[en] Context. Thanks to the vast and exquisite set of observations that have been made available for the Sun, our star is by far an ideal
target for testing stellar models with a unique precision. A recent issue under consideration in the field is related to the progress in
the solar surface abundances derivation that has led to a decrease of the solar metallicity. While the former high-metallicity models
were in fair agreement with other observational indicators from helioseismology and solar neutrino fluxes, it is no longer the case
for low-metallicity models. This issue has become known as ’the solar problem’. Recent data are, however, promising to shed a new
light on it. For instance, in 2020, the Borexino collaboration released the first-ever complete estimate of neutrinos emitted in the
CNO cycle, which has reaffirmed the role of the neutrino constraints in the solar modelling process and their potential in exploring
related issues. In parallel, a newly claimed detection of solar gravity modes of oscillation offers another opportunity for probing the
stratification in the Sun’s central layers.
Aims. We propose combining the diagnoses from neutrinos and helioseismology, both from pressure and gravity modes, in assessing
the predictions of solar models. We compare in detail the different physical prescriptions currently at our disposal with regard to stellar
model computations.
Methods. We built a series of solar standard models based on a variation of the different physical ingredients directly affecting the
core structure: opacity, chemical mixture, nuclear reactions rates. We compare the predictions of these models to their observational
counterparts for the neutrinos fluxes, gravity-mode period spacing, and low-degree pressure mode frequency ratios.
Results. The CNO neutrino flux confirms previous findings, exhibiting a preference for high-metallicity models. Nevertheless, we
found that mild modification of the nuclear screening factors can re-match low-metallicity model predictions to observed fluxes, al-
though it does not restore the agreement with the helioseismic frequency ratios. Neither the high-metallicity or low-metallicity models
are able to reproduce the gravity-mode period spacing. The disagreement is huge, more than 100σ to the observed value. Reversely,
the family of standard models narrows the expected range of the Sun’s period spacing: between ∼2150 to ∼2190 s. Moreover, we
show this indicator can constrain the chemical mixture, opacity, and – to a lower extent – nuclear reactions in solar models.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Salmon, Sébastien ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Buldgen, Gaël ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Noels-Grötsch, Arlette ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Eggenberger, Patrick
Scuflaire, Richard ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Meynet, Georges
Language :
English
Title :
Standard solar models: Perspectives from updated solar neutrino fluxes and gravity-mode period spacing
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abe, K., Haga, Y., Hayato, Y., et al. 2016, Phys. Rev. D, 94, 052010
Adelberger, E. G., García, A., Robertson, R. G. H., et al. 2011, Rev. Mod. Phys., 83, 195
Aharmim, B., Ahmed, S. N., Anthony, A. E., et al. 2013, Phys. Rev. C, 88, 025501
Amarsi, A. M., Barklem, P. S., Collet, R., Grevesse, N., & Asplund, M. 2019, A&A, 624, A111
Amarsi, A. M., Grevesse, N., Grumer, J., et al. 2020, A&A, 636, A120
Angulo, C., Arnould, M., Rayet, M., et al. 1999, Nucl. Phys. A, 656, 3
Antia, H. M., & Basu, S. 2005, ApJ, 620, L129
Antia, H. M., & Chitre, S. M. 1995, ApJ, 442, 434
Antia, H. M., & Chitre, S. M. 1998, A&A, 339, 239
Antia, H. M., & Chitre, S. M. 2002, A&A, 393, L95
Appourchaux, T., & Corbard, T. 2019, A&A, 624, A106
Appourchaux, T., &Pallé, P. L. 2013, in Fifty Years of Seismology of the Sun and Stars, eds. K. Jain, S. C. Tripathy, F. Hill, J. W. Leibacher, & A. A. Pevtsov, ASP Conf. Ser., 478, 125
