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Abstract: 

District heating networks are used to provide heat to a set of consumers in a centralized way by using existing 
or new heating sources. These networks can include various types of heating sources and have the potential 
to facilitate the integration of renewable sources into the energy mix. The main drawback of this technology 
remains the initial investment expenditure required to build the network by connecting the heating producers 
to the consumers with buried pipes. Decision tools assessing the optimal network scenario in any new given 
geographic area are useful to provide certainty for investors and to prove to policymakers the utility of heating 
networks in the energy transition. 
 
In this paper, a decision tool connected to a geographic information system (GIS) for the optimization of the 
outline and the sizing of district heating networks is presented. This decision tool aims to maximize the net 
cash flow generated by the potential heating network from user-defined economic and physical parameters. 
The sizing of the optimal heating sources to install or use at specific locations and the definition of the outline 
of the network are achieved using a mixed-integer linear programming model. The model is applied to a big 
case study in the city of Herstal, Belgium for a district heating network project connected to a waste incinerator 
for the feeding of about 2000 streets including various types of consumers like houses, apartments and offices 
but also a greenhouse of 10,000m2. 
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1. Introduction 
District heating is an efficient way to decarbonise energy systems by using alternative heating sources 

with lower greenhouse gases emissions [1]. The way to connect heating consumers to these sources 

relies on the building of pipes carrying hot pressurised water into the network. The building of these 

pipes represents an important part of the initial investment costs such that investors and policymakers 

are sometimes reluctant to invest in heating network projects. There is therefore a need to develop 

viable quantitative methodologies assessing the environmental and economic potential to build a 

network into a given geographic area. Optimization models taking into account some constraints 

linked to the outline and the design of heating networks exist in the literature and a non-exhaustive 

list of these models is summarized in Table 1. 

Table 1: Review of the existing optimization methods 

Authors Objective function 
Linear Outline Sizing Multi-

period 

Storage GIS 

Apostolou [2] 

Bertrand [3] 

Bordin [4] 

min 𝐶𝑡𝑜𝑡 

max 𝑝𝑟𝑜𝑓𝑖𝑡𝑠 

max 𝑝𝑟𝑜𝑓𝑖𝑡𝑠 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
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Dorfner [5] 

Falke [6] 

Fazlollahi [7] 

Haikarainen [8] 

Jebamalai [9] 

Mertz [10] 

min 𝐶𝑡𝑜𝑡 

min 𝐶𝑡𝑜𝑡 & 𝐶𝑂2 

min 𝐶𝑡𝑜𝑡 & 𝐶𝑂2 

min 𝐶𝑡𝑜𝑡 

min 𝐶𝑡𝑜𝑡 

min 𝐶𝑡𝑜𝑡 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Molyneaux [11] min 𝐶𝑡𝑜𝑡 & 𝐶𝑂2       

Omu [12] min 𝐶𝑡𝑜𝑡       

Samsatli [13] min 𝐶𝑡𝑜𝑡       

Soderman [14] min 𝐶𝑡𝑜𝑡       

Van Der Heijde 

[15] 
min 𝐶𝑡𝑜𝑡 & PEI       

Weber [16] min 𝐶𝑡𝑜𝑡 & 𝐶𝑂2       

Model in this 

paper 
𝐦𝐚𝐱 𝑵𝑪𝑭       

All these models present specific features enabling for example to take into account urban planning 

constraints with a geographic information system or the integration of thermal storage capacity to 

shift the heating production from one time period to another. However, these models are generally 

limited to small-scale case studies and at least one of the main features addressed in Table 1 is 

missing. The aim of this paper is thus to define and present a new decision tool based on a mixed-

integer linear programming model and connected to a geographic information system. This user-

defined decision tool is intended for the outline and design of a new or existing network in any 

geographic area of small or big size. 

