Assessing the Connectivity of Riparian Forests across a Gradient of Human Disturbance: The Potential of Copernicus “Riparian Zones” in Two Hydroregions
[en] The connectivity of riparian forests can be used as a proxy for the capacity of riparian zones to provide ecological functions, goods and services. In this study, we aim to test the potential of the freely available Copernicus “Riparian Zones” dataset to characterize the connectivity of riparian forests located in two European bioclimatic regions—the Mediterranean and the Central Baltic hydroregions—when subject to a gradient of human disturbance characterized by land-use/land-cover and hydromorphological pressures. We extracted riparian patches using the Copernicus “Actual Riparian Zone” (ARZ) layer and calculated connectivity using the Integral Index of Connectivity (IIC). We then compared the results with a “Manual Riparian Zone” (MRZ) layer, produced by manually digitizing riparian vegetation patches over a very high-resolution World Imagery layer. Our research evidenced reduced forest connectivity in both hydroregions, with the exception of Least Disturbed sites in the Central Baltic hydroregion. The ARZ layer exhibited overall suitability to assess the connectivity of riparian forests in the Central Baltic hydroregion, while the Mediterranean hydroregion displayed a consistent pattern of connectivity overestimation in all levels of human disturbance. To address this, we recommend some improvements in the spatial resolution and thematic accuracy of the Copernicus ARZ layer.
Michez, Adrien ; Université de Liège - ULiège > Département de géographie > Département de géographie
Rodríguez-González, Patricia María
Duarte, Gonçalo
Ferreira, Maria Teresa
Fernandes, Maria Rosário
Language :
English
Title :
Assessing the Connectivity of Riparian Forests across a Gradient of Human Disturbance: The Potential of Copernicus “Riparian Zones” in Two Hydroregions
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Dufour, S.; Rodríguez-González, P.M.; Laslier, M. Tracing the scientific trajectory of riparian vegetation studies: Main topics, approaches and needs in a globally changing world. Sci. Total Environ. 2019, 653, 1168–1185. [CrossRef] [PubMed]
Weissteiner, C.J.; Ickerott, M.; Ott, H.; Probeck, M.; Ramminger, G.; Clerici, N.; de Sousa, A.M.R. Europe’s green arteries—A continental dataset of riparian zones. Remote Sens. 2016, 8, 925. [CrossRef]
Clerici, N.; Weissteiner, C.J.; Paracchini, M.L.; Strobl, P. Riparian zones: Where green and blue networks meet: Pan-European zonation modelling based on remote sensing and GIS. Eur. Com. JRC Sci. Tech. Rep. 2011. [CrossRef]
Tockner, K.; Stanford, J.A. Riverine flood plains: Present state and future trends. Environ. Conserv. 2002, 29, 308–330. [CrossRef]
Fernandes, M.R.; Aguiar, F.C.; Ferreira, M.T. Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools. Landsc. Urban Plan. 2011, 99, 166–177. [CrossRef]
Aguiar, F.C.; Martins, M.J.; Silva, P.C.; Fernandes, M.R. Riverscapes downstream of hydropower dams: Effects of altered flows and historical land-use change. Landsc. Urban Plan. 2016, 153, 83–98. [CrossRef]
Turner, M.G. Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [CrossRef]
Malanson, G.P. Riparian Landscapes; Cambridge Studies in Ecology; Cambridge University Press: Cambridge, UK, 1996.
