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Nowadays, the mechanical action of laser light is a tool used ubiquitously in cold atom physics,
leading to the control of atomic motion with extreme precision. In a recent work, we provided a
standardized and exact analytical formalism for computing in the semiclassical regime the radiation
force experienced by a two-level atom interacting with an arbitrary number of plane waves with
arbitrary intensities, frequencies, phases, and directions [J. Opt. Soc. Am. B 35, 127-132 (2018)].
Here, we extend this treatment to the multi-level atom case, where degeneracy of the atomic levels
is considered and polarization of light enters into play.

I. INTRODUCTION

The mechanical action of laser light on atoms led to
a great number of spectacular experiments and achieve-
ments in atomic physics during the past decades (see,
e.g., Refs. [1–8]). In the semiclassical regime, where the
atomic motion is treated classically, the resonant laser ra-
diation acts mechanically as a force on the atomic center-
of-mass. Recently, we provided a standardized exact ana-
lytical treatment of the mechanical action induced by an
arbitrary set of plane waves on a two-level atom [9]. In
particular, we showed that the light force always reaches
a periodic regime shortly after establishment of the in-
teraction and we provided an exact yet simple expres-
sion of all related Fourier components of the force in this
regime. The mean net force F has been shown to be
expressible in all cases (coherent and incoherent) in the

form F = ∑Nj=1 Fj , with

Fj =
Γ

2

sj

1 + s
h̵kj (1)

the force exerted by the jth plane wave in presence of
all other waves. Here, N is the number of plane waves
lightening the atom, Γ is the spontaneous de-excitation
rate of the upper level of the transition, h̵kj is the jth
plane wave photon momentum, and s = ∑j sj , with sj a
generalized saturation parameter

sj = Re [
Ωj

Γ/2 − iδj

N

∑
l=1

Ω∗
l

Γ
qmlj] , (2)

where Ωj and δj are the Rabi frequency and the detuning
of plane wave j, and qmlj are complex numbers obtained
from the solution of an infinite system of equations [9].
In the low-intensity and incoherent regime, we showed
that Eq. (2) simplifies to the standard expression of the
saturation parameter, i.e.,

sj =
∣Ωj ∣2/2

Γ2/4 + δ2
j

. (3)

The question then naturally arises of how this formal-
ism extends to the multi-level atom case, where Zeeman

sublevels and arbitrary polarization of light are consid-
ered. In this case, a closed form of the mean net force
F is only known in specific situations. For instance, for
an atom with degenerate ground and excited states of
angular momenta Jg and Je, respectively, the stationary
force exerted by a linearly polarized plane wave is either
0 (if ∆J ≡ Je − Jg = −1, or ∆J = 0 with integer Jg) or
reads

F = Γ

2

s

b + s
h̵k, (4)

with h̵k the plane wave photon momentum, s the stan-
dard saturation parameter (3) and b a parameter depend-
ing on Jg and Je [10]. Other specific cases have also
been studied in the lin⊥lin and σ+-σ− configurations [11–
15]. However, no exact analytical extension of Eq. (4)
is known for general atomic and laser configurations. In
practice, purely numerical approaches are enforced in this
case (see, e.g., Refs. [16–22]).

Here, we extend the formalism developed in Ref. [9]
to multi-level atoms. We solve the most general case
and provide an exact analytical expression for the force
exerted by an arbitrary number of plane waves with arbi-
trary intensities, phases, frequencies, polarizations, and
directions acting on the same individual multi-level atom.
We provide a generalization of Eqs. (1) and (2) in a ma-
trix formalism.

The paper is organized as follows. In Section II, we
provide generalized optical Bloch equations (OBEs) and
compute the exact expression of the radiation pressure
force in the most general configuration. In Section III, we
investigate some specific regimes where interesting sim-
plifications occur and we draw conclusions in Section IV.
Finally, two Appendices close this paper, where we de-
tail the effect of a reference frame rotation on the OBEs
(Appendix A) and explicit values of specific matrices are
given (Appendix B).

ar
X

iv
:2

10
5.

08
55

4v
1 

 [
qu

an
t-

ph
] 

 1
8 

M
ay

 2
02

1



2

II. GENERAL AND EXACT EXPRESSION OF
THE RADIATION PRESSURE FORCE

A. Hamiltonian and master equation

We consider an atom with two degenerate levels of en-
ergy Ee ≡ h̵ωe and Eg ≡ h̵ωg (Ee > Eg), and of total an-
gular momenta Je and Jg, respectively. The Zeeman sub-
levels are denoted ∣Je,me⟩ and ∣Jg,mg⟩. We consider an
electric dipole transition so as ∆J ≡ Je−Jg ∈ {0,±1}. We
denote the atomic transition angular frequency ωe − ωg
by ωeg. The atom interacts with a classical electro-
magnetic field E(r, t) resulting from the superposition

of N arbitrary plane waves: E(r, t) = ∑Nj=1 Ej(r, t), with

Ej(r, t) = (Ej/2)ei(ωjt−kj ⋅r+ϕj)+c.c. Here, ωj , kj , and ϕj
are the angular frequency, the wave vector and the phase
of the jth plane wave, respectively, and Ej ≡ Ejεj , with
Ej > 0 and εj = ∑q εj,qeq the normalized polarisation
vector of the corresponding wave written in the upper-
index spherical basis {eq, q = 0,±1} [23]. Nonzero εj,0
and εj,±1 components correspond to so-called π and σ±
polarization components of radiation, respectively. Ac-
cordingly, the vectors e0, e±1 are also denoted by π, σ±,
respectively. The quasi-resonance condition is fulfilled
for each plane wave: ∣δj ∣ ≪ ωeg,∀j, where δj = ωj − ωeg
is the detuning. We define a weighted mean frequency
ω = ∑j κjωj of the plane waves and a weighted mean

detuning δ = ∑j κjδj = ω − ωeg, with {κj} an a priori
arbitrary set of weighting factors (κj ≥ 0 and ∑j κj = 1).

In the electric-dipole approximation and consider-
ing spontaneous emission in the master equation ap-
proach [24], the atomic density operator ρ̂ obeys

d

dt
ρ̂(t) = 1

ih̵
[Ĥ(t), ρ̂(t)] +D(ρ̂(t)) (5)

in which Ĥ(t) = h̵ωeP̂e + h̵ωgP̂g − D̂ ⋅E(r, t) and

D(ρ̂) = −(Γ/2)(P̂eρ̂+ ρ̂P̂e)+Γ∑
q

(eq∗ ⋅ Ŝ−)ρ̂(eq ⋅ Ŝ+). (6)

Here, P̂k ≡ ∑mk ∣Jk,mk⟩⟨Jk,mk ∣ (k = e, g), D̂ is the
atomic electric dipole operator, r is the atom position
in the electric field, Γ is the spontaneous de-excitation
rate of each upper sublevel, and the Ŝ± operators are

defined according to eq ⋅ Ŝ+∣Jg,mg⟩ = C
(q)
mg ∣Je,mg + q⟩,

eq ⋅ Ŝ+∣Je,me⟩ = 0, and eq∗ ⋅ Ŝ− = (eq ⋅ Ŝ+)†, with

C(q)m ≡ ⟨Jg,m; 1, q∣Je,m + q⟩, (7)

where ⟨j1,m1; j2,m2∣j,m⟩ is the Clebsch-Gordan coef-
ficient corresponding to the coupling of ∣j1,m1⟩ and
∣j2,m2⟩ into ∣j,m⟩.

