Diabetes; Diabetes prevention; Insulin sensitivity; Monte Carlo sensitivity analysis; Physiological modeling; Blood; Glucose; Insulin; Monte Carlo methods; Risk assessment; Safety engineering; Blood extraction; Diagnostic tools; Insulin injections; Monte carlo analysis; Oral glucose tolerance tests; Patient specific; Type-2 diabetes; Sensitivity analysis; Article; Monte Carlo method
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Bekisz, Sophie ; Université de Liège - ULiège > In silico medecine-Biomechanics Research Unit
Holder-Pearson, L.; University of Canterbury, Department of Mechanical Engineering, Centre for Bioengineering, Private Bag 4800, Christchurch, New Zealand
Chase, J. G.; University of Canterbury, Department of Mechanical Engineering, Centre for Bioengineering, Private Bag 4800, Christchurch, New Zealand
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Language :
English
Title :
In silico validation of a new model-based oral-subcutaneous insulin sensitivity testing through Monte Carlo sensitivity analyses
Publication date :
2020
Journal title :
Biomedical Signal Processing and Control
ISSN :
1746-8094
eISSN :
1746-8108
Publisher :
Elsevier Ltd
Volume :
61
Issue :
102030
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Grant # CRS-S3-016
Funders :
Callaghan Innovation and Ministry of Business, Innovation and Employment (MBIE) for National Science Challenge 7, Science for Technological Innovation (SfTI)
Organisation Mondiale De La Santé, “Centre des médias”, http://www.who.int/diabetes/infographic/fr/, access date : June 3rd 2019.
International Diabetes Federation, “About diabetes: facts and figures”, http://www.idf.org/about-diabetes/facts-figures, access date : June 3rd 2019.
Bommer, C., Sagalova, V., Heesemann, E., Manne-Goehler, J., Atun, R., Bärnighausen, T., Davies, J., Vollmer, S., Global economic burden of diabetes in adults: projections from 2015 to 2030", American diabetes association. Diabetes Care 41:May (5) (2018), 963–970, 10.2337/dc17-1962.
Campbell, “Biologie”, Pearson, 9th edition, 2011.
Ferrannini, E., Insulin resistance is central to the burden of diabetes. Diabetes Metab Revue, 13(2), 1997.
Docherty, P., Evaluation and Development of the Dynamic Insulin Sensitivity and Secretion Test for Numerous Clinical Applications. 2011, University of Canterbury, Christchurch March (7).
World Health Organization, Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia, Report of a WHO/IDF consultation., 2006.
Othman, N.A., Analysis and Optimisation of Model-Based Insulin Sensitivity and Secretion Tests. 2015, University of Canterbury, Christchurch 29 April.
Mcauley, K.A., Berkeley, J.E., Docherty, P.D., Lotz, T.F., Te Morenga, L.A., Shaw, G.M., Williams, S.M., Chase, J.G., Mann, J.I., The dynamic insulin sensitivity and secretion test—a novel measure of insulin sensitivity. Metabolism, 2011, 10.1016/j.metabol.2011.05.009.
Lotz, T.F., Chase, J.G., Mcauley, K.A., Shaw, G.M., Docherty, P.D., Berkeley, J.E., Williams, S.M., Hann, C.E., Mann, J.I., Design and clinical pilot testing of the model-based dynamic insulin sensitivity and secretion test (DISST). J. Diabetes Sci. Technol., 4(November (6)), 2010, 10.1177/193229681000400616.
Hogan, N.C., Taberner, A.J., Jones, L.A., Hunter, I.W., Needle-free delivery of macromolecules through the skin using controllable jet injectors. Expert Opin. Drug Deliv. 12:10 (2015), 1637–1648, 10.1517/17425247.2015.1049531.
Soffe, R., Nock, V., Chase, J.G., Towards point-of-care insulin detector. ACS Sens.(December), 2019, 10.1021/acssensors.8b01253.
Ruddy, B., Dixon, A., Williams, R., Taberner, A., Optimization of portable electronically-controlled needle-free jet injection systems. IEEE/ASME Trans. Mechatron. 22:5 (2017), 2013–2021, 10.1109/TMECH.2017.2725345.
