[en] INTRODUCTION: Alarmins ((IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)) are known to promote Th2 inflammation and could be associated with eosinophilic airway infiltration. They may also play a role in airway remodeling in chronic airway obstructive diseases such as asthma and chronic obstructive pulmonary disease (COPD). IL-23 and IL-36 were shown to mediate the neutrophilic airway inflammation as seen in chronic airway obstructive diseases. OBJECTIVES: The purpose of this project was to determine the expression and the production of these cytokines from induced sputum (IS) in patients with chronic airway obstructive diseases including asthmatics and COPD. The relationship of the mediators with sputum inflammatory cellular profile and the severity of airway obstruction was assessed. METHODS: The alarmins (IL-25, IL-33 and TSLP) as well as IL-23 and IL-36 concentrations were measured in IS from 24 asthmatics and 20 COPD patients compared to 25 healthy volunteers. The cytokines were assessed by ELISA in the IS supernatant and by RT-qPCR in the IS cells. RESULTS: At protein level, no difference was observed between controls and patients suffering from airway obstructive diseases regarding the different mediators. IL-36 protein level was negatively correlated with sputum eosinophil and appeared significantly decreased in patients with an eosinophilic airway inflammation compared to those with a neutrophilic profile and controls. At gene level, only IL-36, IL-23 and TSLP were measurable but none differed between controls and patients with airway obstructive diseases. IL-36 and IL-23 were significantly increased in patients with an neutrophilic inflammatory profile compared to those with an eosinophilic inflammation and were correlated with sputum neutrophil proportions. None of the mediators were linked to airway obstruction. CONCLUSIONS: The main finding of our study is that patients with eosinophilic airway inflammation exhibited a reduced IL-36 level which could make them more susceptible to airway infections as IL-36 is implicated in antimicrobial defense. This study showed also an implication of IL-36 and IL-23 in airway neutrophilic inflammation in chronic airway obstructive diseases.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agusti, A., Bel, E., Thomas, M., Vogelmeier, C., Brusselle, G., Holgate, S., Humbert, M., Jones, P., Gibson, P.G., Vestbo, J., Beasley, R., Pavord, I.D., Treatable traits: Toward precision medicine of chronic airway diseases. Eur. Respir. J., 2016, 10.1183/13993003.01359-2015.
Pavord, I.D., Beasley, R., Agusti, A., Anderson, G.P., Bel, E., Brusselle, G., Cullinan, P., Custovic, A., Ducharme, F.M., Fahy, J.V., Frey, U., Gibson, P., Heaney, L.G., Holt, P.G., Humbert, M., Lloyd, C.M., Marks, G., Martinez, F.D., Sly, P.D., von Mutius, E., Wenzel, S., Zar, H.J., Bush, A., After asthma: redefining airways diseases. Lancet, 2018, 10.1016/S0140-6736(17)30879-6.
Martin, R.J., Bel, E.H., Pavord, I.D., Price, D., Reddel, H.K., Defining severe obstructive lung disease in the biologic era: an endotype-based approach. Eur. Respir. J., 2019, 10.1183/13993003.00108-2019.
Martin, S.J., Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J., 2016, 10.1111/febs.13775.
Bianchi, M.E., DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol., 2007, 10.1189/jlb.0306164.
Chung, K.F., Targeting the interleukin pathway in the treatment of asthma. Lancet, 2015, 10.1016/S0140-6736(15)00157-9.
Porsbjerg, C.M., Sverrild, A., Lloyd, C.M., Menzies-Gow, A.N., Bel, E.H., Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics. Eur. Respir. J., 2020, 10.1183/13993003.00260-2020.
Barnes, P.J., Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol., 2018, 10.1038/s41577-018-0006-6.
Roan, F., Obata-Ninomiya, K., Ziegler, S.F., Epithelial cell–derived cytokines: More than just signaling the alarm. J. Clin. Invest., 2019, 10.1172/JCI124606.
Maes, T., Brusselle, G.G., Simultaneous inhibition of thymic stromal lymphopoietin, IL-33 and IL-25: A therapeutic option in asthma?. Respirology., 2019, 10.1111/resp.13748.
Cianferoni, A., Spergel, J., The importance of TSLP in allergic disease and its role as a potential therapeutic target. Expert Rev. Clin. Immunol., 2014, 10.1586/1744666X.2014.967684.
Ying, S., O'Connor, B., Ratoff, J., Meng, Q., Fang, C., Cousins, D., Zhang, G., Gu, S., Gao, Z., Shamji, B., Edwards, M.J., Lee, T.H., Corrigan, C.J., Expression and Cellular Provenance of Thymic Stromal Lymphopoietin and Chemokines in Patients with Severe Asthma and Chronic Obstructive Pulmonary Disease. J. Immunol., 2008, 10.4049/jimmunol.181.4.2790.