B. Optical Bloch equations

The hermiticity and unit trace of the density op-
erator make all matrix elements ρ(Jk,mk),(Jl,ml) ≡

⟨Jk,mk ∣ρ̂∣Jl,ml⟩ (k, l = e, g) dependent variables. We
consider here the column vector of real and independent
variables x = (xTo ,xTξ )T , with xo a column vector of opti-

cal coherences and xξ ≡ (xTp ,xTZ)T , where xp is a column
vector of populations and xZ a column vector of Zeeman
coherences. We defined

xo =
⎛
⎜⎜
⎝

x
(−(Je+Jg))
o

⋮
x
(Je+Jg)
o

⎞
⎟⎟
⎠
, with x(∆m)o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u
(∆m)
o,m

(∆m)
−

v
(∆m)
o,m

(∆m)
−

⋮
u
(∆m)
o,m

(∆m)
+

v
(∆m)
o,m

(∆m)
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (8)

where u
(∆m)
o,m ≡ Re(ρ(Jg,m),(Je,m+∆m)e−iωt) and

v
(∆m)
o,m ≡ Im(ρ(Jg,m),(Je,m+∆m)e−iωt), with m =
m
(∆m)
− , . . . ,m

(∆m)
+ , m

(∆m)
± = ±min (Jg, Jg +∆J ∓∆m),

and ∆m = −(Je + Jg), . . . , Je + Jg.
We defined xp ≡ (xTpe ,x

T
pg)

T , with (k = e, g)

xpk =
⎛
⎜
⎝

wk,−Jk+δk,g
⋮

wk,Jk

⎞
⎟
⎠
, (9)

where wk,mk = ρ(Jk,mk),(Jk,mk) − N−1
J , with mk = −Jk +

δk,g, . . . , Jk and NJ ≡ 2(Je + Jg + 1).
We finally defined xZ ≡ (xTZe ,x

T
Zg

)T , with (k = e, g)

xZk =
⎛
⎜⎜
⎝

x
(1)
Zk
⋮

x
(2Jk)
Zk

⎞
⎟⎟
⎠
, with x

(∆m)
Zk

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

u
(∆m)
Zk,−Jk
v
(∆m)
Zk,−Jk
⋮

u
(∆m)
Zk,Jk−∆m

v
(∆m)
Zk,Jk−∆m

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, (10)

where u
(∆m)
Zk,mk

= Re(ρ(Jk,mk),(Jk,mk+∆m)) and v
(∆m)
Zk,mk

=
Im(ρ(Jk,mk),(Jk,mk+∆m)), with mk = −Jk, . . . , Jk − ∆m
and ∆m = 1, . . . ,2Jk.

In the rotating wave approximation (RWA), the time
evolution of x induced by Eq. (5) obeys to the generalized
OBEs

ẋ(t) = A(t)x(t) + b, (11)

with a matrix A(t) and a column vector b as described
in the next two subsections.

1. The A(t) matrix

The A(t) matrix reads

A(t) = −ΓA0 + Im (Ω(t) ⋅ eC) , (12)

where A0 is a time independent matrix with scalar en-
tries (independent of any reference frame) detailed here-
after, Ω(t) = ∑j Ωj(t) ≡ ∑q Ωq(t)eq, with Ωj(t) =



3

Ωje
i(ωj−ω)tεj , where

Ωj = −
Eje

i(−kj ⋅r+ϕj)

h̵

⟨Je∥D∥Jg⟩∗√
2Je + 1

, (13)

in which ⟨Je∥D∥Jg⟩ denotes the so-called reduced matrix

element associated to D̂ and eC is the (unnormalized)

basis vector of matrices eC = ∑q C(q)eq, with contravari-

ant components C(q) as described hereafter and where
eq = eq∗ (q = 0,±1) are the lower-index spherical basis
vectors (eC is said a basis vector in that it rotates simi-
larly with the spherical basis in case of a basis change, so
that Ω(t) ⋅eC = ∑q Ωq(t)C(q) does not define a matrix of
scalars - see Appendix A). In the quasi-resonance condi-
tion, the RWA approximation is fully justified as long as
∣Ωj ∣/ωj ≪ 1,∀j [25].

The A0 matrix reads A0 = diag(Aoo,Aξξ), with

matrix blocks Aoo = ⊕(dimxo)/2∆(1/2) and Aξξ =
diag(App,AZZ), where

∆(α) = ( α −δ/Γ
δ/Γ α

) , ∀α ∈ C, (14)

and App and AZZ are 2 blocks themselves structured into
subblocks according to

App = ( 1pe 0
Apgpe 0pg

) (15)

and

AZZ = ( 1Ze 0
AZgZe 0Zg

) , (16)

with 1i and 0i the identity and zero matrices of di-
mension dimxi × dimxi, respectively. The Apgpe sub-

block elements read (Apgpe)mgme = −(C
(me−mg)
mg )2, with

mk = −Jk + δk,g, . . . , Jk (k = e, g) [here and through-
out the paper, we adopt the convention not to index
the matrix elements from (1,1) but with indices directly
linked to the magnetic sublevels]. The AZgZe subblock
is itself structured into vertically and horizontally or-

dered subsubblocks A
(∆mg,∆me)
ZgZe

, with respective indices

∆mg = 1, . . . ,2Jg and ∆me = 1, . . . ,2Je. The only a
priori nonzero of these subsubblocks are for ∆mg =
∆me ≡ ∆m, of elements A

(∆m,∆m)
ZgZe

= Ã(∆m,∆m)ZgZe
⊗12, with

(Ã(∆m,∆m)ZgZe
)mgme = −C(me−mg)mg C(me−mg)mg+∆m , where mk =

−Jk, . . . , Jk −∆m (k = e, g).
The C(q) matrices read

C(q) =
⎛
⎝

0 C
(q)
oξ ⊗ (1,−i)T

C
(q)
ξo ⊗ (1,−i) 0

⎞
⎠
, (17)

with C
(q)
oξ = (C(q)op ,C(q)oZ ) and C

(q)
ξo = (C(q)po

T
,C
(q)
Zo

T
)T ,

where C
(q)
op = (C(q)ope ,C

(q)
opg), C

(q)
po = (C(q)peo

T
,C
(q)
pgo

T
)T ,

C
(q)
oZ = (C(q)oZe ,C

(q)
oZg

), and C
(q)
Zo = (C(q)Zeo

T
,C
(q)
Zgo

T
)T . The

C
(q)
opk , C

(q)
pko, C

(q)
oZk

, and C
(q)
Zko

(k = e, g) blocks exclu-
sively contain Clebsch-Gordan coefficients and are de-
tailed below. In addition, for ζ = ξ, pe, pg, p,Ze, Zg, Z, the