2. Methodology 
The strategic planning of these networks is based on the maximization of the net cash flow of a 

potential district heating project. The decision tool retrieves information from a geographic 

information system listing all streets and dwellings into a prescribed geographic area. This geographic 

information system combined to a cadastral matrix of the area enables to determine the hourly heating 

demand of each dwelling constitutive of the studied neighbourhood. A selection of representative 

timesteps out of the hourly heating consumption profile is then achieved to reduce the computation 

time of the decision tool. These representative heating consumption profiles combined with user-

defined economic and design parameters are used as inputs of the optimization model implemented 

in Julia language. The aim of the optimization model relies on the maximization of the net cash flow 

of the optimal heating network. The decision tool provides then as outputs the main economic and 

design data with a layout of the network into the geographic information system. 

 

Fig. 1.  Framework of the decision tool for the strategic planning of a district heating network. 



2.1. Processing of the heating demands 

2.1.1. Collection of annual heating demand data 

A listing of all the features linked to the dwellings constitutive of the studied area into the geographic 

information system requires data collection from a cadastral matrix of this area. This cadastral matrix 

gives some features of each dwelling like the kind of dwelling, its total area and its location which 

are used for the computation of their annual and hourly heating demand. The assessment of the annual 

heating demand of a given type of dwellings relies on statistics data identifying the total consumption 

in Belgium of each type of dwellings 𝑄̇ℎ𝑒𝑎𝑡,𝑡𝑜𝑡
𝑎  and the living surface of the na dwellings of type a in 

Belgium. The heating demand per unit surface of a dwelling of type a is thus defined by (1). 

𝑄̇ℎ𝑒𝑎𝑡,𝑚2
𝑎 [

𝑘𝑊ℎ

𝑚2.𝑦𝑒𝑎𝑟
] =  

𝑄̇ℎ𝑒𝑎𝑡,𝑡𝑜𝑡
𝑎

∑ 𝑆𝑙
𝑎𝑛𝑎

𝑙=1

                                 (1) 

where  

𝑆𝑙
𝑎 = 𝑆𝑓𝑙𝑜𝑜𝑟,𝑙

𝑎 . (𝑛𝑓𝑙𝑜𝑜𝑟𝑠 + 𝛿) with 𝛿 =  {
0 𝑖𝑓 𝑛𝑜𝑛 ℎ𝑎𝑏𝑖𝑡𝑎𝑏𝑙𝑒 𝑎𝑡𝑡𝑖𝑐 

1 𝑖𝑓 ℎ𝑎𝑏𝑖𝑡𝑎𝑏𝑙𝑒 𝑎𝑡𝑡𝑖𝑐
                    (2) 

For any dwelling l of type a constitutive of the studied area, its annual heating consumption is finally 

determined by (3) where the total living area 𝑆𝑙
𝑎 is computed from the floor area 𝑆𝑓𝑙𝑜𝑜𝑟,𝑙

𝑎  identified 

into the geographic information system. 

𝑄̇ℎ𝑒𝑎𝑡,𝑙
𝑎 [𝑘𝑊ℎ/𝑦𝑒𝑎𝑟] = 𝑆𝑙

𝑎. 𝑄̇ℎ𝑒𝑎𝑡,𝑚2
𝑎                    (3) 

These annual heating demand values are then used to generate hourly heating demand profiles for 

each dwelling. 

2.1.2. Generation of hourly heating demands profiles 

The sizing of a district heating network generally requires an accurate knowledge of the hourly 

heating demands of the dwellings constitutive of the studied neighbourhood or city. The main 

difficulty related to the computation of these heating demands is generally due to the large amount of 

dwellings into a specific geographic area. Detailed physical models of dwellings have thus some 

limitations in terms of computational time for the modelling of the heating consumption of a large 

building stock. An alternative to the use of physical models for the computation of heating 

consumption relies on the use of synthetic heating load profiles and temperature forecasts for different 

kinds of dwellings. Some open-source frameworks are already available to design these kinds of 

heating profiles. A Python library, named Oemof, based on synthetic heating load profiles from the 

BDEW [17] is used. This framework retrieves the annual heating consumption of a dwelling 𝑄̇ℎ𝑒𝑎𝑡,𝑙
𝑎  

from the geographic information system to create a new hourly heating demand profile. Synthetic 

heating load profile is described by a transfer function TF represented by Eq. (4). 

