Unpublished conference/Abstract (Scientific congresses and symposiums)
Bayseian Evidential Learning for 1D geological imaging from geophysical data
Michel, Hadrien; Nguyen, Frédéric; Hermans, Thomas
2020iEMSs 2020
 

Files


Full Text
iEMSs2020_Abstract_final.pdf
Author preprint (30.11 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Geophysics; Bayesian Evidential Learning; Machine Learning
Abstract :
[en] Geophysics is widely used to model the subsurface due to its combination of low-cost and large spatial coverage. However, proper uncertainty quantification based on geophysical data is rarely performed due to the high computational cost of such operation (Bayesian approach) or the poor quality of the uncertainty estimation (error propagation). Bayesian Evidential Learning (BEL) approximates the Bayesian problem in a reduced space, leading to a reduced computational cost. When applied to 1D geological imaging, we demonstrate that BEL produces coherent posterior uncertainty under a reasonable CPU time. Moreover, our implementation of BEL for 1D geological imaging (BEL1D) is fully separated into two phases, similar to machine learning: a learning phase and a prediction phase. This means that prediction of posterior model space can be reduced to only the prediction phase since learning can be reused as much as wanted, leading to extremely rapid estimations of uncertainty. During the learning phase, we derive a statistical relationship from a training set of geophysical models and their associated geophysical response in reduced space. During the prediction phase, we simply extract the conditional probability of the geological models given the geophysical data. This latter process is extremely rapid numerically and results in the approximated posterior in reduced space. Then, sampling as many models from this posterior space as needed and transforming them back into the original space leads to a set of models from the posterior. The algorithm (implemented into a set of open-source Matlab toolboxes) is already applied with success on surface nuclear magnetic resonance and dispersion curves from seismic surface waves. In further version of the algorithm, we plan on extending the capabilities of BEL1D to other geophysical methods and to relax the constrains on the prior definition (currently 1D blocky models).
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Michel, Hadrien  ;  Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Nguyen, Frédéric ;  Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Hermans, Thomas;  Universiteit Gent - UGent > Department of Geology
Language :
English
Title :
Bayseian Evidential Learning for 1D geological imaging from geophysical data
Publication date :
September 2020
Event name :
iEMSs 2020
Event organizer :
iEMSs
Event place :
Bruxelles, Belgium
Event date :
du 14 septembre 2020 au 18 septembre 2020
Audience :
International
Name of the research project :
BISHOP
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 25 May 2021

Statistics


Number of views
62 (6 by ULiège)
Number of downloads
17 (5 by ULiège)

Bibliography


Similar publications



Contact ORBi