C
(q)
oζ [C

(q)
ζo ] blocks are of dimension (dimxo/2) × dimxζ

[dimxζ × (dimxo/2)].
In accordance with Eq. (8), the C

(q)
opk blocks are

structured into vertically ordered subblocks indexed
with ∆m = −(Jg + Je), . . . , Jg + Je and of dimension

(dimx
(∆m)
o /2) × dimxpk . The only a priori nonzero

of these subblocks is for ∆m = q and we denote it by

C̃
(q)
opk . Its elements read (C̃(q)opk)m,mk = C(q)m (δm,−Jg +

ñkδmk,m+nkq)/2, with nk = δe,k and ñk = 2nk − 1, where

m =m(q)− , . . . ,m
(q)
+ and mk = −Jk+δk,g, . . . , Jk. In a same

way, the C
(q)
pko blocks are structured into horizontally or-

dered subblocks indexed with ∆m = −(Jg+Je), . . . , Jg+Je
and of dimension dimxpk × (dimx

(∆m)
o /2). Again, the

only a priori nonzero of these subblocks is for ∆m = q
and it is denoted by C̃

(q)
pko. Its elements read (C̃(q)pko)mk,m =

−ñkC(q)m δm,mk−nkq, where mk = −Jk + δk,g, . . . , Jk and

m =m(q)− , . . . ,m
(q)
+ .

Finally, C
(q)
Zko

= −C(q)oZk
T

and C
(q)
oZk

= ∑ε=±1C
(q)
oZk,ε

⊗
(1, εi), where, in accordance with Eqs. (8) and (10),

C
(q)
oZk,ε

is structured into vertically and horizontally
ordered subblocks, with respective indices ∆m =
−(Jg + Je), . . . , Jg + Je and ∆mk = 1, . . . ,2Jk.

These subblocks are of dimension (dimx
(∆m)
o /2) ×

(dimx
(∆mk)
Zk

/2). The only a priori nonzero of them
are for ∆m − ε∆mk = q and they are denoted by

C̃
(q)(∆mk)
oZk,ε

. Their elements read (C̃(q)(∆mk)oZk,ε
)m,mk =

(ñk/2)C(q)m−ε(nk−1)∆mkδmk,m+nkq−(1−ε)∆mk/2, where m =
m
(∆m)
− , . . . ,m

(∆m)
+ and mk = −Jk, . . . , Jk −∆mk.

2. The b column vector

The b column vector reads b = −ΓN−1
J (0To ,bTξ )T , with

0o the zero column vector of dimension dimxo and bξ =
Aξξuξ, where uξ is the column vector of dimension dimxξ
having the 2Je + 1 first components equal to 1 and all
others equal to 0.

C. Periodic regime

Because of the time dependence of A(t), the OBEs can-
not be solved analytically and require a priori numerical
integration. However, within the commensurability as-
sumption (all ωj −ω commensurable), the Ω(t) and A(t)
quantities are periodic in time with the repetition period
Tc = 2π/ωc, where ωc = (LCM[(ωj −ω)−1,∀j ∶ ωj ≠ ω])−1,
and all mj = (ωj − ω)/ωc numbers are integer numbers.
In particular, if all frequencies ωj are identical, then Ω(t)
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and A(t) are constant in time, i.e., periodic with an ar-
bitrary value of ωc ≠ 0, and all mj trivially vanish.

Within the commensurability assumption and given
initial conditions x(t0) = x0, the OBEs admit the unique
solution (Floquet’s theorem; see, e.g., Ref. [26])

x(t) = PI(t)eR(t−t0)(x0 − xnh(t0)) + xnh(t), (18)

where R is a logarithm of the OBEs monodromy matrix
divided by Tc [9], PI(t) is an invertible Tc-periodic matrix

equal to XI(t)e−R(t−t0) for t ∈ [t0, t0+Tc], with XI(t) the
matriciant of the OBEs [9], and xnh(t) is an arbitrary
particular solution of the nonhomogeneous OBEs.

We denote the maximum value among the real part
of all Floquet exponents (the eigenvalues of R) by λ. If

λ < 0, the eR(t−t0) matrix tends to zero with a character-
istic damping time ∣λ∣−1 and x(t) ≃ xnh(t) at long times
(t ≫ t0 + ∣λ∣−1). In addition, the OBEs are ensured to
admit a unique Tc-periodic solution in that case [26] that
the particular solution xnh(t) can be set to so that the
atomic internal degrees of freedom x(t) necessarily reach

a periodic regime at long times. If λ = 0, the eR(t−t0)
matrix is not damped. In addition, a unique Tc-periodic
particular solution xnh(t) is ensured to exist if none of
the corresponding Floquet exponents imaginary parts is
zero [26]; otherwise, a periodic solution may not exist.
Finally, the λ > 0 case can never happen because the
solution x(t) would diverge for t→ +∞, which is unphys-
ical.

When a Tc-periodic regime is reached, the solution of
the OBEs can be expressed using the Fourier expansion

x(t) =
+∞
∑
n=−∞

x(n)einωct, (19)

with x(n) the corresponding Fourier components. For

ζ = o, ξ, p,Z, pe, pg, Ze, Zg, we denote by x
(n)
ζ the Fourier

components related to the periodic variable xζ(t). Since

x(t) is real, we have x(−n) = x(n)
∗

and, since it is contin-

uous and differentiable, we have further ∑n ∣x(n)∣2 < ∞.
Inserting Eq. (19) into the OBEs yields an infinite system
of equations connecting all Fourier components. We get,
∀n,

x(n)o = A(n)oo ∑
q,j

(Č(q)
∗

oξ

Ω∗
j,q

Γ
x
(n+mj)
ξ − Č(q)oξ

Ωj,q

Γ
x
(n−mj)
ξ ) ,

(20)

with Ωj,q = Ωjεj,q, A
(n)
oo = −2iΓ2τ+nτ

−
n1dimxo/2 ⊗

∆(−inωc/Γ−1/2) and Č
(q)
oξ = C(q)oξ ⊗(1,−i)T [see Eq. (17)],

where we defined τ±n = 1/[Γ + 2i(nωc ± δ)], and

x
(n)
ξ + ∑

m∈M0

W(n,m)ξξ x
(n+m)
ξ = dξδn,0. (21)

In the latter, δn,0 denotes the Kronecker symbol,
M0 is the set of all distinct nonzero integer num-
bers mlj ≡ ml − mj (j, l = 1, . . . ,N), and we defined