𝑇𝐹(𝜃𝑔𝑒𝑜,𝑡) =  [
𝐴

1+(
𝐵

𝜃𝑔𝑒𝑜,𝑡−𝜃0
)

𝐶 + 𝐷] , 𝜃0 = 40°𝐶                 (4) 

where A, B, C and D are the parameters of the transfer function and are dependent on the kind of 

dwellings. 

𝜃𝑔𝑒𝑜 represents the geometric mean temperature defined by the following equation for a prescribed 

time period t. 

𝜃𝑔𝑒𝑜,𝑡 =  
𝑇𝑡+ 

1

2
 .𝑇𝑡−1+ 

1

4
 .𝑇𝑡−2 +  

1

8
.𝑇𝑡−3

1+ 
1

2
+ 

1

4
 + 

1

8
 

                    (5) 

with 𝑇𝑡−3 , 𝑇𝑡−2 , 𝑇𝑡−1  and 𝑇𝑡  are the respective temperatures from the time period t-3 to the time 

period t.  

The heating consumption for a time period t can be thus computed with the following equation. 

𝑄̇ℎ𝑒𝑎𝑡,𝑙,𝑡
𝑎 =  𝑇𝐹(𝜃𝑔𝑒𝑜,𝑡). 𝐹𝑤𝑑. 𝐾𝑊𝑙                   (6) 



𝐹𝑤𝑑 is a factor dependent on the day of the week and KW is a constant characterizing the consumer 

which is defined by the heating demand of this consumer and the transfer function: 

𝐾𝑊𝑙 =  
∑ 𝑄̇ℎ𝑒𝑎𝑡,𝑙,𝑡

𝑎𝑁𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠
𝑡=1

∑ 𝑇𝐹(𝜃𝑔𝑒𝑜,𝑡)
𝑁𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠
𝑡=1

 = 
𝑄̇ℎ𝑒𝑎𝑡,𝑙

𝑎

∑ 𝑇𝐹(𝜃𝑔𝑒𝑜,𝑡)
𝑁𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠
𝑡=1

                 (7) 

From the annual heating consumption of a dwelling l of type a during a year 𝑄̇ℎ𝑒𝑎𝑡,𝑙
𝑎  and a weather 

file with all the hourly temperatures during a year for a characteristic year in Belgium, heating load 

profiles for different kinds of dwellings can be then directly computed. 

2.2. Selection of representative periods 

The large number of optimization variables defined with hourly heating consumption data can be 

decreased using representative periods to reduce the computation time of the decision tool. These 

representative periods have to be selected in order to represent as accurately as possible the heating 

demand profile over the whole year with a limited number of timesteps. Generally, these periods are 

chosen to fit as well as possible the load duration curve but do not include extreme periods with peak 

demands. In the decision tool presented in this paper, a procedure based on an optimization approach 

developed by [18] is readjusted to sort selected representative periods and to include peak demands 

in order to represent more accurately the dynamics of the heating demand. The objective of the 

optimisation procedure consists of minimizing the deviation between the load duration curve of the 

full year period and its representation by the means of a selected number of representative days with 

assigned weights. The weight of each representative period is used to scale the variable costs assessed 

into the optimization objective.  

 

The method developed by Poncelet et al. [18] has the disadvantage to select the best fitting time 

periods of the load duration curve without really representing peak demands and the dynamics of the 

system which is essential for its sizing. Indeed, for example, the sizing of a storage depends on the 

dynamics of the loading and unloading phases during the different time periods. Van Der Heijde [19] 

developed a sorting procedure for the different selected representative periods. However, this new 

synthetic chronological representation of a year does not include peak demands which are also 

important to consider for the sizing of heating sources and storages. Moreover, even with the selection 

of only a few representative days, the number of optimization variables can quickly increase 

exponentially with the number of selected representative days. In order to overcome this problem, a 

new procedure based on the selection approach developed by Poncelet has been developed as 

illustrated in Fig. 2.  