Appourchaux, T., Belkacem, K., Broomhall, A. M., et al. 2010, A&ARv, 18, 197
Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, eds. T. G. Barnes, III, & F. N. Bash, ASP Conf. Ser., 336, 25
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Ayukov, S. V., & Baturin, V. A. 2017, Astron. Rep., 61, 901
Badnell, N. R., Bautista, M. A., Butler, K., et al. 2005, MNRAS, 360, 458
Bahcall, J. N. 2002, Phys. Rev. C, 65, 025801
Bahcall, J. N., & Pinsonneault, M. H. 1995, Rev. Mod. Phys., 67, 781
Bahcall, J. N., & Ulrich, R. K. 1988, Rev. Mod. Phys., 60, 297
Bahcall, J. N., Huebner, W. F., Lubow, S. H., Parker, P. D., & Ulrich, R. K. 1982, Rev. Mod. Phys., 54, 767
Bahcall, J. N., Krastev, P. I., & Smirnov, A. Y. 1998, Phys. Rev. D, 58, 096016
Bahcall, J. N., Basu, S., Pinsonneault, M., & Serenelli, A. M. 2005, ApJ, 618, 1049
Bahcall, J. N., Serenelli, A. M., & Basu, S. 2006, ApJS, 165, 400
Basu, S., & Antia, H. M. 2008, Phys. Rep., 457, 217
Basu, S., Chaplin, W. J., Elsworth, Y., et al. 2007, ApJ, 655, 660
Baturin, V. A., Ayukov, S. V., Gryaznov, V. K., et al. 2013, in Progress in Physics of the Sun and Stars: A New Era in Helio-and Asteroseismology, eds. H. Shibahashi, & A. E. Lynas-Gray, ASP Conf. Ser., 479, 11
Bellini, G., Benziger, J., Bick, D., et al. 2012, Phys. Rev. Lett., 108, 051302
Bergström, J., Gonzalez-Garcia, M. C., Maltoni, M., et al. 2016, J. High Energy Phys., 2016, 132
Berthomieu, G., & Provost, J. 1991, Sol. Phys., 133, 127
Fukuda, Y., Hayakawa, T., Ichihara, E., et al. 1999, Phys. Rev. Lett., 82, 1810
Gabriel, A. H., Grec, G., Charra, J., et al. 1995, Sol. Phys., 162, 61
García, R. A., Turck-Chièze, S., Jiménez-Reyes, S. J., et al. 2007, Science, 316, 1591
Gonzalez, G. 2006, MNRAS, 370, L90
Gough, D. 2003, Astrophys. Space Sci., 284, 165
Gough, D. O. 2019, MNRAS, 485, L114
Grevesse, N., & Noels, A. 1993, in Origin and Evolution of the Elements, eds. N. Prantzos, E. Vangioni-Flam, & M. Casse, 15
Grevesse, N., & Sauval, A. J. 1998, Space Sci. Rev., 85, 161
Grevesse, N., Asplund, M., Sauval, J., & Scott, P. 2013, Eur. Phys. J. Web Conf., 43, 01004
Grevesse, N., Scott, P., Asplund, M., & Sauval, A. J. 2015, A&A, 573, A27
Gruzinov, A. V., & Bahcall, J. N. 1998, ApJ, 504, 996
Gryaznov, V. K., Ayukov, S. V., Baturin, V. A., et al. 2004, in Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter, eds. V. Celebonovic, D. Gough, & W. Däppen, AIP Conf. Ser., 731, 147
Guzik, J. A., & Mussack, K. 2010, ApJ, 713, 1108
Guzik, J. A., Watson, L. S., & Cox, A. N. 2006, Mem. Soc. Astron. It., 77, 389
Hale, S. J., Howe, R., Chaplin, W. J., Davies, G. R., & Elsworth, Y. P. 2016, Sol. Phys., 291, 1
Haxton, W., Hamish Robertson, R., & Serenelli, A. M. 2013, ARA&A, 51, 21
Iglesias, C. A. 2015, High Energy Density Phys., 15, 4
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Imbriani, G., Costantini, H., Formicola, A., et al. 2005, Eur. Phys. J. A, 25, 455
Irwin, A. W. 2012, Astrophysics Source Code Library [record ascl:1211. 002]
Kosovichev, A. G. 1988, Sov. Astron. Lett., 14, 145
Kosovichev, A. G. 2011, in Advances in Global and Local Helioseismology: An Introductory Review, eds. J. P. Rozelot, & C. Neiner, 832, 3
Kosovichev, A. G., & Fedorova, A. V. 1991, Sov. Astron., 35, 507
Landi, E., & Testa, P. 2015, ApJ, 800, 110
Le Pennec, M., Turck-Chièze, S., Salmon, S., et al. 2015, ApJ, 813, L42
Lin, C.-H., Antia, H. M., & Basu, S. 2007, ApJ, 668, 603
Mao, D., Mussack, K., & Däppen, W. 2009, ApJ, 701, 1204
Marta, M., Formicola, A., Gyürky, G., et al. 2008, Phys. Rev. C, 78, 022802
Marta, M., Formicola, A., Bemmerer, D., et al. 2011, Phys. Rev. C, 83, 045804
Montalbán, J., Miglio, A., Noels, A., Grevesse, N., & di Mauro, M. P. 2004, in SOHO 14 Helio-and Asteroseismology: Towards a Golden Future, ed. D. Danesy, ESA SP, 559, 574
Mussack, K., & Däppen, W. 2011, ApJ, 729, 96
Nagayama, T., Bailey, J. E., Loisel, G. P., et al. 2019, Phys. Rev. Lett., 122, 235001
Nahar, S. N., & Pradhan, A. K. 2016, Phys. Rev. Lett., 116, 235003
Pain, J.-C., & Gilleron, F. 2015, High Energy Density Phys., 15, 30
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.