Paper published in a book (Scientific congresses and symposiums)
Tool for the Optimization of the Sizing and the Outline of District Heating Networks using a Geographic Information System: Application to a Real Case Study
2021 • In Tool for the Optimization of the Sizing and the Outline of District Heating Networks using a Geographic Information System: Application to a Real Case Study
District heating; Geographic Information System; Mixed-Integer Linear Programming; Multi-period; Outline; Sizing
Abstract :
[en] District heating networks are used to provide heat to a set of consumers in a centralized way by using existing or new heating sources. These networks can include various types of heating sources and have the potential to facilitate the integration of renewable sources into the energy mix. The main drawback of this technology remains the initial investment expenditure required to build the network by connecting the heating producers to the consumers with buried pipes. Decision tools assessing the optimal network scenario in any new given geographic area are useful to provide certainty for investors and to prove to policymakers the utility of heating networks in the energy transition.
In this paper, a decision tool connected to a geographic information system (GIS) for the optimization of the outline and the sizing of district heating networks is presented. This decision tool aims to maximize the net cash flow generated by the potential heating network from user-defined economic and physical parameters. The sizing of the optimal heating sources to install or use at specific locations and the definition of the outline of the network are achieved using a mixed-integer linear programming model. The model is applied to a big case study in the city of Herstal, Belgium for a district heating network project connected to a waste incinerator for the feeding of about 2000 streets including various types of consumers like houses, apartments and offices but also a greenhouse of 10,000m2.
Disciplines :
Energy
Author, co-author :
Resimont, Thibaut ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes de conversion d'énergie pour un dévelop.durable
Thome, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes de conversion d'énergie pour un dévelop.durable
Joskin, Eva ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes de conversion d'énergie pour un dévelop.durable
Dewallef, Pierre ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes de conversion d'énergie pour un dévelop.durable
Language :
English
Title :
Tool for the Optimization of the Sizing and the Outline of District Heating Networks using a Geographic Information System: Application to a Real Case Study
Publication date :
2021
Event name :
ECOS 2021 - 34th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
Event place :
Taormina, Italy
Event date :
from 27-06-2021 to 02-07-2021
Audience :
International
Main work title :
Tool for the Optimization of the Sizing and the Outline of District Heating Networks using a Geographic Information System: Application to a Real Case Study
European Commission. An EU Strategy on Heating and Cooling. J Chem Inf Model 2016;53:1689–99.
Apostolou M, Ghazouani S, Le Bourdiec S, Tran CT, Zoughaib A. District heating network design considering fluctuations in the demand and thermal storage means. ECOS 2018 - Proc 31st Int Conf Effic Cost, Optim Simul Environ Impact Energy Syst 2018:1–12.
Bertrand A, Mian A, Kantor I, Aggoune R, Maréchal F. Regional waste heat valorisation: A mixed integer linear programming method for energy service companies. Energy 2019;167:454–68. https://doi.org/10.1016/j.energy.2018.10.152.
Bordin C, Gordini A, Vigo D. An optimization approach for district heating strategic network design. Eur J Oper Res 2016;252:296–307. https://doi.org/10.1016/j.ejor.2015.12.049. Grid 2014;5:1884–91. https://doi.org/10.1109/TSG.2013.2295856.
Falke T, Krengel S, Meinerzhagen AK, Schnettler A. Multi-objective optimization and simulation model for the design of distributed energy systems. Appl Energy 2016;184:1508–16. https://doi.org/10.1016/j.apenergy.2016.03.044.
Fazlollahi S, Becker G, Ashouri A, Maréchal F. Multi-objective, multi-period optimization of district energy systems: IV - A case study. Energy 2015;84:365–81. https://doi.org/10.1016/j.energy.2015.03.003.
Haikarainen C, Pettersson F, Saxén H. A model for structural and operational optimization of distributed energy systems. Appl Therm Eng 2014;70:211–8. https://doi.org/10.1016/j.applthermaleng.2014.04.049.
Maria Jebamalai J, Marlein K, Laverge J, Vandevelde L, van den Broek M. An automated GIS-based planning and design tool for district heating: Scenarios for a Dutch city. Energy 2019;183:487–96. https://doi.org/10.1016/j.energy.2019.06.111.
Mertz T, Serra S, Henon A, Reneaume JM. A MINLP optimization of the configuration and the design of a district heating network: Study case on an existing site. Energy Procedia 2017;116:236–48. https://doi.org/10.1016/j.egypro.2017.05.071.
Molyneaux A, Leyland G, Favrat D. Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps. Energy 2010;35:751–8. https://doi.org/10.1016/j.energy.2009.09.028.
Omu A, Choudhary R, Boies A. Distributed energy resource system optimisation using mixed integer linear programming. Energy Policy 2013;61:249–66. https://doi.org/10.1016/j.enpol.2013.05.009.
Samsatli S, Samsatli NJ. A general mixed integer linear programming model for the design and operation of integrated urban energy systems. J Clean Prod 2018;191:458–79. https://doi.org/10.1016/j.jclepro.2018.04.198.
Söderman J, Pettersson F. Structural and operational optimisation of distributed energy systems. Appl Therm Eng 2006;26:1400–8. https://doi.org/10.1016/j.applthermaleng.2005.05.034.
van der Heijde B, Vandermeulen A, Salenbien R, Helsen L. Integrated optimal design and control of fourth generation district heating networks with thermal energy storage. Energies 2019;12. https://doi.org/10.3390/en12142766.
Weber C, Shah N. Optimisation based design of a district energy system for an eco-town in the United Kingdom. Energy 2011;36:1292–308. https://doi.org/10.1016/j.energy.2010.11.014.
Gas AVS. BDEW / VKU / GEODE-Leitfaden 2018.
Poncelet K, Hoschle H, Delarue E, Virag A, Drhaeseleer W. Selecting representative days for capturing the implications of integrating intermittent renewables in generation expansion planning problems. IEEE Trans Power Syst 2017;32:1936–48. https://doi.org/10.1109/TPWRS.2016.2596803.
van der Heijde B, Vandermeulen A, Salenbien R, Helsen L. Representative days selection for district energy system optimisation: a solar district heating system with seasonal storage. Appl Energy 2019;248:79–94. https://doi.org/10.1016/j.apenergy.2019.04.030.
Li H, Phung D. Journal of Machine Learning Research: Preface. J Mach Learn Res 2014;39:i–ii.
Eurostat. Statistics Explained On Natural Gas Prices in the European Union. Accessed: 2021-01-25.2020.https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=File%3ANatural_gas_prices_for_household_consumers%2C_first_h alf_2020_%28EUR_per_kWh%29_v3.png