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GW170817 has led to the first example of multi-messenger astronomy with observations from

gravitational wave interferometers and electromagnetic telescopes combined to characterise the

source. However, detections of the early inspiral phase by the gravitational wave detectors would

allow the observation of the earlier stages of the merger in the electromagnetic band, improving

multi-messenger astronomy and giving access to new information. In this paper, we introduce a new

machine-learning-based approach to produce early-warning alerts for an inspiraling binary neutron

star system, based only on the early inspiral part of the signal. We give a proof of concept to show

the possibility to use a combination of small convolutional neural networks trained on the whitened

detector strain in the time domain to detect and classify early inspirals. Each of those is targeting a

specific range of chirp masses dividing the binary neutron star category into three sub-classes: light,

intermediate and heavy. In this work, we focus on one LIGO detector at design sensitivity and

generate noise from the design power spectral density. We show that within this setup it is possible

to produce an early alert up to 100 seconds before the merger for the best-case scenario. We also

present some future upgrades that will enhance the detection capabilities of our convolutional neural

networks. Finally, we also show that the current number of detections for a realistic binary neutron

star population is comparable to that of matched filtering and that there is a high probability to

detect GW170817- and GW190425-like events at design sensitivity.

I. INTRODUCTION

On August 17, 2017 the first gravitational wave (GW)

from a binary neutron star (BNS) system was observed

by the Laser Interferometer Gravitational Wave Obser-

vatory (LIGO) [1] and by the Virgo detector [2].

The Fermi Gamma-Ray-Burst Monitor (Fermi-GBM)

[3] and the INTEGRAL satellite [4] detected the associ-

ated γ-ray signal 1.7 s after the coalescence. This event,

called GW170817, provided the first direct evidence of

a link between these mergers and short γ-ray bursts. In

addition, it gave an extra confirmation of the existence

of GWs and initiated the era of multi-messenger astron-

omy (MMA) with GWs [5–8]. The combined detection

of multiple messengers allows us to improve our under-

standing of complex astrophysical phenomena, such as

the r- and s-processes at the origin of heavier elements

in the Universe. This improvement of MMA will also

allow a better measurement of the Hubble constant and

novel tests of General Relativity, such as a measure-

ment of the speed of GWs [9–14]. A key element in
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MMA is the time delay between the detection of a GW

and the identification of the location of its source. In

fact, to discover new physics it is necessary to detect

the source in the electromagnetic band at times close

to the merger. However, the time of response varies

from one telescope to another, so that a detection in

the GW channels should be made early to leave enough

time for the electromagnetic observatories to focus on

the source. For instance, the Swift Observatory [15] is

able to focus on a sky position in only seconds (around

15 s for Swift’s Burst Alert Telescope [15]). Thus, it

is advantageous to detect gravitational waves from the

inspiral, before the merger, to enable prompt detection

of the merger event in the electromagnetic band.

The signal of a GW coming from compact binary coa-

lescence (CBC) is composed of three parts: the inspiral

(when the orbital motion of the two objects radiates

away energy and the orbit shrinks), the merger (when

they touch and join), then by a ringdown (when the

newly formed body returns to its ground state). As the

signal enters in the detector, the signal-to-noise-ratio

(SNR) accumulates. Due to the low frequency and small

amplitude of the signal during the early inspiral, the

SNR accumulation is slow, which hinders the detection

of the signal. It becomes observable when the frequency

of the early inspiral enters into the sensitivity band

of the detector. Upgrading the current detectors and

mailto:gbaltus@uliege.be
mailto:j.janquart@uu.nl
mailto:m.lopez@uu.nl
mailto:areza@nikhef.nl
mailto:s.e.caudill@uu.nl
mailto:jr.cudell@uliege.be


2

building the next generation of interferometers, such

as Cosmic Explorer (CE) and the Einstein Telescope

(ET) [16–18], will increase significantly the sensitivity

through, among other things, the reduction of the noise.

As a consequence the frequency threshold will also de-

crease, leading to the detection of signals with longer

inspirals and to a larger number of detections. Up to

now, both the low-amplitude early inspiral and the high-

amplitude late inspiral have been needed to detect BNSs.

Some studies already investigate the question of early

warning for the next generation of interferometers [19].

