[en] In a recent work, we provided a standardized and exact analytical formalism for computing in the semiclassical and asymptotic regime, the radiation force experienced by a two-level atom interacting with any number of plane waves with arbitrary intensities, frequencies, phases, and propagation directions [J. Opt. Soc. Am. B 35, 127 (2018)]. Here, we extend this treatment to the multilevel atom case, where degeneracy of the atomic levels is considered and polarization of light enters into play. A matrix formalism is developed to this aim.
Disciplines :
Physics
Author, co-author :
Podlecki, Lionel ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et Physique des atomes froids
Martin, John ; Université de Liège - ULiège > Département de physique > Optique quantique
Bastin, Thierry ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et Physique des atomes froids
Language :
English
Title :
Radiation pressure on single atoms: generalization of an exact analytical approach to multilevel atoms
Publication date :
06 October 2021
Journal title :
Journal of the Optical Society of America. B, Optical Physics
ISSN :
0740-3224
Publisher :
Optical Society of America, United States - District of Columbia
Volume :
38
Pages :
3244
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
R. Schieder, H. Walther, and L. Wöste, “Atomic beam deflection by the light of a tunable dye laser,” Opt. Commun. 5, 337–340 (1972).
W. D. Phillips and H. Metcalf, “Laser deceleration of an atomic beam,” Phys. Rev. Lett. 48, 596–599 (1982).
S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
M. A. Kasevich, E. Riis, S. Chu, and R. G. DeVoe, “rf spectroscopy in an atomic fountain,” Phys. Rev. Lett. 63, 612–615 (1989).
G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
M. H. Anderson, J. R. Enshner, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser, and J. C. Garreau, “Experimental observation of the Anderson metal-insulator transition with atomic matter waves,” Phys. Rev. Lett. 101, 255702 (2008).
C. Corder, B. Arnold, and H. Metcalf, “Laser cooling without spontaneous emission,” Phys. Rev. Lett. 114, 043002 (2015).
L. Podlecki, R. D. Glover, J. Martin, and T. Bastin, “Radiation pressure on a two-level atom: an exact analytical approach,” J. Opt. Soc. Am. B 35, 127–132 (2018).
B. Gao, “Effects of Zeeman degeneracy on the steady-state properties of an atom interacting with a near-resonant laser field: analytic results,” Phys. Rev. A 48, 2443–2448 (1993).
S. Chang, T. Y. Kwon, H. S. Lee, and V. G. Minogin, “Light-induced ground-state coherence, constructive interference, and two-photon laser cooling mechanism in multilevel atoms,” Phys. Rev. A 60, 2308–2311 (1999).
S. Chang, T. Y. Kwon, H. S. Lee, and V. G. Minogin, “Sub-Doppler laser cooling of atoms: comparison of four multilevel atomic schemes,” Phys. Rev. A 64, 013404 (2001).
S. Chang, T. Y. Kwon, H. S. Lee, and V. G. Minogin, “Comparison of two basic laser-cooling schemes for multilevel atoms: linear-linear and σ+-σ−configurations,” Phys. Rev. A 64, 023416 (2001).
S. Chang and V. G. Minogin, “Density-matrix approach to dynamics of multilevel atoms in laser fields,” Phys. Rep. 365, 65–143 (2002).
Y. Castin, H. Wallis, and J. Dalibard, “Limit of Doppler cooling,” J. Opt. Soc. Am. B 6, 2046–2057 (1989).
K. Mølmer, K. Berg-Sørensen, and E. Bonderup, “Forces on atoms in laser fields with multidimensional periodicity,” J. Phys. B 24, 2327–2342 (1991).
K. Mølmer, “Friction and diffusion coefficients for cooling of atoms in laser fields with multidimensional periodicity,” Phys. Rev. A 44, 5820–5832 (1991).
J. Javanainen, “Density-matrix equations and photon recoil for multistate atoms,” Phys. Rev. A 44, 5857–5880 (1991).
J. Javanainen, “Numerical experiments in semiclassical laser-cooling theory of multistate atoms,” Phys. Rev. A 46, 5819–5835 (1992).
L. Rutherford, I. C. Lane, and J. F. McCann, “Doppler cooling of gallium atoms: simulation in complex multilevel systems,” J. Phys. B 43, 185504 (2010).
M. Sukharev and A. Nitzan, “Numerical studies of the interaction of an atomic sample with the electromagnetic field in two dimensions,” Phys. Rev. A 84, 043802 (2010).
E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency of a short laser pulse via decay interference in a closed V-type system,” Phys. Rev. A 61, 045802 (2000).
A. Xuereb, P. Domokos, P. Horak, and T. Freegarde, “Scattering theory of multilevel atoms interacting with arbitrary radiation fields,” Phys. Scr. T140, 014010 (2010).