Corren, J., Parnes, J.R., Wang, L., Mo, M., Roseti, S.L., Griffiths, J.M., Van Der Merwe, R., Tezepelumab in adults with uncontrolled asthma. N. Engl. J. Med., 2017, 10.1056/NEJMoa1704064.
Gabryelska, A., Kuna, P., Antczak, A., Białasiewicz, P., Panek, M., IL-33 mediated inflammation in chronic respiratory diseases—understanding the role of the member of IL-1 superfamily. Front. Immunol., 2019, 10.3389/fimmu.2019.00692.
Ober, C., Yao, T.C., The genetics of asthma and allergic disease: A 21st century perspective. Immunol. Rev., 2011, 10.1111/j.1600-065X.2011.01029.x.
Yao, X., Sun, Y., Wang, W., Sun, Y., Interleukin (IL)-25: Pleiotropic roles in asthma. Respirology., 2016, 10.1111/resp.12707.
Cheng, D., Xue, Z., Yi, L., Shi, H., Zhang, K., Huo, X., Bonser, L.R., Zhao, J., Xu, Y., Erle, D.J., Zhen, G., Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. Am. J. Respir. Crit. Care Med., 2014, 10.1164/rccm.201403-0505OC.
Seys, S.F., Grabowski, M., Adriaensen, W., Decraene, A., Dilissen, E., Vanoirbeek, J.A., Dupont, L.J., Ceuppens, J.L., Bullens, D.M.A., Sputum cytokine mapping reveals an ‘IL-5, IL-17A, IL-25-high’ pattern associated with poorly controlled asthma. Clin. Exp. Allergy., 2013, 10.1111/cea.12125.
H.W. Lingyun Wu, Li Fang, Xiuping Xu, Dingbang Pei, Wei Zhou, Effect of TSLP on the function of platelets and IL-25 in chronic obstructive pulmonary disease, Int. J. Clin. Exp. Med. 12 (2019) 4942–4948.
Divekar, R., Kita, H., Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and allergic inflammation. Curr. Opin. Allergy Clin. Immunol., 2015, 10.1097/ACI.0000000000000133.
T.V. Zhou L., Interleukin-36: Structure, Signaling and Function., in: Adv. Exp. Med. Biol., Springer, New York, NY, 2020. https://doi.org/10.1007/5584_2020_488.
Ramadas, R.A., Ewart, S.L., Medoff, B.D., LeVine, A.M., Interleukin-1 family member 9 stimulates chemokine production and neutrophil influx in mouse lungs. Am. J. Respir. Cell Mol. Biol., 2011, 10.1165/rcmb.2009-0315OC.
Haugh, I.M., Preston, A.K., Kivelevitch, D.N., Menter, A.M., Risankizumab: An anti-IL-23 antibody for the treatment of psoriasis. Drug Des. Devel. Ther., 2018, 10.2147/DDDT.S167149.
Wakashin, H., Hirose, K., Maezawa, Y., Kagami, S.I., Suto, A., Watanabe, N., Saito, Y., Hatano, M., Tokuhisa, T., Iwakura, Y., Puccetti, P., Iwamoto, I., Nakajima, H., IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am. J. Respir. Crit. Care Med., 2008, 10.1164/rccm.200801-086OC.
Li, Y., Hua, S., Mechanisms of pathogenesis in allergic asthma: Role of interleukin-23. Respirology., 2014, 10.1111/resp.12299.
Ciprandi, G., Cuppari, C., Salpietro, C., Serum IL-23: A surrogate biomarker for asthma?. Clin. Exp. Allergy., 2012, 10.1111/j.1365-2222.2012.04068.x.
Di Stefano, A., Caramori, G., Gnemmi, I., Contoli, M., Vicari, C., Capelli, A., Magno, F., D'Anna, S.E., Zanini, A., Brun, P., Casolari, P., Chung, K.F., Barnes, P.J., Papi, A., Adcock, I., Balbi, B., T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin. Exp. Immunol., 2009, 10.1111/j.1365-2249.2009.03965.x.
Bakakos, P., Schleich, F., Alchanatis, M., Louis, R., Induced sputum in asthma: from bench to bedside. Curr. Med. Chem., 2011, 10.2174/092986711795328337.
Schleich, F.N., Manise, M., Sele, J., Henket, M., Seidel, L., Louis, R., Distribution of sputum cellular phenotype in a large asthma cohort: Predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm. Med., 2013, 10.1186/1471-2466-13-11.
Wenzel, S.E., Fahy, J.V., Irvin, C., Peters, S.P., Spector, S., Szefler, S.J., Casale, T.B., Cloutier, M.M., Elias, J.A., Liu, M.C., Taggert, V., Proceedings of the ATS workshop on refractory asthma: Current understanding, recommendations, and unanswered questions, in. Am. J. Respir. Crit. Care Med., 2000, 10.1164/ajrccm.162.6.ats9-00.