The standard methodology employed to search for

GWs relies on matched filtering techniques. A large

bank of template waveforms is built. The templates are

then correlated with the input data of the detector over

their sensitivity band, extracting the signals from the

detector noise. The standard matched filtering can be

computationally expensive [20–23], but some pipelines

such as GstLAL [24], PyCBCLive [25], MBTAOnline

[26] and SPIIR [27] are adapted to run in low latency

and obtain fast candidate detection, also referred to as

trigger.

Matched filtering techniques usually consider the

whole template (meaning the template over all the sen-

sitive frequencies of the detector) to correlate it with

the signal. However in the context of MMA it is nec-

essary to employ only the pre-merger information of

the template for prompt alerts. In this line of thought,

recent advances to perform matched filtering with only

a fraction of the inspiral have been made in Ref. [28],

where the authors have implemented a GstLAL-based

pipeline that produces pre-merger alerts.

It enabled them to compute the matched filter, the

false-alarm rate, and the sky localisation using only the

information in the low-frequency band of the template,

corresponding to the early inspiral. This showed that

this method could detect signals as early as one minute

before the merger. However, the number of early alerts

issued is lower than the total number of detections based

on full waveforms.

Due to the computational complexity of matched fil-

tering and the increasing amount of events related to

the future upgrades of the detectors, alternative ap-

proaches to overcome the challenges of MMA are under

development. In particular, the use of Machine Learn-

ing (ML) methods has sparked the interest of several

authors, who have built Deep Learning (DL) algorithms.

These algorithms are able to capture complex non-linear

relationships in the data by composing hierarchical in-

ternal representations. The main advantage of these

methodologies is that the prediction task is performed

rapidly since most of the computations are made dur-

ing the training stage [29]. Several studies have shown

the power of these algorithms for the detection of GW

in low latency, obtaining a sensitivity similar to that

of matched filtering techniques [29–34]. Other recent

papers [35–39] focus on the parameter estimation for

CBC events and other applications of ML for gravita-

tional wave astronomy. Moreover, in [29] and [30]

the authors have presented the generalisation ability of

convolutional neural networks (CNNs) by training with

a data set of non-spinning waveforms and obtaining a

high performance when testing with precessing systems.

In [32], only part of the template is used in their DL

approach. The authors employed a pre-trained Resnet-

50 network [40] to classify time-frequency maps. The

data were acquired from the detectors after an extra

preprossessing step to build a spectrogram of the data.

When computing such figures, depending on the desired

resolution, we found that the time to produce a single

map could vary from ∼ 0.5 seconds 1.

In this paper, we propose to use the 1-D whitened

strain as the input data of a CNN for pre-merger alert

so that we bypass the computation of the spectrograms.

The goal of the algorithm is to perform a binary classi-

fication task to differentiate inputs that contain a GW

from inputs that do not. The classification is made inde-

pendently for three different categories of objects: light,

intermediate and heavy BNS. The templates with a

GW contain only the early inspiral part of the wave-

form, which is embedded in colored Gaussian noise,

made with the noise power spectral density (PSD), cor-

responding to the design sensitivity of LIGO and given

in PyCBC [41]. Different categories have different ob-

servational time windows (OTW), i.e. the duration of

inspiral seen by each CNN is different depending on the

category. A short CNN, as in [29–31], is implemented

for each category. We stress that this work is a proof

of concept to show the promises of this type of neural

networks. The optimisation of their performance and

the inclusion of multiple detectors will be considered in

further studies.

This paper is organised as follows. In the first sec-

tion, we discuss the data generation. The second section

details the methodology used to design and train the

networks. The third section is devoted to our different

results and discusses them. Finally, we draw our conclu-

sions and consider future enhancements to be brought

to our detection system.

1 All the tests on CPU were done on a Intel(R) Core(TM) i7-

8650U CPU.
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II. DATA GENERATION

A. SNR and Partial-Inspiral SNR

The final output of a matched filtering algorithm is

the signal-to-noise ratio (SNR). It measures the match

between the template and the data. Mathematically,

the SNR (ρ) [42] is defined as

ρ =

(
4Re

(∫ fmax

fmin

d̃(f)h̃∗(f)

P(f)
df

))1/2

, (1)

where h̃∗(f) and d̃(f) are respectively the complex con-

jugate of the Fourier transform of the template and the

Fourier transform of the data. P(f) is the noise power

spectral density. Here, fmin is the minimal frequency in

the detector sensitivity band and fmax is the maximum

frequency considered, typically the Nyquist frequency,

i.e. half of the sampling frequency.