Li, X., Ruddy, B., Taberner, A., Characterization of needle-assisted jet injections. J. Control. Release 243 (2016), 195–203, 10.1016/j.jconrel.2016.10.010.
Dalla Man, C., Camilleri, M., Cobelli, C., A system model of oral glucose absorption: validation on gold standard data. Biomed. Eng., 53(December (12)), 2006, 10.1109/TBME.2006.883792.
Wong, J., Chase, J.G., Hann, C.E., Shaw, G.M., Lotz, T.F., Lin, J., Le Compte, A.J., A subcutaneous insulin pharmacokinetic model for computer simulation in a diabetes decision support role: model structure and parameter identification. J. Diabetes Sci. Technol., 2(July (4)), 2008, 10.1177/193229680800200417.
Wong, J., Chase, J.G., Hann, C.E., Shaw, G.M., Lotz, T.F., Lin, J., Le ComPTE, A.J., A subcutaneous insulin pharmacokinetic model for computer simulation in a diabetes decision support role: validation and simulation. J. Diabetes Sci. Technol., 2(July (4)), 2008, 10.1177/193229680800200418.
Pretty, C., Analysis, Classification and Management of Insulin Sensitivity Variability in a Glucose-insulin System Model for Critical Illness. 2012, University of Canterbury, Christchurch 24 January.
Diabetes.Co.Uk, “Oral Glucose Tolerance Test”, https://www.diabetes.co.uk/oral-glucose-tolerance-test.html, access date : June 3rd 2019.
Holder-Pearson, L., Bekisz, S., Knopp, J., Docherty, P., Chase, J.G., Desaive, T., Model-based modified OGTT insulin sensitivity test design. 10th IFAC Symposium on Biological and Medical Systems, 2018.
Equagold, https://equagold.co.nz/, access date : June 3rd 2019.
Roche, https://www.roche.com/careers.htm, access date : June 3rd 2019.
Portal Instruments, https://www.portalinstruments.com/, access date : June 3rd 2019.
Hann, C.E., Chase, J.G., Lin, J., Lotz, T., Doran, C.V., Shaw, G.M., Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model. Comput. Methods Programs Biomed. 77:3 (2005), 259–270, 10.1016/j.cmpb.2004.10.006.
Lotz, T., High Resolution Clinical Model-Based Assessment of Insulin Sensitivity. 2007, University of Christchurch.
Pretty, C., Analysis, Classification and Management of Insulin Sensitivity Variability in a Glucose-insulin System Model for Critical Illness. 2012, University of Canterbury, Christchurch 24 January.
Lin, J., Razak, N., Pretty, C., Le Compte, A., Docherty, P., Parente, J., Shaw, G.M., Hann, C., Chase, J.G., A physiological intensive control insulin-nutrition-Glucose (ICING) model validated in critically ill patients. Comput. Methods Programs Biomed. 102:May (2) (2011), 192–205, 10.1016/j.cmpb.2010.12.008.
Pretty, C., Le Compte, A., Chase, J.G., Shaw, G.M., Preiser, J.-C., Penning, S., Desaive, T., Variability of insulin sensitivity during the first 4 days of critical illness: implications for tight glycaemic control. Ann. Intensive Care, 2(17), 2012, 10.1186/2110-5820-2-17.
Dickson, J.L., Stewart, K.W., Pretty, C., Flechet, M., Desaive, T., Penning, S., Lambermont, B.C., Benyó, B., Shaw, G.M., Chase, J.G., Generalisability of a virtual trials method for glycaemic control in intensive care. IEEE Trans. Biomed. Eng. 65:July (7) (2018), 1543–1553, 10.1109/TBME.2017.2686432.
Chase, J.G., Preiser, J.-C., Dickson, J.L., Pironet, A., Chiew, Y.S., Pretty, C., Shaw, G.M., Benyo, B., Moeller, K., Safaei, S., Tawhai, M., Hunter, P., Desaive, T., Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomed. Eng., 17(24), 2018, 10.1186/s12938-018-0455-y.
Chase, J.G., Suhaimi, F., Penning, S., Preiser, J.-C., Le Compte, A., Lin, J., Pretty, C., Shaw, G.M., Moorhead, K.T., Desaive, T., Validation of a model-based virtual trials method for tight glycemic control in intensive care. Biomed. Eng. Online, 9(84), 2010, 10.1186/1475-925X-9-84.