Wanger, J., Clausen, J.L., Coates, A., Pedersen, O.F., Brusasco, V., Burgos, F., Casaburi, R., Crapo, R., Enright, P., van der Grinten, C.P.M., Gustafsson, P., Hankinson, J., Jensen, R., Johnson, D.C., MacIntyre, N., McKay, R., Miller, M.R., Navajas, D., Pellegrino, R., Veigi, G., Standardisation of the measurement of lung volumes. Eur. Respir. J., 2005, 10.1183/09031936.05.00035005.
Miller, M.R., Crapo, R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Enright, P., van der Grinten, C.P.M., Gustafsson, P., Jensen, R., Johnson, D.C., MacIntyre, N., McKay, R., Navaja, D., Pedersen, O.F., Pellegrino, R., Viegi, G., Wagner, J., General considerations for lung function testing. Eur. Respir. J., 2005, 10.1183/09031936.05.00034505.
MacIntyre, N., Crapo, R.O., Viegi, G., Johnson, D.C., van der Grinten, C.P.M., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Enright, P., Gustafsson, P., Hankinson, J., Jensen, R., McKay, R., Miller, M.R., Navajas, D., Pedersen, O.F., Pellegrino, R., Wanger, J., Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J., 2005, 10.1183/09031936.05.00034905.
Delvaux, M., Henket, M., Lau, L., Kange, P., Bartsch, P., Djukanovic, R., Louis, R., Nebulised salbutamol administered during sputum induction improves bronchoprotection in patients with asthma. Thorax., 2004, 10.1136/thorax.2003.011130.
Moermans, C., Heinen, V., Nguyen, M., Henket, M., Sele, J., Manise, M., Corhay, J.L., Louis, R., Local and systemic cellular inflammation and cytokine release in chronic obstructive pulmonary disease. Cytokine, 2011, 10.1016/j.cyto.2011.07.010.
Moermans, C., Deliege, E., Pirottin, D., Poulet, C., Guiot, J., Henket, M., Da Silva, J., Louis, R., Suitable reference genes determination for real-time PCR using induced sputum samples. Eur. Respir. J., 2019, 10.1183/13993003.00644-2018.
Truyen, E., Coteur, L., Dilissen, E., Overbergh, L., Dupont, L.J., Ceuppens, J.L., Bullens, D.M.A., Evaluation of airway inflammation by quantitative Th1/Th2 cytokine mRNA measurement in sputum of asthma patients. Thorax, 2006, 10.1136/thx.2005.052399.
Marra, S.M.G., Borges, R.O., Alves, R., Silva, D.A.O., Taketomi, E.A., Segundo, G.R.S., Spirometric parameters and levels of interferon gamma and IL-5 in induced sputum from patients with allergic rhinitis or asthma. Am. J. Rhinol. Allergy, 2011, 10.2500/ajra.2011.25.3642.
Guiot, J., Henket, M., Corhay, J.L., Moermans, C., Louis, R., Sputum biomarkers in IPF: Evidence for raised gene expression and protein level of IGFBP-2, IL-8 and MMP-7. PLoS One, 2017, 10.1371/journal.pone.0171344.
Madonna, S., Girolomoni, G., Dinarello, C.A., Albanesi, C., The significance of il-36 hyperactivation and il-36r targeting in psoriasis. Int. J. Mol. Sci., 2019, 10.3390/ijms20133318.
Chustz, R.T., Nagarkar, D.R., Poposki, J.A., Favoreto, S., Avila, P.C., Schleimer, R.P., Kato, A., Regulation and function of the IL-1 family cytokine IL-1F9 in human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol., 2011, 10.1165/rcmb.2010-0075OC.
Bochkov, Y.A., Hanson, K.M., Keles, S., Brockman-Schneider, R.A., Jarjour, N.N., Gern, J.E., Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol., 2010, 10.1038/mi.2009.109.
Kovach, M.A., Singer, B., Martinez-Colon, G., Newstead, M.W., Zeng, X., Mancuso, P., Moore, T.A., Kunkel, S.L., Peters-Golden, M., Moore, B.B., Standiford, T.J., IL-36γ is a crucial proximal component of protective type-1-mediated lung mucosal immunity in Gram-positive and -negative bacterial pneumonia. Mucosal Immunol., 2017, 10.1038/mi.2016.130.
Schleich, F.N., Chevremont, A., Paulus, V., Henket, M., Manise, M., Seidel, L., Louis, R., Importance of concomitant local and systemic eosinophilia in uncontrolled asthma. Eur. Respir. J., 2014, 10.1183/09031936.00201813.