The SNR represents how well a typical template h

matches the data d, which is the addition of a GW

signal and noise. A matched-filtering-based search finds

the template that maximises the SNR and is optimal

for Gaussian stationary noise and an exactly known

signal. For this type of noise, when the signal does

not contain a GW, the SNR fluctuates around a mean

value. Nonetheless, if a GW enters the detector, the

SNR increases and when that exceeds a predefined SNR

threshold, a candidate trigger event is recorded.

However, the noise from the detectors is neither Gaus-

sian nor stationary, making the search more complex.

For example, glitches (spurious noise variations in the

detector band) can occur and lead to a peak in SNR

which can mimic a GW trigger. To avoid the detection

of noise, the matched filtering-based pipelines often re-

quire the detection to be in coincidence in different

detectors. Additionally, more elaborate tests also exist,

such as the χ2 test [43], that can downrank the noise

artefacts in the final candidate lists. The confidence

one has about the detection is also often translated by a

false-alarm-rate that gives the frequency at which noise

fluctuations lead to the same ranking statistic value.

This ranking is a multi-variate statistic that includes

different statistics such as SNR and χ2 [23].

The optimal SNR is obtained when the template is

matched with itself [42]:

ρopt =

(
4Re

(∫ fmax

fmin

|h̃(f)|2

P(f)
df

))1/2

.. (2)

This value represents the loudness of the signal in the

detector.

In the context of pre-merger analysis, only part of the

inspiral is considered, and the loudness of the signal is

not represented anymore by the optimal SNR. Instead,

we define it by a partial inspiral SNR (PI SNR), which

has the same definition as the optimal SNR in Eq. (2),

but where the template is now the partial template con-

taining only the early partial inspiral (hPI). In the

frequency domain, it is equivalent, for a given wave-

form, to replace the fmax in Eq.(2) by the maximum

frequency reached by the template in the part of the

inspiral considered. Typically, this frequency will be

below 50 Hz (instead of thousands usually), reducing

the value of the integral.

The SNR increases more rapidly around the late in-

spiral and the merger than during the early inspiral.

Fig. 1 shows this behaviour as it represents the value of

the PI SNR as a function of the fraction of the signal

that is taken into account.

FIG. 1: Evolution of the PI SNR as a function of the

duration of the early inspiral for a BNS with

component masses of 1 M�. On the vertical axis, the

PI SNR is normalised by the optimal SNR, and on the

horizontal axes, duration of the early inspiral is

normalised by the duration of the full template.

The behaviour of the PI SNR comes from the relation

between frequency and time. At the lowest order in

velocity, one finds:

f(t) =
1

π

(
GMc

c3

)−5/8(
5

251

1

(tm − t)

)3/8

, (3)

where f(t) is the frequency at time t, Mc is the chirp

mass defined in terms of the component masses m1 and

m2 of the system: Mc = (m1m2)3/5/(m1 + m2)1/5

and tm is the time of the merger. This behaviour is

illustrated in Fig. 2, which shows the full and partial

templates and their frequency evolution.

B. BNS categories

The duration of the observable CBC signal depends

mainly on the chirp mass Mc. Indeed, at the lowest
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FIG. 2: The top panel represents an intermediate

BNS template where the component masses are

m1 = m2 = 2M�. The bottom panel shows the

frequency evolution of the template with time. In both

plots, the inspiral part considered for our ML-based

approach is coloured in red.

order in velocity2, the duration of the signal is given

by [44]

τ(s) ' 3

(Mc/M�)
5
3

[(
100 Hz

flow

) 8
3

−
(

100 Hz

fhigh

) 8
3
]
, (4)

where flow is the lowest frequency in the detector sensi-

tivity band and fhigh is the highest frequency reached by

the binary (approximated by the frequency of the inner-

most stable orbit). From this expression it is clear that,

for a fixed lowest frequency flow, if the chirp mass Mc

increases, the duration of the detectable signal shortens.