W(n,m)ξξ = (A(n)ξξ +B(n,0)ξξ )−1B
(n,m)
ξξ and dξ = −N−1

J (Aξξ +
s̃ξξ)−1Aξξuξ, where we set A

(n)
ξξ = Aξξ + (inωc/Γ)1ξ,

B
(n,m)
ξξ = ∑j,l∶mlj=m∑q,q′(Ωj,qΩ

∗
l,q′/Γ)(τ−n−mj(Cξξ)

q
q′ +

τ+n+ml(Cξξ)
q′

q

∗
) with (Cξξ)qq′ ≡ −C(q)ξo C

(q′)
oξ

∗
, and s̃ξξ =

∑j s̃ξξ,j with

s̃ξξ,j = Re

⎡⎢⎢⎢⎢⎢⎢⎣

∑
q,q′

N

∑
l=1

l∶mlj=0

Ωj,qΩ
∗
l,q′/Γ

Γ/2 − iδj
(Cξξ)qq′

⎤⎥⎥⎥⎥⎥⎥⎦

. (22)

We have τ±−n = τ∓n
∗
, A

(−n)
ξξ = A(n)ξξ

∗
, B

(−n,−m)
ξξ = B(n,m)ξξ

∗
,

and W(−n,−m)ξξ =W(n,m)ξξ

∗
.

The system (21) is only defined if all A
(n)
ξξ +B(n,0)ξξ ma-

trices are invertible. Otherwise, the OBEs actually do
not admit any periodic solution and the following for-
malism does not apply to these situations. For ∆J = −1
and all waves with the same polarization εj , we easily get

det (A(0)ξξ +B(0,0)ξξ ) = 0 so that no periodic regime exists.

If we define y = (. . . ,x(−1)
ξ

T
,x
(0)
ξ

T
,x
(1)
ξ

T
, . . .)T the in-

finite column vector of all x
(n)
ξ components, as well as

W =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
. . . W

(−1,−1)
ξξ W

(−1,0)
ξξ W

(−1,1)
ξξ . . .

. . . W
(0,−1)
ξξ W

(0,0)
ξξ W

(0,1)
ξξ . . .

. . . W
(1,−1)
ξξ W

(1,0)
ξξ W

(1,1)
ξξ . . .

⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, (23)

the infinite matrix structured into the subblocks
W
(n,n′)
ξξ = ∑m∈M0

W(n,m)ξξ δn′,n+m (n, n′ ranging from −∞
to +∞), then Eq. (21) yields the complex inhomogeneous
infinite system of equations

(I +W )y = c, (24)

with c = (. . . ,c(−1)
ξ

T
,c
(0)
ξ

T
,c
(1)
ξ

T
, . . .)T the infinite col-

umn vector of subblocks c
(n)
ξ = dξδn,0 (n ranging from

−∞ to +∞) and I the infinite identity matrix. We di-

rectly have W
(n,n)
ξξ = 0, ∀n. The solution of the sys-

tem (24) is necessarily such as x
(0)
ξ ≠ 0; otherwise, all

other x
(n)
ξ components would solve a homogeneous sys-

tem of equations and thus vanish, in which case the
equation for n = 0 could not be satisfied. This allows

us to define the matrices Q
(n)
ξξ that map the x

(0)
ξ vec-

tor onto x
(n)
ξ , ∀n: Q

(n)
ξξ x

(0)
ξ = x

(n)
ξ . The Q

(n)
ξξ ma-

trices are a priori not unique. Such suitable matri-

ces can be given by (see, e.g., Ref. [27]): Q
(n)
ξξ = 0

if x
(n)
ξ = 0; otherwise Q

(n)
ξξ = (eiθ∥x(n)ξ ∥/∥x(0)ξ ∥)1ξ if

x
(n)
ξ /∥x(n)ξ ∥ = eiθ(x(0)ξ /∥x(0)ξ ∥) (θ ∈ [0,2π[); otherwise

Q
(n)
ξξ = (∥x(n)ξ ∥/∥x(0)ξ ∥)U (n)ξξ . In the latter, U

(n)
ξξ is the
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unitary matrix eiφ
(n)

V
(n)
ξξ , where φ(n) is the phase of the

complex number x
(0)
ξ

∗
⋅x(n)ξ , conventionally set to 0 if the

complex number is zero, and where V
(n)
ξξ is the House-

holder matrix V
(n)
ξξ = 1ξ − (2/∥z(n)ξ ∥2)(z(n)ξ z

(n)
ξ

†
), with

z
(n)
ξ = eiφ

(n)

x
(0)
ξ − (∥x(0)ξ ∥/∥x(n)ξ ∥)x(n)ξ . In particular, we

have in that case Q
(0)
ξξ = 1ξ and Q

(−n)
ξξ = Q(n)ξξ

∗
. Inserting

x
(n)
ξ = Q(n)ξξ x

(0)
ξ into Eq. (21) for n = 0 yields

x
(0)
ξ = − 1

NJ

Aξξ

Aξξ + sξξ
uξ, (25)

where
Aξξ

Aξξ+sξξ ≡ (Aξξ + sξξ)−1
Aξξ, sξξ = ∑j sξξ,j , with

sξξ,j = Re

⎡⎢⎢⎢⎢⎣
∑
q,q′

N

∑
l=1

Ωj,qΩ
∗
l,q′/Γ

Γ/2 − iδj
(Cξξ)qq′Q

(mlj)
ξξ

⎤⎥⎥⎥⎥⎦
. (26)

Equation (26) is the generalization of Eq. (15) of Ref. [9]
to the degenerate two-level atom case.

D. General and exact expression of the radiation
force

Proceeding along the same lines as in Ref. [9] (two-
level atom case), the total mean power absorbed from all
plane waves and the mean net force exerted on the atom
can be expressed as P (t) = ∑j Pj(t) and F(t) = ∑j Fj(t),
respectively, with Pj(t) = Rj(t)h̵ω and Fj(t) = Rj(t)h̵kj ,
where

Rj(t) = Im [Ωj(t) ⋅χo(t)] , (27)

with χo(t) ≡ ∑q χ
(q)
o (t)eq the three-dimensional vector

of contravariant components

χ(q)o (t) = −
m
(q)
+

∑
m=m(q)

−

C(q)m (u(q)o,m(t) − iv(q)o,m(t)). (28)

The vector χo(t) is a true polar vector (see Appendix A),
so that obviously Ωj(t) ⋅ χo(t) is a scalar quantity. In
the quasi-resonance condition (ωj ≃ ω, ∀j), Rj(t) ≃
⟨dN/dt⟩j(t) [9].