Vedel-Krogh, S., Nielsen, S.F., Lange, P., Vestbo, J., Nordestgaard, B.G., Blood eosinophils and exacerbations in chronic obstructive pulmonary disease: The copenhagen general population study. Am. J. Respir. Crit. Care Med., 2016, 10.1164/rccm.201509-1869OC.
Walsh, C.J., Zaihra, T., Benedetti, A., Fugère, C., Olivenstein, R., Lemière, C., Hamid, Q., Martin, J.G., Exacerbation risk in severe asthma is stratified by inflammatory phenotype using longitudinal measures of sputum eosinophils. Clin. Exp. Allergy., 2016, 10.1111/cea.12762.
da Silva, J., Hilzendeger, C., Moermans, C., Schleich, F., Henket, M., Kebadze, T., Mallia, P., Edwards, M.R., Johnston, S.L., Louis, R., Raised interferon-β, type 3 interferon and interferon-stimulated genes – evidence of innate immune activation in neutrophilic asthma. Clin Exp Allergy. 47 (2017), 313–323.
Sousa, A.R., Trigg, C.J., Lane, S.J., Hawksworth, R., Nakhosteen, J.A., Poston, R.N., Lee, T.H., Effect of inhaled glucocorticoids on IL-1β and IL-1 receptor antagonist (IL- 1ra) expression in asthmatic bronchial epithelium. Thorax, 1997, 10.1136/thx.52.5.407.
Palma, L., Sfara, C., Antonelli, A., Magnani, M., Dexamethasone restrains ongoing expression of interleukin-23p19 in peripheral blood-derived human macrophages. BMC Pharmacol., 2011, 10.1186/1471-2210-11-8.
Brusselle, G.G., Maes, T., Bracke, K.R., Eosinophils in the Spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nat. Med., 2013, 10.1038/nm.3300.
Bjerregaard, A., Laing, I.A., Poulsen, N., Backer, V., Sverrild, A., Fally, M., Khoo, S.K., Barrett, L., Baltic, S., Thompson, P.J., Chidlow, G., Sikazwe, C., Smith, D.W., Bochkov, Y.A., Le Souëf, P., Porsbjerg, C., Characteristics associated with clinical severity and inflammatory phenotype of naturally occurring virus-induced exacerbations of asthma in adults. Respir. Med., 2017, 10.1016/j.rmed.2016.12.010.
Li, Y., Wang, W., Lv, Z., Li, Y., Chen, Y., Huang, K., Corrigan, C.J., Ying, S., Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease. J. Immunol., 2018, 10.4049/jimmunol.1701455.
Tanaka, J., Watanabe, N., Kido, M., Saga, K., Akamatsu, T., Nishio, A., Chiba, T., Human TSLP and TLR3 ligands promote differentiation of Th17 cells with a central memory phenotype under Th2-polarizing conditions. Clin. Exp. Allergy, 2009, 10.1111/j.1365-2222.2008.03151.x.
Paplińska-Goryca, M., Grabczak, E.M., Dabrowska, M., Hermanowicz-Salamon, J., Proboszcz, M., Nejman-Gryz, P., Maskey-Warzȩchowska, M., Krenke, R., Sputum interleukin-25 correlates with asthma severity: a preliminary study. Postep. Dermatologii i Alergol., 2018, 10.5114/ada.2017.71428.
Lu, W., Lu, C., Zhang, C., Zhang, C., One mechanism of Glucocorticoid action in asthma may involve the inhibition of IL-25 expression. Exp. Ther. Med., 2017, 10.3892/etm.2016.4002.
Liu, S., Verma, M., Michalec, L., Liu, W., Sripada, A., Rollins, D., Good, J., Ito, Y., Chu, H.W., Gorska, M.M., Martin, R.J., Alam, R., Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin. J. Allergy Clin. Immunol., 2018, 10.1016/j.jaci.2017.03.032.
Saglani, S., Lui, S., Ullmann, N., Campbell, G.A., Sherburn, R.T., Mathie, S.A., Denney, L., Bossley, C.J., Oates, T., Walker, S.A., Bush, A., Lloyd, C.M., IL-33 promotes airway remodeling in pediatric patients with severe steroid-resistant asthma. J. Allergy Clin. Immunol., 2013, 10.1016/j.jaci.2013.04.012.
Yanagawa, Y., Matsumoto, M., Togashi, H., Adrenoceptor-mediated enhancement of interleukin-33 production by dendritic cells. Brain Behav. Immun., 2011, 10.1016/j.bbi.2011.04.012.
Futamura, K., Orihara, K., Hashimoto, N., Morita, H., Fukuda, S., Sagara, H., Matsumoto, K., Tomita, Y., Saito, H., Matsuda, A., β2-adrenoceptor agonists enhance cytokine-induced release of thymic stromal lymphopoietin by lung tissue cells. Int. Arch. Allergy Immunol., 2010, 10.1159/000288288.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.