 

Fig. 2. Procedure for the selection of representative periods. 



In this procedure, instead of selecting the best representative days over the whole year, a pre-

processing over heating consumption data is achieved to sort heating consumptions on a monthly 

basis. For each month, the day with the biggest hourly demand is directly chosen with a unitary weight 

as a representative day representing the peak demand of the month. The optimization procedure 

developed by Poncelet is used to select the best fitting Nrepr,month days for each month. For each month, 

Nrepr,month+1 days are thus chosen to finally reshape a synthetic year with 12.(Nrepr,month+1) 

representative days. For a given hourly heating consumption profile, the procedure gives the results 

illustrated in Fig. 3(a). In order to reduce even more the number of timesteps for the optimization 

process, a discretization of the representative days in Nrepr,hours bins is achieved by using 

KBinsDiscretizer tool [20] in Python. The discretization of a selected representative day is illustrated 

in Fig. 3(b). 

 

(a)                                                                          (b) 

Fig. 3. (a) Heating demand of a real year (blue) and a representative year (orange). (b) 

Discretization of a representative day with 4 representative hours (Nrepr,hours=4). 

2.3. Optimization model 

The optimization model used in the decision tool relies on a mixed-integer linear programming 

formulation with a maximization of the net cash flow as an objective function. The model is based 

on a graph representation of the studied neighbourhood such that edges of the graph match with the 

streets of the considered geographic zone and their intersections are represented by the nodes of the 

graph. A small neighbourhood with only a few streets can be represented as in Fig. 4. 

 

Fig. 4.  Graph representation of a neighbourhood. 

From this graph representation, a set of vertices and edges can be defined such that mass and energy 

balance equations with some constraints are applied on this network. 



2.3.1. Sets 

Different sets have to be defined. 

▪ V : Set of vertices listing the intersections 

of the streets 

▪ VP ⊆ V : Set of potential heating sources 

and thermal storages locations 

▪ H : Set of heating production technologies 

for a specific heating location 

▪ E : Set of edges listing all the streets 

▪ Ni : Set of adjacent edges to a given node i 

▪ T : Set of timesteps into a representative 

year 

▪ D : Set of days into a representative year 

▪ TD ∁ T : Set of timesteps into a day d

2.3.2. Variables 

Table 2. Continuous and discrete variables of the MILP problem 

𝑃̇𝑗,𝑡
𝑖𝑛  ∈ ℝ0

+ : Incoming power flow during 

timestep t in edge j [kW] 

𝑃̇𝑗,𝑡
𝑜𝑢𝑡 ∈ ℝ0

+: Outcoming power flow during 

timestep t in edge j [kW] 

𝑃̇𝑗
𝑚𝑎𝑥 ∈ ℝ0

+ : Maximum incoming power 

flow in edge j over all the timesteps [kW] 

𝑄̇𝑗,𝑡
𝑙𝑜𝑠𝑠 ∈ ℝ0

+: Heat losses during timestep t in 

edge j [kW] 

𝑄̇𝑖,𝑡
𝑝𝑟𝑜𝑑 ∈ ℝ0

+ : Power production during 

timestep t at vertex i [kW]   

𝑄̇𝑘,𝑚,𝑡
𝑠𝑜𝑢𝑟𝑐𝑒,𝑡𝑒𝑐ℎ ∈ ℝ0

+: Power production during 

timestep t at heating location k with heating 

technology m [kW] 

𝑄̇𝑘,𝑚
𝑚𝑎𝑥,𝑠𝑜𝑢𝑟𝑐𝑒,𝑡𝑒𝑐ℎ ∈ ℝ0

+ : Maximum power 

production at heating location k with heating 

technology m [kW or kWh] 

𝑄̇𝑘,𝑡
𝑠𝑜𝑢𝑟𝑐𝑒,𝑡𝑜𝑡 ∈ ℝ0

+ : Total power production 

during timestep t at heating location k [kW] 