In a Cartesian reference frame {ex, ey, ez}, the upper-index spherical basis vectors explicitly read e±1 = ∓(ex ∓ iey)/√2 and e0 = ez [see, e.g., M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms (Oxford University Press, 2009)].
K. Mølmer, Y. Castin, and J. Dalibard, “Monte Carlo wave-function method in quantum optics,” J. Opt. Soc. Am. B 10, 524–538 (1993).
L. Y. Adrianova, Introduction to Linear Systems of Differential Equations, Translations of Mathematical Monographs (American Mathematical Society, 1995), Vol. 146.
The column vector x(t) is bounded since it is composed (up to additive constants and multiplicative complex exponentials) of density matrix populations and coherences. The populations are at all times comprised between 0 and 1, and the coherences are upper bounded by the maximal population value since the density matrix is hermitian positive semi-definite [37].
The system in Eq. (19) is only defined if all A(ξξn) + Bξξ(n,0) matrices are invertible, which is ensured if the periodic regime is unique. Otherwise, the following formalism does not apply. This is, for instance, the case for 1J = −1 and all waves with the same polarization εj (λm = 0 and det (A(ξξ0) + B(ξξ0,0)) = 0).
Such suitable matrices can be given by (see, e.g., Ref. [37]): Q(ξξn) = 0 if x(ξn) = 0; otherwise, Q(ξξn) = (eiθkx(ξn)k/kx(ξ0)k)1ξ if x(ξn)/kx(ξn)k = eiθ(x(ξ0)/kx(ξ0)k) (θ ∈ [0, 2π[); otherwise, Q(ξξn) = (kx(ξn)k/kx(ξ0)k)Uξξ(n). In the latter, Uξξ(n) is the unitary matrix eiφ(n)Vξξ(n), where φ(n) is the phase of the complex number x(ξ0)∗ · x(ξn), conventionally set to 0 if the complex number is zero, and where Vξξ(n) is the Householder matrix Vξξ(n) = 1ξ − (2/kz(ξn)k2)(z(ξn)z(ξn)†), with z(ξn) = eiφ(n)x(ξ0) − (kx(ξ0)k/kx(ξn)k)x(ξn). In particular, we have in that case Q(ξξ0) = 1ξ and Qξξ(−n) = Q(ξξn)∗
J. Söding, R. Grimm, Y. B. Ovchinnikov, P. Bouyer, and C. Salomon, “Short-distance atomic beam deceleration with stimulated light force,” Phys. Rev. Lett. 78, 1420–1423 (1997).
H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, 1999).
More precisely, provided P P |(Wξξ(n,m))m1,m2| 1/pdim xξ, ∀n6= 0, m2 m∈M0 ∀m1. This holds in particular if dim x3ξ/2 Pj |j|/min(ωc, 0) 1.
Indeed, Eq. (22) can be expressed as a function of x(ξ0) according to (1 + W0)y0 = −W00 x(ξ0), where y0 is the y vector excluding the x(ξ0) component, W0 is the W matrix excluding the Wξξ(0,n0) and Wξξ(n,0) blocks, ∀n, n0, and W00 is the W matrix restricted to the only blocks Wξξ(n,0), ∀n6= 0. Under condition stated in [32], we have (1 + W0)−1 ' 1 + P+∞k=1 (−W0)k. This implies y0 ' −W00 x(ξ0), so that kx(ξn)k kx(ξ0)k, and thus Q(ξξn) ' 0ξξ, ∀n6= 0, i.e., sξξ,j ' sξξ,j.
Indeed, we have fξξ(s, ε, δ)= fξξ(s, ε, 0)− (2δs/0)Iξξ(ε) with Iξξ(ε)= Im[Pqq0 εqεq∗0(Cξξ)qq0]. Since, for all invertible matrices A and A− B, we have (A− B)−1 = A−1 + (A− B)−1BA−1, we get Xξξ(s, ε, δ)−1 = Xξξ(s, ε, 0)−1 + (2δs/0)Xξξ(s, ε, δ)−1Iξξ(ε)Xξξ(s, ε, 0)−1, where we set Xξξ(s, ε, δ)≡ Aξξ + fξξ(s, ε, δ). It follows that R¯ (s, ε, δ)= R¯ (s, ε, 0)− 2δsNJ−1uTξ AξξXξξ(s, ε, δ)−1u0ξ(s, ε), where u0ξ(s, ε)≡ Iξξ(ε)Xξξ(s, ε, 0)−1Aξξuξ. The graph of ku0ξ(s, ε)k2 as a function of the most general polarization configuration ε = cos(θ/2)σ+ + eiϕ sin(θ/2)σ− (θ ∈ [0, π], ϕ ∈ [0, 2π[) always identifies to 0, whatever sand the atomic structure (Jg, Je), so that R¯ (s, ε, δ)= R¯ (s, ε, 0).
J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Addison-Wesley, 1994).
L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics: Theory and Application (Cambridge University, 1984).
R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University, 2012).