Furthermore, at the lowest order in velocity, the SNR

also has a simple expression [45]:

ρ ' 1

2

√
5

6

1

π
2
3

c

D

(
GMc

c3

) 5
6√

I g(θ, φ, ψ, ι). (5)

In this expression, c is the speed of light, D is the

luminosity distance, G is the gravitational constant,Mc

is the chirp mass, I is the frequency integral

I =

∫ fmax

fmin

(f ′)−7/3

P (f ′)
df ′ , (6)

and g(θ, φ, ψ, ι) is a function that depends on the ori-

entation of the orbital plane and on the sky position

through the antenna pattern of the detectors [46]. From

2 In the early inspiral, the strong field effects and the velocities

are rather small, which means that the expression derived for

the lowest order in velocity approximates well the behaviour of

the binary systems.

Eqs. (4) and (5) one can see that if the chirp mass de-

creases, the optimal SNR of the signal decreases while

its duration increases.

As we can observe in Fig. 1, the PI SNR depends on

the fraction of the signal considered, as well as on the

highest frequency reached within the observation time.

Therefore, observing the signal for a longer time would

lead to a higher PI SNR, making the signal easier to

detect. However, we also want to detect the signal as

early as possible in order to have an efficient pre-merger

alert system. This leads to a trade-off in our method,

as we want to have a high PI SNR, but also prompt

detections.

Since we know that the time evolution of the ampli-

tude of the signals will be different depending on the

masses, we split the BNS set into three different cat-

egories: light, intermediate and heavy BNS. For each

of these categories, we use a different observation time

window (OTW), meaning that we train the networks on

a different length of data. Hence, our algorithm consists

of 3 CNNs, one for each category and input size. Note

that the OTW is a hyperparameter that will be tuned

in a later work. A discussion of the influence of this

parameter will be discussed in section IV.

Table I summarises the characteristics of the different

categories, which are classified according to their chirp

mass Mc. In order to give an intuition for the masses

of the objects present in each category, we give the

highest and lowest chirp masses of each category and

the component masses for an equal-mass system3. For

each of the categories, in addition to the constraint

on the chirp mass, we also restricted the individual

component masses to be between 1M� and 3M�, which

corresponds to a broad mass range for neutron stars.

Note also that spin effects are absent at this order in v
c ,

so that we considered only non-spinning BNS.

C. Data set generation

The inputs of the neural networks are 1-dimensional

whitened time series, made of Gaussian noise generated

from the design sensitivity PSD of Advanced LIGO

(aLIGO) with a GW added in some cases. Indeed, the

network is trained as a classifier between an event class

(noise + template) and a noise class (only noise). The

GW data analysis and generation has been performed

with the PyCBC package [41].

We start by generating 120 seconds of coloured Gaus-

sian noise. Then, a non-spinning BNS waveform is

3 Non-equal mass systems were also considered during the train-

ing and testing of our networks.
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BNS light intermediate heavy

Mc (M�) 1.13 - 1.56 1.56 - 2.09 2.09 - 2.61

flow (Hz) 20 20 20

Duration (s) 100 - 180 65 - 100 45 - 65

OTW (s) 80 50 30

Fraction of signal 0.44 - 0.8 0.5 - 0.77 0.46 - 0.66

Early alert

before merger (s)
20 - 100 15 - 50 15 - 35

TABLE I: Summary of the CBC merger types for the

different CNNs. A different OTW is considered for

each category because of the difference in duration of

the signals depending on the component masses. The

fraction of signal corresponds to the time passed by

the signal in the frame w.r.t the total duration. The

early alert time is the duration between the end of the

OTW and the end of the signal. For each OTW, the

minimum and maximum component masses are 1 and

3 M�.

injected into it. The approximant used is SpinTay-

lorT4 [47] and it is generated with a minimum frequency

of 20 Hz.

By default, we employ the optimal sky localisation

considering only the plus polarisation of the GW aligned

with the arms of the interferometer to generate training,

validation and testing sets. Note however that when we

later will test the performance of the networks with real-

istic BNS populations, similarly to [44], the sky location

will not be the optimal one anymore.

Since our objective is to train the networks on the

early inspiral part of the waveforms, we select the de-

sired OTW for the generated strain and its PI SNR is

computed. In Fig. 3, we plot the waveform embedded

in Gaussian noise. The vertical red lines represent the

portion of the strain in the OTW. Note that the frame

we use is always starts at the beginning of the 120 sec-

ond injection it is taken from. Finally, we whiten the

stretch of data under consideration and normalise its

amplitude by dividing all the points by the maximum

amplitude in absolute value. Therefore, all points are

in [−1, 1]. For the frames containing a GW, the event

characteristics, such as the distance, are chosen so that

the PI SNR distribution covers a wide range.