𝑄̇𝑘
𝑠𝑜𝑢𝑟𝑐𝑒,𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑,𝑡𝑜𝑡 ∈ ℝ0

+ : Maximum total 

power production at heating location k [kW] 

𝑄̇𝑖,𝑡
𝑠𝑡𝑜 ∈ ℝ0

+: Energy stored into the potential 

thermal storage during timestep t at vertex i 

[kWh] 

𝑄̇𝑖,𝑡
𝑙𝑜𝑎𝑑 ∈ ℝ0

+ : Incoming power flow during 

timestep t into the potential thermal storage 

at vertex i [kW] 

𝑥𝑗 ∈ {0,1}: Building or not of a pipe on edge 

j [-] 

𝑢𝑗,𝑡 ∈ {0,1}: Use or not of the potential pipe 

on edge j during timestep t [-]  

2.3.3. Objective function and constraints 

The objective of the decision tool relies on the maximization of the net cash flow (NCF) generated 

from a district heating project. The resulting simplified mathematical model follows. 

max 𝑁𝐶𝐹 =  𝑅ℎ𝑒𝑎𝑡 − (𝑓𝐶𝐴𝑃𝐸𝑋 . 𝐶𝐶𝐴𝑃𝐸𝑋 +  𝑓𝑂𝑃𝐸𝑋 . 𝐶𝑂𝑃𝐸𝑋)               (8) 

subject to 

∀𝑒𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇:   𝑃𝑗,𝑡
𝑜𝑢𝑡 =  𝑃𝑗,𝑡

𝑖𝑛 − 𝑢𝑗,𝑡.  𝑝𝑗
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑. 𝑄̇𝑗,𝑡

ℎ𝑒𝑎𝑡 − 𝑄̇𝑗,𝑡
𝑙𝑜𝑠𝑠                 (9) 

∀𝑣𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇:   ∑ (𝑃
𝑗𝑖,𝑡
𝑖𝑛 − 𝑃

𝑗𝑖,𝑡
𝑜𝑢𝑡)𝑗𝑖∈𝑁𝑖

=  𝑄̇𝑖,𝑡
𝑝𝑟𝑜𝑑 +  𝑄̇𝑖,𝑡

𝑢𝑛𝑙𝑜𝑎𝑑 − 𝑄̇𝑖,𝑡
𝑙𝑜𝑎𝑑           (10) 

∀𝑣𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇:   ∑ 𝑠𝑖,𝑘. (𝑄̇𝑖,𝑡+1
𝑠𝑡𝑜 − (1 − 𝑤𝑡. 𝛼𝑘

𝑙𝑜𝑠𝑠 ).𝑘∈𝑉𝑃
𝑄̇𝑖,𝑡

𝑠𝑡𝑜 − 𝑤𝑡. 𝑄̇𝑖,𝑡
𝑙𝑜𝑎𝑑  + 𝑤𝑡. 𝑄̇𝑖,𝑡

𝑢𝑛𝑙𝑜𝑎𝑑) = 0   (11) 

∀𝑒𝑗 ∈ 𝐸: 𝑃𝑗
𝑚𝑎𝑥 ≤ 𝑥𝑗 . 𝑄̇𝑗

𝑚𝑎𝑥,𝑒𝑑𝑔𝑒
                          (12) 

∀𝑒𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇: 𝑃𝑗,𝑡
𝑖𝑛 ≤ 𝑃𝑗

𝑚𝑎𝑥                 (13) 

∀𝑘 ∈ 𝑉𝑃, 𝑚 ∈ 𝐾 ∶  𝑄̇𝑘,𝑚
𝑚𝑎𝑥,𝑠𝑜𝑢𝑟𝑐𝑒,𝑡𝑒𝑐ℎ ≤ 𝑄̇𝑘,𝑚

𝑙𝑖𝑚𝑖𝑡,𝑠𝑜𝑢𝑟𝑐𝑒,𝑡𝑒𝑐ℎ                (14) 

