 136185 (2021). PYLBAJ 0370-2693 10.1016/j.physletb.2021.136185
P. G. Krastev, Phys. Lett. B 803, 135330 (2020). PYLBAJ 0370-2693 10.1016/j.physletb.2020.135330
T. Gebhard, N. Kilbertus, G. Parascandolo, I. Harry, and B. Schölkopf, in Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems (NIPS) (2017), pp. 1-6.
H. Gabbard, C. Messenger, I. S. Heng, F. Tonolini, and R. Murray-Smith, arXiv:1909.06296.
S. R. Green, C. Simpson, and J. Gair, Phys. Rev. D 102, 104057 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.104057
S. R. Green and J. Gair, arXiv:2008.03312.
E. Cuoco, J. Powell, M. Cavaglià, K. Ackley, M. Bejger, C. Chatterjee, M. Coughlin, S. Coughlin, P. Easter, R. Essick, Mach. Learn. Sci. Technol. 2, 011002 (2020). 10.1088/2632-2153/abb93a
M. J. Williams, J. Veitch, and C. Messenger, arXiv:2102.11056 [Phys. Rev. D (to be published)].
K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, New Jersey, 2016), pp. 770-778.
C. Biwer, C. D. Capano, S. De, M. Cabero, D. A. Brown, A. H. Nitz, and V. Raymond, Publ. Astron. Soc. Pac. 131, 024503 (2019). PASPAU 0004-6280 10.1088/1538-3873/aaef0b
B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, Phys. Rev. D 85, 122006 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.122006
B. Allen, Phys. Rev. D 71, 062001 (2005). PRVDAQ 1550-7998 10.1103/PhysRevD.71.062001
A. Samajdar, J. Janquart, C. Van Den Broeck, and T. Dietrich, arXiv:2102.07544 [Phys. Rev. D (to be published)].
C. Cutler and E. E. Flanagan, Phys. Rev. D 49, 2658 (1994). PRVDAQ 0556-2821 10.1103/PhysRevD.49.2658
B. F. Schutz, Classical Quant. Grav. 28, 125023 (2011). CQGRDG 0264-9381 10.1088/0264-9381/28/12/125023
A. Buonanno, Y.-b. Chen, and M. Vallisneri, Phys. Rev. D 67, 104025 (2003); PRVDAQ 0556-2821 10.1103/PhysRevD.67.104025
A. Buonanno, Y.-b. Chen, and M. Vallisneri Erratum, Phys. Rev. D 74, 029904 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.74.029904
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, in Advances in Neural Information Processing Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett (Curran Associates, Inc., New York, USA, 2019), pp. 8024-8035, http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
D. P. Kingma and J. A. Ba, arXiv:1412.6980.
T. Fawcett, Pattern Recogn. Lett. 27, 861 (2006). PRLEDG 0167-8655 10.1016/j.patrec.2005.10.010
B. Abbott (LIGO Scientific and Virgo Collaborations), Astrophys. J. Lett. 892, L3 (2020). AJLEEY 2041-8213 10.3847/2041-8213/ab75f5
R. Abbott (LIGO Scientific and Virgo Collaborations), arXiv:2010.14533.
B. P. Abbott (KAGRA, LIGO Scientific, and VIRGO Collaborations), Living Rev. Relativity 21, 3 (2018). 1433-8351 10.1007/s41114-018-0012-9
M. López, I. Di Palma, M. Drago, P. Cerdá-Durán, and F. Ricci, Phys. Rev. D 103, 063011 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.063011
H. Yu, R. X. Adhikari, R. Magee, S. Sachdev, and Y. Chen, arXiv:2104.09438 [Phys. Rev. D (to be published)].