Within the commensurability assumption, we have
ωj − ω = mjωc, ∀j. In the periodic regime, x(t) is
in addition Tc-periodic, and thus so are Rj(t), Pj(t),
and Fj(t). In this regime, the Fourier components of

Rj(t) ≡ ∑+∞n=−∞R
(n)
j einωct are easily obtained by insert-

ing Eq. (19) into Eq. (27). By using further Eq. (20) and

Q
(n)
ξξ x

(0)
ξ = x

(n)
ξ with x

(0)
ξ as in Eq. (25), we get

R
(n)
j = Γ

NJ
uTξ s

(n)
ξξ,j

Aξξ

Aξξ + sξξ
uξ

= −ΓuTξ s
(n)
ξξ,jx

(0)
ξ ,

(29)

with s
(n)
ξξ,j = (σ(n)ξξ,j + σ

(−n)
ξξ,j

∗
) /2, where

σ
(n)
ξξ,j = ∑

q,q′

N

∑
l=1

Ωj,qΩ
∗
l,q′/Γ

Γ/2 + i(nωc − δj)
(Cξξ)qq′Q

(n+mlj)
ξξ . (30)

In particular, the temporal mean value Rj of Rj(t) in the

periodic regime is given by the Fourier component R
(0)
j ,

and observing that s
(0)
ξξ,j = sξξ,j [Eq. (26)], we get

Rj =
Γ

NJ
uTξ sξξ,j

Aξξ

Aξξ + sξξ
uξ. (31)

The Fourier components of the corresponding force

Fj(t) ≡ ∑+∞n=−∞ F
(n)
j einωct in the periodic regime are then

given by F
(n)
j = R

(n)
j h̵kj and the mean force in this

regime thus reads

Fj =
Γ

NJ
(uTξ sξξ,j

Aξξ

Aξξ + sξξ
uξ)h̵kj . (32)

Equation (32) is a natural extension of Eq. (19) of
Ref. [9]. Interestingly, the two-level atom case is also
covered within the present formalism. To this aim, it is
enough to consider Jg = Je = 0 and to open artificially the

forbidden 0-0 transition by forcing C(0)0 to 1. All equa-
tions above then merely simplify to the two-level atom
formalism of Ref. [9].

To illustrate our formalism, we computed the stimu-
lated bichromatic force in a standard four traveling-wave
configuration [30] for various atomic structures. We con-
sidered a detuning δ = 10Γ, a Rabi frequency amplitude

of
√

3/2δ, a phase shift of π/2 for one of the waves, and
a pure π polarization (εj = π,∀j). We show in Fig. 1 the
value of the resulting bichromatic force (averaged over
the 2π range of the spatially varying relative phase be-
tween the opposite waves) acting in the direction of the
phased wave on a moving atom as a function of its veloc-
ity v for ∆J = 1 with Jg = 1/2,1, . . . ,4. Figure 1 shows
that the π polarization case yields poorer results for the
bichromatic force than the ideal two-level atom case (here
merely obtained using σ+ or σ− light with ∆J = 1).

III. SPECIFIC REGIMES

A. Low-intensity regime

We define the low-intensity regime as the regime where
∑j ∣Ωj ∣/Γ ≪ 1 and [31]

∑
m2

∑
m∈M0

∣(W(n,m)ξξ )m1,m2 ∣ ≪
1√

dimxξ
, ∀n ≠ 0,∀m1.

(33)

In this regime, we have sξξ,j ≃ s̃ξξ,j and Rj can be com-
puted without solving the infinite system (24). Indeed,

Eq. (24) can be expressed as a function of x
(0)
ξ according
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FIG. 1. (Color online) Stimulated bichromatic force F as a
function of the atomic velocity v computed via our formalism

for a detuning δ = 10Γ, a Rabi frequency of
√

3/2δ, a phase
shift of π/2 for one wave, εj = π,∀j, and Jg = 1/2,1, . . . ,4
with ∆J = 1.

to (1+W0)y0 = −W ′
0x
(0)
ξ , where y0 is the y vector exclud-

ing the x
(0)
ξ component, W0 is the W matrix excluding

the W
(0,n′)
ξξ and W

(n,0)
ξξ blocks, ∀n,n′, and W ′

0 is the W

matrix restricted to the only blocks W
(n,0)
ξξ , ∀n ≠ 0. Un-

der condition (33), we have (1+W0)−1 ≃ 1+∑+∞k=1(−W0)k.

This implies y0 ≃ −W ′
0x
(0)
ξ , so that ∥x(n)ξ ∥ ≪ ∥x(0)ξ ∥ and

thus Q
(n)
ξξ ≃ 0ξξ,∀n ≠ 0, i.e., sξξ,j ≃ s̃ξξ,j . If all plane

waves have different frequencies, we get

sξξ,j ≃ Re

⎡⎢⎢⎢⎢⎣
∑
q,q′

(
Ωj,qΩ

∗
j,q′/Γ

Γ/2 − iδj
)(Cξξ)qq′

⎤⎥⎥⎥⎥⎦
. (34)

If in contrast some plane waves have identical frequencies,
coherent effects can be observed. If we are only interested
in the incoherent effect of the plane waves, an average ⟨⋅⟩ϕ
over all phase differences must be performed. For N = 2
with ε1 = σ+ and ε2 = σ−, and in the incoherent regime,

the statistical delta method [32] at order 0 yields R
inc

j ≡
⟨Rj⟩ϕ ≃ ΓN−1

J uTξ ⟨s̃ξξ,j⟩ϕ (Aξξ +∑i⟨s̃ξξ,i⟩ϕ)
−1
Aξξuξ. For

such εj , we have further ⟨s̃ξξ,j⟩ϕ = Re[(∣Ωj ∣2/Γ)/(Γ/2 −
iδj)(Cξξ)

qj
qj ], where q1 = 1 = −q2. Since (Cξξ)qq has the

block-diagonal structure (see Appendix B)

(Cξξ)qq = ((Cpp)
q
q 0

0 (CZZ)qq
) , (35)

with (Cζζ)qq = −C(q)ζo C
(q)∗
oζ (ζ = p,Z), it follows that

⟨s̃ξξ,j⟩ϕ has the same block-diagonal structure. In ad-
dition, Aξξ behaves similarly and since all (Cpp)qq ma-

trix elements are real numbers, R
inc

j simplifies to R
inc

j ≃
ΓN−1

J sjfj(s1, s2), with sj ≡ (∣Ωj ∣2/2)/(Γ2/4 + δ2
j ) and

fj(s1, s2) = uTp (Cpp)
qj
qj(App + ∑

2
i=1 si(Cpp)qiqi)

−1Appup,

where up is the dimxp column vector with the dimxpe
first components equal to 1 and all others to 0.

B. Plane waves with same frequency

If all plane waves have the same frequency, the periodic

regime is a stationary regime (R
(n)
j = 0,∀n ≠ 0) and sξξ,j

[see Eq. (26)] simplifies to Re[∑q,q′(sj)q
′

q (Cξξ)qq′], where

(sj)q
′

q is the second-order tensor (Ωj,qΩ∗
q′/Γ)/(Γ/2 − iδ),

with δ ≡ δj ,∀j. Here, Ωq is independent of time and
merely identifies to ∑j Ωj,q.

