Article (Scientific journals)
In silico validation of a new model-based oral-subcutaneous insulin sensitivity testing through Monte Carlo sensitivity analyses
Bekisz, Sophie; Holder-Pearson, L.; Chase, J. G. et al.
2020In Biomedical Signal Processing and Control, 61 (102030)
Peer Reviewed verified by ORBi
 

Files


Full Text
BEKISZ_preprint.pdf
Author preprint (1.3 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Diabetes; Diabetes prevention; Insulin sensitivity; Monte Carlo sensitivity analysis; Physiological modeling; Blood; Glucose; Insulin; Monte Carlo methods; Risk assessment; Safety engineering; Blood extraction; Diagnostic tools; Insulin injections; Monte carlo analysis; Oral glucose tolerance tests; Patient specific; Type-2 diabetes; Sensitivity analysis; Article; Monte Carlo method
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Bekisz, Sophie  ;  Université de Liège - ULiège > In silico medecine-Biomechanics Research Unit
Holder-Pearson, L.;  University of Canterbury, Department of Mechanical Engineering, Centre for Bioengineering, Private Bag 4800, Christchurch, New Zealand
Chase, J. G.;  University of Canterbury, Department of Mechanical Engineering, Centre for Bioengineering, Private Bag 4800, Christchurch, New Zealand
Desaive, Thomas  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Language :
English
Title :
In silico validation of a new model-based oral-subcutaneous insulin sensitivity testing through Monte Carlo sensitivity analyses
Publication date :
2020
Journal title :
Biomedical Signal Processing and Control
ISSN :
1746-8094
eISSN :
1746-8108
Publisher :
Elsevier Ltd
Volume :
61
Issue :
102030
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Grant # CRS-S3-016
Funders :
Callaghan Innovation and Ministry of Business, Innovation and Employment (MBIE) for National Science Challenge 7, Science for Technological Innovation (SfTI)
Available on ORBi :
since 31 May 2021

Statistics


Number of views
90 (4 by ULiège)
Number of downloads
3 (2 by ULiège)

Scopus citations®
 
7
Scopus citations®
without self-citations
2
OpenCitations
 
5
OpenAlex citations
 
7

Bibliography


Similar publications



Contact ORBi