III. METHODOLOGY

A. Architecture of the CNN

The goal of this search is to perform a binary classifi-

cation task, to distinguish the OTWs with GW signals

from those without, with a short CNN, similarly to [29–

FIG. 3: Representation of the noise and the injected

waveform before the whitening. The CBC signal

corresponds to a BNS where both component masses

are 1.8M� and the binary is placed at a luminosity

distance of 100 Mpc. At the time of training and

testing of the CNNs, we do not pass this full frame to

the network, but only the first 50 s (denoted by the

two red lines), which is the chosen OTW length for

this BNS category.

31]. The CNNs were implemented with the PyTorch

package [48]. We use cross entropy as the loss function

and ADAMAX as the optimizer, which is a variant of

ADAM, based on the infinity norm [49]. Several hyper-

parameters such as the learning rate, the batch size, the

numbers of layers, the kernel size, were tested, but in

this work we only report on the ones that provided the

best performance.

After several trials, we found that the best perfor-

mance with the minimum computational cost was ac-

quired for 5 convolutional layers. It was found that a

bottleneck structure, i.e. starting with a large kernel

size, making it smaller in the middle and enlarging it

again afterwards, yielded the best results. We represent

the best-performing architecture in Fig. 4 and in Ap-

pendix A. The output of the network is a probability

vector which contains the probabilities of the template

belonging to the event class, where the event is present

into the noise, or to the noise class otherwise. The clas-

sification task is performed according to a predefined

threshold, which is associated with the False Alarm

Probability (FAP).

B. Training and testing of our neural networks

For each category we have a predefined OTW, given

in Table I. Due to the varying size of the inputs we

perform a binary classification task with a tuned repli-

cation of the CNN for each BNS category. The data set
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FIG. 4: Architecture of the best performing CNN for

all the categories. From one BNS type to the other,

one needs to adapt the input size.

is balanced, i.e. it contains 4000 frames of the noise +

signal class, and 4000 frames of the noise class, where

each of the frames corresponds to an OTW, built as

described in the previous section. We employ 80% of

the data set for training and 20% for validation. The

performance of the network in the training and the vali-

dation sets is compared to avoid overfitting. Finally, we

test the network with 2000 frames of the noise + signal

class, where the events are chosen to fall into the dis-

tance range considered for each BNS category, and 2000

frames of the noise class. More information about the

distributions of the data set can be found in Appendix

B.

To assess the performance of each neural network,

we classify its output for a given data frame into true

positives (TP), true negatives (TN), false positives (FP),

and false negatives (FN), according to the standard

confusion matrix [50].

We also define the True Alarm Probability (TAP)

and the False Alarm Probability (FAP) as follows:

TAP =
TP

TP + FN
FAP =

FP

TN + FP
. (7)

The TAP corresponds to the number of noise + signal

classified as such over all the number of frames that

belong to the noise + signal class, whereas the FAP

represents the number of noise frames which are mis-

classified over the number of frames that belong to the

noise class. The performance of the networks will be

evaluated based on the TAP for a fixed FAP, which

is related to the threshold discussed in the previous

subsection.

For this paper, we decided to present all the results

for an FAP of 1%. This can be considered to be high if

compared with the current GW searches, but we want

to insist on the fact that this work is a proof of concept

and that our pipeline uses only one detector. We expect

that, by considering coincident triggers in Nd detectors,

the FAP will roughly go as 0.01Nd . This is an approx-

imation where we assume that the three channels are

independent and that, at each instant, each CNN has

1% chance to claim a false detection.

IV. RESULTS AND DISCUSSION

In this section, we first discuss the performance of

the three networks. Then, we report on the results of

our method when applied to a realistic population of

BNSs. Finally, we discuss a first attempt at curriculum

learning, which is promising for the future.

A. Performance of the CNNs

In Fig. 5 we plot the TAP as a function of the distance

in Mpc and the PI SNR for each category individually.

We see that the network trained on heavier objects is

able to reach higher distances. From Eq. (5) we can

observe the same behaviour, as for smaller chirp masses

we need to decrease the luminosity distance in order to

keep the same SNR value. We obtain the best perfor-

mance for the heavy BNS category. The intermediate

and low categories have very similar performance, where

we see that the 2σ interval of the two categories overlaps

when considering the PI SNR. We also note that, since

the architecture of the network has been optimised for

the heavy category, it is expected that it performs best

for this BNS category.