For N = 1, the index j = 1 can be omitted and we

get sq
′

q = s(1 + 2iδ/Γ)εqε∗q′ with s = (∣Ω∣2/2)/(Γ2/4 + δ2)
and R = ΓN−1

J uTξ fξξ(Aξξ + fξξ)−1Aξξuξ where we set

fξξ ≡ Re[∑q,q′ sq
′

q (Cξξ)qq′]. For a given atomic struc-
ture and in contrast to Aξξ and uξ, the fξξ ma-

trix and R depend on s, ε, and δ (at constant s):

fξξ ≡ fξξ(s, ε, δ) and R ≡ R(s, ε, δ). In addition,
we have fξξ(s, ε, δ) = fξξ(s, ε,0) − (2δs/Γ)Iξξ(ε) with
Iξξ(ε) = Im[∑q,q′ εqε∗q′(Cξξ)

q
q′]. Since, for all invertible

matrices A and A − B, we have (A − B)−1 = A−1 +
(A − B)−1BA−1, we get Xξξ(s, ε, δ)−1 = Xξξ(s, ε,0)−1 +
(2δs/Γ)Xξξ(s, ε, δ)−1Iξξ(ε)Xξξ(s, ε,0)−1, where we set

Xξξ(s, ε, δ) ≡ Aξξ +fξξ(s, ε, δ). It follows that R(s, ε, δ) =
R(s, ε,0) − 2δsN−1

J uTξ AξξXξξ(s, ε, δ)−1u′ξ(s, ε), where

u′ξ(s, ε) ≡ Iξξ(ε)Xξξ(s, ε,0)−1Aξξuξ. The graph of

∥u′ξ(s, ε)∥2 as a function of the most general polariza-

tion configuration ε = cos(θ/2)σ+ + eiϕ sin(θ/2)σ− (θ ∈
[0, π], ϕ ∈ [0,2π[) always identifies to 0, whatever s and
the atomic structure (Jg, Je), so that

R(s, ε, δ) = R(s, ε,0), (36)

i.e., R does not depend on δ at constant s.

C. Plane waves with same pure polarization

If all plane waves have the same pure polarization q

(εj = eq, ∀j), then each W(n,m)ξξ matrix is block-diagonal

with blocks W(n,m)pp and W(n,m)ZZ of dimension dimxp ×
dimxp and dimxZ ×dimxZ , respectively, because so are
the (Cξξ)qq matrices, with corresponding blocks (Cpp)qq
and (CZZ)qq. In addition, the dimxZ last components of
the dξ vector vanish and its dimxp first components are
denoted hereafter by dp. Equation (21) then yields the
decoupled system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x(n)p + ∑
m∈M0

W(n,m)pp x(n+m)p = dpδn,0,

x
(n)
Z + ∑

m∈M0

W(n,m)ZZ x
(n+m)
Z = 0

(37)

that can be solved separately for the x
(n)
p and x

(n)
Z

Fourier components. The x
(n)
Z components satisfy a
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homogeneous system with trivial solution x
(n)
Z = 0,∀n.

This implies that the dimxZ last components of z
(n)
ξ

are zero and then the Q
(n)
ξξ matrix is block-diagonal

with blocks Q
(n)
pp and Q

(n)
ZZ of dimension dimxp ×

dimxp and dimxZ × dimxZ , respectively. As a con-

sequence, σ
(n)
ξξ,j are in turn block-diagonal with the

same structure, ∀n, and so are s
(n)
ξξ,j with correspond-

ing blocks s
(n)
pp,j and s

(n)
ZZ,j . In particular, Eqs. (25)

and (29) yield x
(0)
p = −N−1

J (App + spp)−1Appup and

R
(n)
j = ΓN−1

J uTp s
(n)
pp,j (App + spp)

−1
Appup, respectively,

with spp = ∑j spp,j , where spp,j ≡ s(0)pp,j .
In the low-intensity regime and with all plane waves

with different frequencies, we get spp,j ≃ sj(Cpp)qq and

Rj = ΓN−1
J sju

T
p (Cpp)qq(App + s(Cpp)qq)−1Appup, respec-

tively, with s = ∑j sj and sj = (∣Ωj ∣2/2)/(Γ2/4 + δ2
j ).

D. Plane waves with same frequency and pure
polarization

If all lasers have the same angular frequency ωj and the
same pure polarization q, we set Ω = ∑j Ωj and δ ≡ δj ,∀j,
and Rj simplifies to

Rj =
Γ

2
sj

a∆J,Jg,q

b∆J,Jg,q + s
, (38)

with sj = Re[(ΩjΩ∗/Γ)/(Γ/2 − iδ)] and s = ∑j sj . For
∆J = 1, or ∆J = 0 with q = 0 and half-integer Jg,
a∆J,Jg,q = 1 and

b∆J,Jg,q =
det [Aqpp,+] + (−1)2Jg det [Aqpp,−]
det [Aqpp,+] − (−1)2Jg det [Aqpp,−]

, (39)

with Aqpp,± ≡ App ± (Cpp)qq. For ∆J = 0 with q ≠ 0 or
integer Jg, a∆J,Jg,q = b∆J,Jg,q = 0. In particular, we have
b1,Jg,±1 = 1. For ∆J = 1, Eq. (38) yields

Rj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Γ

2

sj

1 + s
for q = ±1,

Γ

2

sj

b1,Jg,0 + s
for q = 0.

(40)

For q = ±1, in the periodic regime, the atom is pumped
into the ∣Jg,mg = ±Jg⟩ state from which it interacts only
with the ∣Je,me = ±Je⟩ state through the laser radiation
action. The atom then exactly behaves as a two-level
system. For q = 0, all populations are nonzero apart
from me = ±Je and the result is more subtle. For ∆J = 0,
Eq. (38) yields Rj = 0 for q = ±1 and

Rj =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if Jg is integer,
Γ

2

sj

b0,Jg,0 + s
if Jg is half-integer, (41)

FIG. 2. (Color online) Values of (a) b1,Jg,0 and (b) b0,Jg,0 as
a function of Jg.

for q = 0. For q = ±1, the atom is pumped into the
∣Jg,mg = ±Jg⟩ state on which σ±-radiation has no effect.
For q = 0 and integer Jg, since the Clebsch-Gordan co-

efficient C(0)0 is zero whatever Jg, the atom is pumped
into the ∣Jg,mg = 0⟩ state from which π-radiation has
no effect. For q = 0 and half-integer Jg, all populations
are nonzero. We recall that no periodic regime exists
for all lasers with same polarization in the ∆J = −1 case

[since det (A(0)ξξ +B(0,0)ξξ ) = 0]. Equations (40) and (41)

perfectly reproduce the results of Ref. [10] that investi-
gates those specific configurations. We show in Fig. 2 the
parameters b1,Jg,0 and b0,Jg,0 as a function of Jg.