Capon, S.J.; Chambers, L.E.; Mac Nally, R.; Naiman, R.J.; Davies, P.; Marshall, N.; Williams, S.E. Riparian Ecosystems in the 21st Century: Hotspots for Climate Change Adaptation? Ecosystems 2013, 16, 359–381. [CrossRef]
Clerici, N.; Paracchini, M.L.; Maes, J. Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrol. Hydrobiol. 2014, 14, 107–120. [CrossRef]
Fernandes, M.R.; Segurado, P.; Jauch, E.; Ferreira, M.T. Riparian responses to extreme climate and land-use change scenarios. Sci. Total Environ. 2016, 569–570, 145–158. [CrossRef]
Ward, J.V.; Tockner, K.; Schiemer, F. Biodiversity of floodplain river ecosystems: Ecotones and connectivity. Regul. Rivers Res. Manag. 1999, 15, 125–139. [CrossRef]
Moggridge, H.L.; Gurnell, A.M.; Mountford, J.O. Propagule input, transport and deposition in riparian environments: The importance of connectivity for diversity. J. Veg. Sci. 2009, 20, 465–474. [CrossRef]
De la Fuente, B.; Mateo-Sánchez, M.C.; Rodríguez, G.; Gastón, A.; Pérez de Ayala, R.; Colomina-Pérez, D.; Saura, S. Natura 2000 sites, public forests and riparian corridors: The connectivity backbone of forest green infrastructure. Land Use Policy 2018, 75, 429–441. [CrossRef]
De Sosa, L.L.; Glanville, H.C.; Marshall, M.R.; Abood, S.A.; Williams, A.P.; Jones, D.L. Delineating and mapping riparian areas for ecosystem service assessment. Ecohydrology 2018, 11, 1–16. [CrossRef]
Rodríguez-González, P.M.; Albuquerque, A.; Martínez-Almarza, M.; Díaz-Delgado, R. Long-term monitoring for conservation management: Lessons from a case study integrating remote sensing and field approaches in floodplain forests. J. Environ. Manag. 2017, 202, 392–402. [CrossRef] [PubMed]
Huylenbroeck, L.; Laslier, M.; Dufour, S.; Georges, B.; Lejeune, P.; Michez, A. Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers. J. Environ. Manag. 2020, 267, 1–38. [CrossRef]
European Environment Agency. EEA/MDI/14/001 Copernicus Initial Operations 2011–2013—Land Monitoring Service Local Component: Riparian Zones. Available online: https://www.eea.europa.eu/about-us/tenders/eea-mdi-14-001-copernicus (accessed on 25 March 2021).
Clerici, N.; Vogt, P. Ranking European regions as providers of structural riparian corridors for conservation and management purposes. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 477–483. [CrossRef]
Bechter, T.; Baumann, K.; Birk, S.; Bolik, F.; Graf, W.; Pletterbauer, F. LaRiMo—A simple and efficient GIS-based approach for large-scale morphological assessment of large European rivers. Sci. Total Environ. 2018, 628–629, 1191–1199. [CrossRef]
Piedelobo, L.; Taramelli, A.; Schiavon, E.; Valentini, E.; Molina, J.L.; Xuan, A.N.; González-Aguilera, D. Assessment of green infrastructure in Riparian zones using copernicus programme. Remote Sens. 2019, 11, 2967. [CrossRef]
Meybeck, M.; Kummu, M.; Dürr, H.H. Global hydrobelts and hydroregions: Improved reporting scale for water-related issues? Hydrol. Earth Syst. Sci. 2013, 17, 1093–1111. [CrossRef]
Ferreira, T.; Globevnik, L.; Schinegger, R. Water Stressors in Europe: New Threats in the Old World. In Multiple Stressors in River Ecosystems. Status, Impacts and Prospects for the Future; Sabater, S., Elosegi, A., Ludwig, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 139–155. [CrossRef]
Vogt, J.; Soille, P.; De Jager, A.; Rimavičiūtė, E.; Mehl, W.; Foisneau, S.; Bamps, C. A Pan-European River and Catchment Database; OPOCE: Luxembourg, 2007. [CrossRef]
Inag, I.P. Tipologia de Rios em Portugal Continental no âmbito da Implementação da Directiva Quadro da Água. I—Caracterização Abiótica. Available online: http://apambiente.pt/dqa/tipologia.html (accessed on 25 March 2021).
Debruxelles, N.; Claessens, H.; Lejeune, P.; Rondeux, J. Design of a watercourse and riparian strip monitoring system for environmental management. Environ. Monit. Assess. 2009, 156, 435–450. [CrossRef]
Duarte, G.; Segurado, P.; Oliveira, T.; Haidvogl, G.; Pont, D.; Ferreira, M.T.; Branco, P. The River Network Toolkit—RivTool. Ecography 2019, 42, 549–557. [CrossRef]
Clerici, N.; Weissteiner, C.J.; Paracchini, M.L.; Boschetti, L.; Baraldi, A.; Strobl, P. Pan-European distribution modelling of stream riparian zones based on multi-source Earth Observation data. Ecol. Indic. 2013, 24, 211–223. [CrossRef]
International Commission on Large Dams. ICOLD. Available online: http://www.icold-cigb.org/(accessed on 30 April 2020).