Note that the CNNs are sensitive to the accumulation

of the signal. To confirm this, we trained and tested

the networks on data with low frequency cut-offs set to

higher values than the usual 20 Hz. This is a way to

reduce the PI SNR of the injected signal while main-

taining the same maximum amplitude. For the testing

set, we obtained an 88% TAP for a cut-off at 20 Hz, and

71% for a low-pass frequency at 26 Hz, showing that the

CNN is sensitive to the PI SNR for a fixed maximum

amplitude. Similarly to matched filtering, a CNN is

designed to recognise patterns and, in this context, the

larger PI SNR means that the signal is present for a

longer time.

From Fig. 5, we see that Network 1 is able to reach

distances larger than 60 Mpc before its TAP has a depar-

ture from 100%. As the first BNS detected GW170817

was located at a distance of the order of 40 Mpc, our

method will have a high probability to detect similar
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FIG. 5: The top panel represents the results of the

three networks, each trained on its category, as a

function of the distance. In the second panel, we

compute the mean µ PI SNR and its standard error ε,

as µ(PI SNR)± ε(PI SNR) for each distance and a

confidence of 2σ, represented by the coloured band.

For each graph the FAP is fixed at 0.01.

signals when present in noise at design sensitivity. This

means that our method is able to recover realistic sig-

nal from Gaussian noise when only the inspiral part is

present. Network 2, which is trained on intermediate

BNSs, is able to have a better performance at higher

distances, which is expected based on the chirp mass

- PI SNR relation. Finally, Network 3 has a TAP of

100% even for a distance of 125 Mpc, meaning that the

efficiency of detection is still high for distances similar

to that of GW190425, the second BNS discovered by

the LIGO-Virgo collaboration [51].

We now perform a series of tests to evaluate the in-

fluence of the length of the OTW. Indeed, this is an

important hyperparameter that represents the fraction

of the signal seen for a given event. It needs to be

optimised to have as many detections as possible while

keeping a long enough delay between the trigger and the

merger time. In Fig. 6, we show the TAP for Network 3

when using different OTW. As expected, a larger OTW

increases the TAP, but is associated with a shorter time

lapse before the merger.

FIG. 6: Representation of the performance of the

CNN trained on the heavy BNS systems for different

OTWs. One sees that a longer window gives a higher

number of detections. However, it also means the

detection happens closer to the merger time. The

mean times before merger are 35, 30, 25, and 20

seconds for the 20, 25, 30, and 35 seconds OTW,

respectively.

We also test whether a network trained on a certain

category is able to find signals that belong to a differ-

ent category. We concentrate on Network 3, which is

trained to detect heavy BNSs, and check whether it is

capable of detecting intermediate BNSs. For this, we

increase the OTW of intermediate BNSs to 30 s, to be

able to feed the data set to Network 3. We find that

the TAP decreases significantly. Network 2, which is

trained to detect intermediate BNSs, yields a TAP of

∼ 68%, while Network 3 reaches only ∼ 16%. This is

also understandable in terms of PI SNR, as the reduc-

tion of the OTW duration leads to a decrease in the PI

SNR, and we already established that this is the key

parameter for detection.

We now compare the time needed for our CNN to

analyse one frame with the time needed for matched

filtering. When applying matched filtering on a 50 s

frame, similar to those passed to the CNNs and with

only the optimal template, the computation time is

∼ 0.05 s. This is just the bare minimum time needed

to get the SNR in matched filtering. In this traditional

method, several templates are tested and the trigger

is not only assigned an SNR, but also other statistics,

such as the FAR. As a consequence, the time to get

the final information is longer [24]. Analysing the same

frame using our CNN on a Nividia GeForce RTX 2070

SUPER GPU, we get the probability of an inspiral to

be present in ∼ 0.005 s. Therefore, the time needed to

analyse the frame and get a prediction probability is
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FIG. 7: The PI SNR for a low-pass filter at 32 Hz for

each BNS with a full SNR higher than 8. The black

crosses represent the events missed by the CNNs, and

the red squares are the events correctly found. The

orange diamonds are triggers that correspond to noise

fluctuations (false positives).

improved by a factor of 10.