E. N = 2 case

For N = 2 and ω1 ≠ ω2, the system can be tackled
in a continued fraction approach. The commensurability
assumption implies that n2κ1 = n1κ2, with n1 and n2

two positive coprime integer numbers. It follows that
ωc = ∣ω1 −ω2∣/ns, with ns = n1 +n2, m1 = sgn(ω1 −ω2)n2,
m2 = sgn(ω2 − ω1)n1, m12 = sgn(ω1 − ω2)ns, and M0 =
{±ns}. The infinite system of Eq. (21) then reads

x
(n)
ξ +W(n,ns)ξξ x

(n+ns)
ξ +W(n,−ns)ξξ x

(n−ns)
ξ = dξδn,0. (42)

This system only couples together the Fourier compo-

nents x
(n)
ξ with n = kns (k ∈ Z). All other com-

ponents are totally decoupled from these former and
thus vanish, since they satisfy a homogeneous sys-

tem. Hence, the only a priori nonvanishing Q
(n)
ξξ ma-

trices and R
(n)
j and F

(n)
j Fourier components are for

these specific n = kns values, and the periodic regime
is rather characterized by the beat period Tc/ns =
2π/∣ω1 − ω2∣. We then define the matrix Q

(n,m)
ξξ that

maps x
(n)
ξ onto x

(n+m)
ξ ,∀m,n: Q

(n,m)
ξξ x

(n)
ξ = x

(n+m)
ξ .

It follows that, for n = kns ≠ 0, Eq. (42) yields

Q
(n−ns,ns)
ξξ = −W(n,−ns)ξξ /(1ξ +W(n,ns)ξξ Q

(n,ns)
ξξ ) where we

adpoted the matrix notation A/B ≡ B−1A. Apply-
ing recursively this relation for n = ns,2ns,3ns, . . .

yields Q
(ns)
ξξ = −W(ns,−ns)ξξ /[1ξ + K∞k=1(Pξξ,k/1ξ)], with

Pξξ,k = −W(kns,ns)ξξ W((k+1)ns,−ns)
ξξ and K∞k=1(Pξξ,k/1ξ) ≡
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Pξξ,1/(1ξ+Pξξ,2/(1ξ+Pξξ,3/ . . .)). For n = kns with k > 1,

Eq. (42) implies the recurrence relation Q
((k+1)ns)
ξξ =

−(Q(kns)ξξ +W(−kns,ns)ξξ

∗
Q
((k−1)ns)
ξξ )/W(kns,ns)ξξ that allows

for computing all remaining Q
(kns)
ξξ and hence all nonzero

Fourier components R
(kns)
j and F

(kns)
j .

IV. CONCLUSION

In this paper, we extended the formalism of Ref. [9] to
the multi-level atom case, where Zeeman sublevels and
arbitrary light polarization are taken into account. In
that context, we have provided a general standardized
and exact analytical formalism for computing within the
usual RWA the mechanical action experienced by a sin-
gle multi-level atom lightened simultaneously by an arbi-
trary set of plane waves. By use of a Fourier expansion
treatment, we provided an exact analytical expression of

all Fourier components F
(n)
j describing the light forces

in the periodic regime. In particular, we extended the
steady mean force expression (1) into Eq. (32), involv-
ing matrix quantities whose dimensions depend on the
atomic structure. In addition, we highlighted some sim-
plifications holding in specific regimes. The computation
of the Fourier components related to the light forces re-
lies on the solution of an algebraic system of equations
and does not require numerical integration of the OBEs
with time. Our formalism offers an alternative to purely
numerical approaches, where the extraction of the mean
force and their Fourier components can be subjected to
instabilities, especially when the forces vary very slowly.
Our results always converge to the exact values.
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Appendix A: Reference frame rotation

The states ∣Jg,mg⟩ and ∣Je,me⟩ are common eigen-

states of Ĵ2 and Ĵz, with Ĵ the total angular momentum
and Ĵz its z component in the considered reference frame
S. If S is rotated according to Euler angles α, β, γ to
a new configuration S, the component Ĵz transforms to

Ĵz = R̂(α,β, γ)ĴzR̂(α,β, γ)†, with the rotation operator

R̂(α,β, γ) = e−iαĴz/h̵e−iβĴy/h̵e−iγĴz/h̵ [33]. Ĵ2 remains un-

changed and the common eigenstates of Ĵ2 and Ĵz read

∣Jk,mk⟩ = R̂(α,β, γ)∣Jk,mk⟩ (k = e, g). The elements of

the basis transformation matrix ⟨Jk,mk ∣Jk,m′
k⟩ are given

by the so-called Wigner functions D(Jk)mk,m′

k
(α,β, γ) =

e−i(mkα+m
′

kγ)d(Jk)mk,m′

k
(β), with d

(J)
m,m′(β) =

Am,m′(J)Bm,m′(β)P (m
′−m,m′+m)

J−m′ (cosβ), where

Am,m′(J) =
√

[(J +m′)!(J −m′)!]/[(J +m)!(J −m)!],
Bm,m′(β) = [sin(β/2)]m

′−m[cos(β/2)]m
′+m, and where

the P
(a,b)
n (z) are the Jacobi polynomials [33]. If ρ(t)

and ρ(t) denote the density matrices of the atomic state

ρ̂(t) in the {∣Jk,mk⟩} and {∣Jk,mk⟩} bases, respectively,
we get

ρ(t) = D(α,β, γ)†ρ(t)D(α,β, γ), (A1)

with D(α,β, γ) = ⊕k=e,gD(Jk)(α,β, γ), where

D(Jk)(α,β, γ) is the unitary matrix of elements

D(Jk)mk,m′

k
(α,β, γ). It follows that the associated OBE

column vector x(t) transforms according to

x(t) = T (α,β, γ)x(t), (A2)

with the transformation matrix

T (α,β, γ) = (Too(α,β, γ) 0
0 Tξξ(α,β, γ)

) , (A3)

where

Tξξ(α,β, γ) = ( Tpp(β) TpZ(α,β)
TZp(β, γ) TZZ(α,β, γ)

) , (A4)

with blocks Too(α,β, γ), Tpp(β), TpZ(α,β), TZp(β, γ),
and TZZ(α,β, γ) as explicitly detailed below. The
OBEs (11) in the S reference frame then read

ẋ(t) = A(t)x(t) + b, (A5)

with

A(t) = T (α,β, γ)A(t)T (α,β, γ)−1 (A6)

and

b = T (α,β, γ)b. (A7)

Thanks to the orthogonality relations of the Clebsch-
Gordan coefficients, to the orthogonality of the

d(1)(β) matrices of elements d
(1)
m,m′(β), to the trans-

formation law of the spherical components of any
three-dimensional space vector v, (v1, v0, v−1)T =
D(1)(α,β, γ)T (v1, v0, v−1)T , and to the identities