Pascual-Hortal, L.; Saura, S. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation. Landsc. Ecol. 2006, 21, 959–967. [CrossRef]
Pascual-Hortal, L.; Saura, S. Integrating landscape connectivity in broad-scale forest planning through a new graph-based habitat availability methodology: Application to capercaillie (Tetrao urogallus) in Catalonia (NE Spain). Eur. J. For. Res. 2008, 127, 23–31. [CrossRef]
Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [CrossRef]
Van Looy, K.; Cavillon, C.; Tormos, T.; Piffady, J.; Landry, P.; Souchon, Y. A scale-sensitive connectivity analysis to identify ecological networks and conservation value in river networks. Landsc. Ecol. 2013, 28, 1239–1249. [CrossRef]
Lees, A.C.; Peres, C.A. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv. Biol. 2008, 22, 439–449. [CrossRef]
Gilbert-Norton, L.; Wilson, R.; Stevens, J.R.; Beard, K.H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 2010, 24, 660–668. [CrossRef]
Santos, M.J.; Matos, H.M.; Palomares, F.; Santos-Reis, M. Factors affecting mammalian carnivore use of riparian ecosystems in Mediterranean climates. J. Mammal. 2011, 92, 1060–1069. [CrossRef]
Saura, S.; Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 2009, 21, 135–139. [CrossRef]
Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; O’Hara, R.B.; Wagner, H. Vegan: Community Ecology Package. Version 2.4-2. Available online: https://github.com/vegandevs/vegan (accessed on 25 March 2021).
Corenblit, D.; Davies, N.S.; Steiger, J.; Gibling, M.R.; Bornette, G. Considering river structure and stability in the light of evolution: Feedbacks between riparian vegetation and hydrogeomorphology. Earth Surf. Process. Landf. 2015, 40, 189–207. [CrossRef]
García de Jalón, D.; Martínez-Fernández, V.; Fazelpoor, K.; González del Tánago, M. Vegetation encroachment ratios in regulated and non-regulated Mediterranean rivers (Spain): An exploratory overview. J. Hydro Environ. Res. 2020, 30, 35–44. [CrossRef]
Stromberg, J.C.; Rychener, T.J. Effects of fire on riparian forests along a free-flowing dryland river. Wetlands 2010, 30, 75–86. [CrossRef]
Plieninger, T.; Wilbrand, C. Land use, biodiversity conservation, and rural development in the dehesas of Cuatro Lugares, Spain. Agrofor. Syst. 2001, 51, 23–34. [CrossRef]
Fielding, K.S.; Terry, D.J.; Masser, B.M.; Bordia, P.; Hogg, M.A. Explaining landholders’ decisions about riparian zone management: The role of behavioural, normative, and control beliefs. J. Environ. Manag. 2005, 77, 12–21. [CrossRef]
Thomas, E.; Riley, M.; Spees, J. Good farming beyond farmland—Riparian environments and the concept of the “good farmer”. J. Rural Stud. 2019, 67, 111–119. [CrossRef]
Von Schiller, D.; Martí, E.; Riera, J.L.; Ribot, M.; Marks, J.C.; Sabater, F. Influence of land use on stream ecosystem function in a Mediterranean catchment. Freshw. Biol. 2008, 53, 2600–2612. [CrossRef]
Aguiar, F.C.; Fernandes, M.R.; Martins, M.J.; Ferreira, M.T. Effects of a large irrigation reservoir on aquatic and riparian plants: A history of survival and loss. Water 2019, 11, 2379. [CrossRef]
Husson, E.; Ecke, F.; Reese, H. Comparison of manual mapping and automated object-based image analysis of non-submerged aquatic vegetation from very-high-resolution UAS images. Remote Sens. 2016, 8, 724. [CrossRef]
Michez, A.; Piégay, H.; Lisein, J.; Claessens, H.; Lejeune, P. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environ. Monit. Assess. 2016, 188, 1–19. [CrossRef]
Aguiar, F.C.; Ferreira, M.T.; Albuquerque, A.; Moreira, I. Alien and endemic flora on reference and non-reference sites from Mediterranean type-streams of Portugal. Aquat. Conserv. Mar. Freshw. Ecosyst. 2007, 17, 335–347. [CrossRef]
Schneider, J.-B. Plaidoyer pour une restauration des cordons rivulaires naturels des ruisseaux et ruisselets forestiers. For. Wallonne 2007, 86, 43–57.
Bjelke, U.; Boberg, J.; Oliva, J.; Tattersdill, K.; Mckie, B.G. Dieback of riparian alder caused by the Phytophthora alni complex: Projected consequences for stream ecosystems. Freshw. Biol. 2016, 61, 565–579. [CrossRef]
Enderle, R.; Stenlid, J.; Vasaitis, R. An overview of ash (Fraxinus spp.) and the ash dieback disease in Europe. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2019, 14. [CrossRef]
Gergel, S.E.; Stange, Y.; Coops, N.C.; Johansen, K.; Kirby, K.R. What is the value of a good map? An example using high spatial resolution imagery to aid riparian restoration. Ecosystems 2007, 10, 688–702. [CrossRef]
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.