B. Test on a realistic population of BNS

In order to have a better grasp on the performance of

our networks with respect to matched filtering, we also

test them on a simulated realistic population of BNS

systems. Therefore, we compute both the optimal SNR

and the PI SNR for each BNS with a high-frequency

cut-off of 32 Hz, similarly to what was done in [28].

When performing the run with a high-frequency cut-off

and the test with our CNNs, we only consider the events

that have a full matched filtering SNR higher than 8.

This basic computation is performed for the high rate

presented in [52]

The cut-off frequency of 32 Hz has been chosen to

give results comparable to those in [28], while having

in-band times that correspond to the OTWs defined in

Table I.

The population synthesis is performed using the code

of [44], with minor changes in order to suit our frame-

work. For example, the PSD employed is the same as

for the noise generation, the low frequency cut-off used

is 20 Hz, and we generate the equivalent of 5 years of

data.

One shortcoming of this procedure to generate a re-

alistic population of BNSs is that, although it is fast,

it is based on analytical approximations. As a conse-

quence, we do not inject the signals in noise to compute

the SNR, and are not able to compute the matched

filtering false alarm rate (FAR) for such frames. So, we

cannot use the criterion of Ref. [28] (namely an SNR

threshold followed by an FAR) and the direct compari-

son is non-trivial. Our procedure confirms the difficulty

to detect those events with matched filtering methods.

Once we have selected the events based on the analyt-

ical approach, we inject them in design-sensitivity noise

and pass the frames to the CNNs. Fig. 7 represents the

events detected, those missed and those misidentified.

We also generate the same noise for each event but with-

out injecting the BNS in it. We test our networks on

these pure noise frames to highlight the false positives.

As shown in Fig. 5, the networks detect most of the

BNSs which have a PI SNR sufficiently high. We also

want to emphasise the fact that matched filtering ap-

plied for pre-merger alert also needs the PI SNR to be

above a threshold to lead to a trigger. This threshold

depends of the framework, and the number of detec-

tors included. We can see that, if one chooses an SNR

threshold of 8, our results are comparable to those of

matched filtering. Nevertheless CNNs are much faster4.

A key feature employed in [28] is the network of de-

tectors. Requiring coincident detections in the different

detectors helps to remove signals due to noise artefacts.

Another advantage is that the signal can accumulate in

several detectors simultaneously. Additionally, the sky

localisation is found using the data in the three detec-

tors [53]. For a neural network, the input will have a

certain number of channels, one for each detector. Then,

the input will be convolved through the network, find-

ing relationships between the different channels. This

should decrease the FAP of our detector network and

enable us to find the sky localisation. This will be ex-

plored in a future work.

C. Basic curriculum learning exploration

Aside from the architecture, another key factor in

the development of DL algorithms is the training pro-

cedure. From the population analysis we conclude that

the networks see the loudest events, i.e. those with the

highest PI SNR in the OTW (or the highest SNR in the

detector for the full template). The networks have been

trained on a very wide distance range for the events

(hence a wide PI SNR range), but it is hard for them

to detect smaller PI SNR, as we can see in Fig. 5. A

way to overcome this obstacle is by training the CNNs

with curriculum learning. The main idea is to train the

network on batches of PI SNR, first on the easy exam-

ples, namely the frames with highest PI SNR. Then the

difficulty is increased iteratively by decreasing the PI

4 Here, we neglected the latency needed for the data transfer. It

would be, in the worst case, comparable to that of [28].
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FIG. 8: Comparison of the TAP as a function of the

distance for the GW sources with and without basic

curriculum learning for the heavy BNS class. One sees

that even a very rudimentary curriculum learning

setup helps improve the TAP at higher distances.

Note that the blue curve is the same than in Fig. 5

SNR, until the hardest examples are reached, namely

the frames with the lowest PI SNR (see [30] or [54] for

an example).

With this idea in mind, we generate an extra batch of

training data with higher distances and lower PI SNR.

Thus, we train on the first data set, store the weights,

then train on the newly generated set starting with

the previously stored weights. The results of this test

can be seen in Fig. 8. It can be observed that the TAP

increases significantly even if we are using only one extra

data batch. As a consequence, we expect the efficiency

of our networks to increase substantially once they are

trained through the curriculum learning methodology.