∀𝑘 ∈ 𝑉𝑃, 𝑚 ∈ 𝐾, 𝑡 ∈ 𝑇 ∶  𝑄̇𝑘,𝑚,𝑡
𝑠𝑜𝑢𝑟𝑐𝑒,𝑡𝑒𝑐ℎ ≤ 𝐶𝐹𝑡,𝑚. 𝑄̇𝑘,𝑚

𝑚𝑎𝑥,𝑠𝑜𝑢𝑟𝑐𝑒,𝑡𝑒𝑐ℎ              (15) 

∀𝑒𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇: 𝑥𝑗  ≥  𝑚𝑗
𝑏𝑢𝑖𝑙𝑑                 (16) 

∀𝑒𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇: 𝑢𝑗,𝑡 ≤ 𝑥𝑗                 (17) 

∀𝑒𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇: 𝑢𝑗,𝑡 + 𝑢𝑗∗,𝑡  ≤ 1                (18) 



The objective function (8) of the problem aims to maximize the net cash flow by computing all the 

capital and operating expenses linked to the project and deducting all the incomes from heating sales. 

The constraints of the model can be sorted in 3 main categories. The first one includes the energy 

balances at the vertices and over the edges of the graph represented by (9), (10) and (11). A second 

category of constraints defines the limited capacities of the potential heating locations and the 

potential pipes which are constrained by (12)-(15). The final one takes into account design constraints 

making mandatory to build and use (or not) some pipes as prescribed by (16)-(18). 

3. Case study 
The case studied in this paper considers a geographic area in the city of Herstal in Belgium where a 

new district heating project using a waste incinerator as heating source is currently implemented. A 

graph representation of the studied area and its heating source is given in Fig. 5(a). The area is made 

up of 1780 streets with a representative graph related to this area of 3560 edges and 1296 nodes. 

 

Fig. 5.  Graph representation of Herstal area and its total heating consumption. 

The district heating project will use the waste incinerator to feed the neighbourhood made up of 

dwellings of different kinds but also of a future greenhouse of 10,000 m2 which could be built in the 

following years. The initial project relies on the waste incinerator as the unique heating source with 

a prescribed constant heating production cost of 0.03€/kWh but additional new heating sources could 

be considered by using existing available surfaces as illustrated in Fig. 5(a) with a surface of 50,000 

m2. The waste incinerator which will be used for the feeding of the district heating network currently 

produces only electricity from the exhaust gases coming out of the waste incineration process. This 

electricity is sold over the electricity network. This incinerator is going to be upgraded into a 

combined heat and power plant whose thermal capacity is limited to a maximum value of 100 MWth. 

Using a representative year with 144 timesteps (36 representative days with 4 representative hours 

per day), the number of variables of the optimization problem is counted to 2,806,777 variables. The 

use of the decision tool on this real case study with different scenarios can thus give some useful 

results and trends to help the stakeholders of the heating network project. 

3.1. Influence of the greenhouse as new heating consumer on the network 

The first scenario consists in studying the influence of the integration of a 10,000 m2 greenhouse on 

the outline and the design of an economically optimal heating network. The greenhouse could be an 

interesting consumer to integrate into a network thanks to its little fluctuating heating consumption 

all over the year and especially non zero heating demand during the summer. The optimization 

formulation presented in this paper has thus been used to determine the outline and design of the 

optimal heating network that could be built into the studied area. A project lifetime of 30 years with 

a constant heating sales price of 0.07€/kWh is considered assuming that all the potential consumers 

over a given street would be connected to the network if a pipe is built into this street ( 𝑝𝑗
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 =

1). Results concerning the influence on the sizing of the network for the integration of a greenhouse 

are summarized in Table 3. It can be noticed that the prescribed heating sales price relies on the main 

competitive heating solution on the market which is the gas solution, the market price of which is 

given in [21] for different countries in the European Union. This enables to provide a fair comparison 

between a centralized and decentralized way of heating production. 