Suhaimi, F., Le Compte, A.J., Preiser, J.-C., Shaw, G.M., Massion, P., Radermecker, R., Pretty, C.G., Lin, J., Desaive, T., Chase, J.G., What makes tight glycemic control tight? The impact of variability and nutrition in two clinical studies. J. Diabetes Sci. Technol. 4:March (2) (2010), 284–298, 10.1177/193229681000400208.
Le Compte, A.J., Lee, D.S., Chase, J.G., Lin, J., Lynn, A., Shaw, G.M., Blood glucose prediction using stochastic modeling in neonatal intensive care. IEEE Trans. Biomed. Eng. 57:March (3) (2010), 509–518, 10.1109/TBME.2009.2035517.
Krebs, J.D., Bell, D., Hall, R., Parry-Strong, A., Docherty, P.D., Clarke, K., Chase, J.G., Improvements in glucose metabolism and insulin sensitivity with a low-carbohydrate diet in obese patients with type 2 diabetes. J. Am. Coll. Nutr. 32:1 (2013), 11–17, 10.1080/07315724.2013.767630.
Mcauley, K.A., Berkeley, J.E., Docherty, P.D., Lotz, T.F., Te Morenga, L.A., Shaw, G.M., Williams, S.M., Chase, J.G., Mann, J.I., The dynamic insulin sensitivity and secretion test – a novel measure of insulin sensitivity. Metabolism 60:December (12) (2011), 1748–1756.
Docherty, P., Chase, J.G., Te Morenga, L., Fisk, L.M., A novel hierarchal-based approach to measure insulin sensitivity and secretion in At-Risk populations. J. Diabetes Sci. Technol. 8:May (4) (2014), 807–814, 10.1177/1932296814536511.
Defronzo, R.A., Tobin, J.D., Andres, R., Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 237:3 (1979), E214–223, 10.1152/ajpendo.1979.237.3.E214.
Waterhouse, C., Keilson, J., Transfer times across the human body. Bull. Math. Biophys. 34:1 (1972), 33–44, 10.1007/BF02477022.
Hume, R., Prediction of lean body mass from height and weight. J. Clin. Pathol. 19:4 (1966), 389–391, 10.1136/jcp.19.4.389.
Lotz, T.F., Chase, J.G., Mcauley, K.A., Lin, J., Wong, J., Hann, C.E., Andreassen, S., Integral-based identifica-tion of a physiological insulin and glucose model on euglycaemic clamp and IVGTT trials. IFAC Proc. Vol. 39:1 (2006), 463–468, 10.3182/20060329-3-AU-2901.00070.
Docherty, P., Evaluation and Development of the Dynamic Insulin Sensitivity and Secretion Test for Numerous Clinical Applications. 2011, University of Canterbury, Christchurch 7 March.
Docherty, P.D., Chase, J.G., Te Moranga, L., Lotz, T.F., Berkeley, J.E., Shaw, G.M., Mcauley, K.A., Mann, J.I., A Spectrum of dynamic insulin sensitivity test protocols. J. Diabetes Sci. Technol., 5(November (6)), 2011, 10.1177/193229681100500626.
Docherty, P.D., Chase, J.G., Lotz, T., Hann, H., Shaw, G.M., Berkeley, J.E., Mann, J.J., Mcauley, K., Distq: an iterative analysis of glucose data for low-cost, real-time and accurate estimation of insulin sensitivity. Open Med. Inform. J. 3 (2009), 65–76, 10.2174/1874431100903010065.
Cobelli, C., Carson, E., Introduction to modelling in physiology and medicine. A Volume in the Academic Press Series in Biomedical Engineering, 2007, Elsevier.
Cobelli, C., Pacini, G., Toffolo, G., Sacca, L., Estimation of insulin sensitivity and glucose clearance from minimal model: new insights from labeled IVGTT. Am. J. Physiol. 250:5) Pt 1 (1986), E591–598, 10.1152/ajpendo.1986.250.5.E591.
Cobelli, C., Toffolo, G., Ferrannini, E., A model of glucose kinetics and their control by insulin, compartmental and non-compartmental approaches. Math. Biosci. 72:2 (1984), 291–315, 10.1016/0025-5564(84)90114-7.