V. CONCLUSION

In this work, we have introduced a new approach

based on short CNNs for pre-merger alert. We have

shown that it is possible to detect BNS events when

only part of the early inspiral is present in the data

stretch under consideration. For this purpose, we have

introduced three different neural networks, each trained

on a particular range of chirp masses for the BNS sys-

tems. Such developments are important in the context

of MMA, as the prediction stage is computationally

less expensive and usually faster than for traditional

matched filtering. We have also shown that our method

is able to recover signals coming from a realistic BNS

population simulated at design sensitivity, and com-

pared our detection statistics to those obtained with

current matched filtering pipelines. In addition, we also

suggested some improvements in the training method,

as well as in the structure of our CNNs, to enhance their

performance further, leading the way to a pre-merger

alert system that would be competitive.

This paper was presented as a a proof of concept and

we will continue to build upon this basis to upgrade

our networks and get an even better performance. The

next steps, which will probably require more complex

networks, are the consideration of multiple interferom-

eters and the implementation of sky localisation. Fur-

thermore, curriculum training will be systematically de-

ployed, as this will allow us to train on a bigger dataset

with smaller PI SNR. Indeed, the training set currently

has a minimum PI SNR around 8. With curriculum

learning it will be possible to lower this value. A fourth

CNN trained to retrieve the full BNS signal regardless

of the category will be built. This will complete the

pipeline as the events that are not detected based only

on their inspiral would still be found in low-latency.

It has already been shown in various works that ML-

based algorithms can help GW astronomy. In this work,

we have shown that it can also be used to solve one of

the challenges that will arise in the future, namely the

early detection of BNS mergers in the context of MMA.

However, we still want to improve the performance

and add some features, such as sky location. These are

the next milestones which will probably require more

complex networks and more advanced training methods.
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Appendix A: Details on the architecture of the CNNs

In Section III we briefly described the networks, but in this section we provide with more details about the

architecture (see Table II), and the different hyper-parameters fine-tuned for heavy BNS category. The batch

size of the training was 40 for networks 1 and 2, and 30 for network 3, due to memory issues. We employ the

cross-entropy as loss-function. The optimizer is Adamax [49] with a learning rate of 8× 10−5 and a weight decay

of 10−5. We trained the networks over 40 epochs. Usually, the validation and training loss drop before epoch 5, as

we show in Fig. 9, where plot the training and validation loss of the neural network 3, on heavy BNS category. As

a consequence, and to avoid over-fitting, we generally use early stopping (around the 12th epoch).

The training of the three networks was done with a dataset of 8000 frames. The data sets are balanced so that

half of them correspond to noise and the other half are noise + waveform. The testing was performed with a

testing set of 4000 frames, where again, half of them correspond to noise, the other half are noise + waveform.

Layers Input Output Kernel size Stride Padding Dilation Activation

BatchNorm 1 1 - - - - -

Conv1D 1 32 128 1 0 1 ReLU

MaxPool1D 32 32 4 4 0 1 -

Conv1D 32 64 32 1 0 1 ReLU

MaxPool1D 64 64 4 4 0 1 -

Conv1D 64 128 16 1 0 1 ReLU

MaxPool1D 128 128 4 4 0 1 -

Conv1D 128 256 32 1 0 1 ReLU

MaxPool1D 256 256 4 4 0 1 -

Conv1D 256 612 128 1 0 1 ReLU

MaxPool1D 612 612 4 4 0 1 -

Dense X 128 - - - - ReLU

Dense 128 2 - - - - SoftMax

TABLE II: Complete architecture of our CNNs. Between the last MaxPool1D layers we flatten all the channels to

obtain an output of dimension 1 and length X (the X depends of the OTW).

Appendix B: Data distribution

In this section we represent the data distribution with respect to the to SNR and PI SNR. Each distribution

employed for training contains 4000 frames, and each distribution employed for testing contains 2000 frames. In

Fig. 10 we observe that the main difference between the data distributions against SNR or PI SNR is a shift and

a decrease in the range of PI SNR due to the removal of the merger from the frames. Indeed, the SNR is in the

range ≈ [20, 130], while the PI SNR is in the range ≈ [1, 70]. Therefore, due to the smallness of the PI SNR, the

classification task becomes more difficult.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
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FIG. 9: The loss variation for the training set and the validation set of CNN 3 as a function of the epoch.

(a) Distribution of SNR for the training sets. (b) Distribution of SNR fot the testing sets.

(c) Distribution of PI SNR for the training sets. (d) Distribution of PI SNR for the testing sets.

FIG. 10: Data distributions as functions of the SNR and PI SNR.
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