Table 3. Main outputs from the optimization model for a case without and with a greenhouse 

 Without a greenhouse With a greenhouse 

Used heating capacity (MWth) 62.817 62.946 

CAPEX (M€) 57.102 57.140 

OPEX (M€) 145.930 146.562 

Revenues (M€) 315.618 317.054 

Profits (M€) 112.586 113.352 

The connection of the greenhouse to the network slightly increases the capital and operating expenses 

linked respectively to the building of a new pipe and substation to connect the greenhouse to the 

network while increasing the total heating production to supply the additional heating demand of the 

greenhouse. The decision tool also determines the mapping of the optimal heating network, which is 

represented in Fig. 6(b), based on a graph representation of the studied area represented in Fig. 6(a).  

It can be observed from Fig. 6(b) that most streets (806 out of 866 streets), depicted in black, are 

connected to the network while some ones, depicted in red, are not integrated into the heating network 

because they are assessed to be non-economically profitable to connect. These streets are related to 

additional investment and operating costs that are not counterbalanced by the revenues generated 

from the heating sales. These streets, depicted in red, which are not connected to the network are 

generally characterized by a relatively low heating demand compared to other streets such that a 

decentralized heating production using gas boilers or another heating technology would be more 

profitable that a connection to the heating network for a centralized way of heating supply.

   

(a)                                                               (b) 

Fig. 6.  (a) Graph representation of the area. (b) Optimal heating network with the greenhouse. 
 

3.2. Influence of the heating sales price on the network 

The optimization tool presented in this paper enables to provide a decision support to the stakeholders 

linked to heating network projects defining inputs parameters specific to each studied area and based 

on the market conditions. The previous scenario considered a market price equivalent to the current 

gas price on the market. However, this status quo market price is not necessarily a sufficient condition 

for heating consumers to change their heating production supply from a gas network to a heating 

network. The influence of the heating sales price on the economically optimal heating network has 

thus to be taken into account by the stakeholders to assess the streets which remain profitable to 

supply for a lower heating sales price. 

A parametric study decreasing the heating sales price from 0.07€/kWh to 0.04€/kWh enables to show 

the influence of the heating sales price on the outline of the heating network as represented in Fig. 7. 

The decrease of the heating sales price reduces the number of streets (depicted in black) to connect 

to the network to guarantee an optimal economic profitability. Indeed, some streets which were 

interesting consumers to connect are no more profitable because their heating consumption does not 

ensure a sufficient return on investment compared to the investment costs required to connect these 

streets to the network. The number of connected streets decreases from 806 streets to 647 streets for 

a decrease of the heating sales price from 0.07€/kWh to 0.05€/kWh. The optimization tool also 

enables to determine a trade-off of the critical heating sales price of 0.04€/kWh below which it is no 



more profitable to build a heating network because of the too big capital and operating expenses 

compared to the heating sales revenues.  

   

    (a)                                                        (b) 

  

                     (c)                                                  (d) 

Fig. 7.  Influence on the outline of the network for a heating sales price of (a) 0.07€/kWh (b) 

0.06€/kWh (c) 0.05€/kWh (d) 0.04€/kWh. 

The decrease of the heating sales price obviously increases the period of return on investment linked 

to the network project. As illustrated in Fig. 8, despite the smaller capital expenses due to a reduced 

number of streets connected to the network, the heating sales revenues from the network are smaller 

with a reduced heating sales price. Therefore, the expenses linked to the network are recovered after 

a longer period of time such that the period of return on investment is directly linked to this heating 

sales price. Indeed, a decrease of the heating sales price from 0.07€/kWh to 0.05€/kWh leads to an 

increase of the period of return on investment from 10 years to more than 17 years. The assessment 

of the optimal heating sales price enabling to guarantee a maximum connection rate of 100% to the 

network is thus an important step before the outline and sizing of any new heating network project. 

The submission of market studies to the potential heating consumers of a new heating network project 

remains essential to ensure consistency between the optimization model and the market reality.  

  

(a)                                                (b)                                                (c) 

Fig. 8.  Influence on the net present value of the project for a heating sales price of (a) 0.07€/kWh 

(b) 0.06€/kWh (c) 0.05 €/kWh.



3.3. Influence of the connection rate on the network 

As for the study of the influence of the heating sales price on the network, a parametric analysis 

concerning the connection rate into a street can be achieved in the following. In any new heating 

network project, this connection rate has to be taken into account to avoid to overestimate the heating 

revenues linked to the connection of a street to a new heating network. There is no obligation for a 

heating consumer to connect to a heating network even if the street is fed by a pipe of the network. 

For the stakeholders of a future network project, it is thus important to assess the heating load specific 

to each street of the network in order to design as accurately as possible the network. This heating 

load can be scaled by a connection rate factor assessing approximatively the number of consumers 

into a street which would be ready to be connected to a heating network based on previous market 

studies conducted with the inhabitants of the studied area. As depicted in Fig. 9, a decrease of this 

connection rate from 100% to 40% has a similar effect than the decrease of the heating sales price by 

reducing the number of streets connected to the network from 806 streets to 548 streets. Below a 

connection rate of 40%, the building of a heating network is assessed to become no more profitable 

as depicted in Fig. 9(d) where all the streets are depicted in red and are then not connected to a heating 

network. 

  

(a)                                                         (b)  

  

(c)                                                         (d) 

Fig. 9. Influence on the outline of the network for a connexion rate of (a) 80% (b) 60% (c) 40% (d) 

20%. 

4. Conclusion 
The optimization tool presented in this paper aims to provide a decision support to the stakeholders 

of a new heating network project by providing a mapping of a potential profitable heating network 

from a prescribed area as well as user-defined economic and physical parameters. The running of 

different scenarios studying the influence of some parameters on the profitability of the project 

enables to determine the barriers to the development of a heating network in some streets with a 

decrease of the values of these parameters. In this paper, the importance of the assessment of the 

heating sales price and the connection rate of consumers has been highlighted by 2 scenarios based 

on a real case.  



 
Indeed, the decrease of the heating sales price from 0.07€/kWh to 0.04€/kWh leads to a decrease of 

the number of streets connected into the network until a break-even point of 0.04€/kWh below which 

it is no more profitable to build any network. As for the heating sales price, the decrease of the 

connection rate of consumers implies a decrease of the number of streets connected until a minimum 

connection rate of 40% below which the building of a heating network is no more profitable. The tool 

presented in this paper aims then to quantify values of some decision parameters like the heating sales 

price and the connection rate of consumers for the profitability of building a heating network.

Nomenclature 
Symbols Greek symbols Subscripts and superscripts 

C 

CAPEX 

CF 

f 

GIS 

m 

N 

NCF 

OPEX 

𝑃̇ 

p 

PEI 

Q 

𝑄̇ 

R 

s 

T 

TF 

u 

w 

x 

costs, € 

capital expenditures, € 

capacity factor, - or % 

actualization factor, - or % 

Geographic Information System 

mandatory pipe building, 0 or 1 

number of representative days, - 

Net Cash Flow, € 

operating expenditures, € 

power flow, kW 

ratio of connected consumers, % 

Primary Energy Import share, % 

heating content, kWh 

heating production, kW 

revenues, € 

heating source k at vertex i, 0 or 1 

temperature, °C or K 

transfer function, - 

use or not of a pipe, 0 or 1 

weight of a time period, - 

building or not of a pipe, 0 or 1 

𝛼 

 

𝜃 

heat losses 

coefficient, - 

temperature 

difference, °C or 

K 

a 

build 

geo 

i 

in 

j 

j* 

k 

l 

m 

load 

loss 

max 

out 

prod 

repr 

sto 

t 

tech 

tot 

unload 

w 

wd 

dwelling type 

building 

geometric 

vertex ID 

incoming 

edge ID 

reverse edge ID 

heating location ID 

dwelling ID 

technology ID 

loading 

heat losses 

maximum 

outcoming 

production 

representative 

storage 

timestep 

technology 

total 

unloading 

water 

day of the week 
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