C(q)mgd
(Je)
me,mg+q(β) = ∑q′ C

(q′)
me−q′d

(Jg)
me−q′,mg(β)d

(1)
q′,q(β) and

C(q)me−qd
(Jg)
me−q,mg(β) = ∑q′ C

(q′)
mg d

(Je)
me,mg+q′(β)d

(1)
q,q′(β) (see,

e.g., Ref. [34]), which imply, ∀mk1 ,mk2 = −Jk, . . . , Jk
(k = e, g), ∑q C

(q)
mg1

d
(Je)
me1 ,mg1+q(β)C

(q)
mg2

d
(Je)
me2 ,mg2+q(β) =
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∑q C
(q)
me1−qd

(Jg)
me1−q,mg1 (β)C

(q)
me2−qd

(Jg)
me2−q,mg2 (β), the ex-

plicit calculation of Eqs. (A6) and (A7) yields, as
expected,

A(t) = −ΓA0 + Im(Ω(t) ⋅ eC) (A8)

and b = b, where eC = ∑q C(q)eq, with eq the S lower-

index spherical basis, such that Ω(t) ⋅eC = ∑q Ωq(t)C(q).
Similarly, the transformation law xo(t) =

Too(α,β, γ)xo(t) [see Eq. (A2)] directly yields
the standard contravariant transformation law
(χ(1)

o
, χ(0)
o
, χ(−1)
o

)T = D(1)(α,β, γ)†(χ(1)o , χ
(0)
o , χ

(−1)
o )T

that proves the vectorial character of χo(t) [see Eq. (27)].

1. The Too(α,β, γ) block

In accordance with Eq. (8), the Too(α,β, γ) block
is structured into vertically and horizontally ordered

subblocks T
(∆m,∆m′)
oo (α,β, γ), with respective indices

∆m and ∆m′ both ranging from −(Je + Jg) to

Je + Jg. The subblocks T
(∆m,∆m′)
oo (α,β, γ) read

T̃
(∆m,∆m′)
oo (β) ⊗ U (∆m,∆m

′)
+ (α, γ), with matrix elements

(T̃ (∆m,∆m
′)

oo (β))m,m′ = d(Jg)m′,m(β)d(Je)m′+∆m′,m+∆m(β) (m =
m
(∆m)
− , . . . ,m

(∆m)
+ and m′ = m

(∆m′)
− , . . . ,m

(∆m′)
+ ) and

where

U
(∆m,∆m′)
± (α, γ) =

⎛
⎝
c
(∆m,∆m′)
± (α, γ) s

(∆m,∆m′)
± (α, γ)

∓s(∆m,∆m
′)

± (α, γ) ±c(∆m,∆m
′)

± (α, γ)
⎞
⎠
,

(A9)

with c
(∆m,∆m′)
± (α, γ) = cos(∆m′α ± ∆mγ) and

s
(∆m,∆m′)
± (α, γ) = sin(∆m′α ±∆mγ).

2. The Tpp(β) block

The Tpp(β) block is structured into 4 subblocks (one
is zero) as

Tpp(β) = (Tpepe(β) 0
Tpgpe(β) Tpgpg(β)

) , (A10)

with subblock elements (Tpepe(β))me,m′

e
=

(d(Je)m′

e,me
(β))2, (Tpgpe(β))mg,m′

e
= −(d(Jg)−Jg,mg(β))

2,

and (Tpgpg(β))mg,m′

g
= (d(Jg)m′

g,mg
(β))2 − (d(Jg)−Jg,mg(β))

2,

where mk,m
′
k = −Jk + δk,g, . . . , Jk (k = e, g).

3. The TZp(β, γ) block

The TZp(β, γ) block is similarly structured into 4 sub-
blocks (among which one is zero) as

TZp(β, γ) = (TZepe(β, γ) 0
TZgpe(β, γ) TZgpg(β, γ)

) , (A11)

where the subblocks TZkpl(β, γ) (k, l = g, e) are them-
selves further divided [in accordance with Eq. (10)] into

vertically ordered subsubblocks T
(∆m)
Zkpl

(β, γ) indexed

with ∆m = 1, . . . ,2Jk. The subsubblocks T
(∆m)
Zkpl

(β, γ)
read T̃

(∆m)
Zkpl

(β)⊗(cos(∆mγ),− sin(∆mγ))T , with matrix

elements (T̃ (∆m)Zepe
(β))me,m′

e
= d

(Je)
m′

e,me
(β)d(Je)m′

e,me+∆m(β),
(T̃ (∆m)Zgpe

(β))mg,m′

e
= −d(Jg)−Jg,mg(β)d

(Jg)
−Jg,mg+∆m(β),

and (T̃ (∆m)Zgpg
(β))mg,m′

g
= d

(Jg)
m′

g,mg
(β)d(Jg)m′

g,mg+∆m(β) −

d
(Jg)
−Jg,mg(β)d

(Jg)
−Jg,mg+∆m(β), where mk = −Jk, . . . , Jk −∆m

and m′
k = −Jk + δk,g, . . . , Jk (k = e, g).

4. The TpZ(α,β) block

The TpZ(α,β) block is structured into 2 diagonal sub-
blocks as

TpZ(α,β) = (TpeZe(α,β) 0
0 TpgZg(α,β)

) , (A12)

where the subblocks TpkZk(α,β) (k = e, g) are them-
selves further divided [in accordance with Eq. (10)] into

horizontally ordered subsubblocks T
(∆m)
pkZk

(α,β) indexed

with ∆m = 1, . . . ,2Jk. The subsubblocks T
(∆m)
pkZk

(α,β)
read T̃

(∆m)
pkZk

(β)⊗(cos(∆mα), sin(∆mα)), with matrix el-

ements (T̃ (∆m)pkZk
(β))mk,m′

k
= 2d

(Jk)
m′

k
,mk

(β)d(Jk)m′

k
+∆m,mk

(β),
where mk = −Jk+δk,g, . . . , Jk and m′

k = −Jk, . . . , Jk−∆m.

5. The TZZ(α,β, γ) block

The TZZ(α,β, γ) block is similarly structured into 2
diagonal subblocks as

TZZ(α,β, γ) = (TZeZe(α,β, γ) 0
0 TZgZg(α,β, γ)

) , (A13)

where the subblocks TZkZk(α,β, γ) (k = e, g) are them-
selves divided [in accordance with Eq. (10)] into vertically

and horizontally subsubblocks T
(∆m,∆m′)
ZkZk

(α,β, γ),
with respective indices ∆m = 1, . . . ,2Jk and

∆m′ = 1, . . . ,2J ′k. The subsubblocks T
(∆m,∆m′)
ZkZk

(α,β, γ)
read ∑ε=± T̃

(∆m,∆m′)
ZkZk,ε

(β) ⊗ U
(∆m,∆m′)
ε (α, γ),

with matrix elements (T̃ (∆m,∆m
′)

ZkZk,+ (β))mk,m′

k
=

d
(Jk)
m′

k
,mk

(β)d(Jk)m′

k
+∆m′,mk+∆m(β) and

(T̃ (∆m,∆m
′)

ZkZk,− (β))mk,m′

k
= d

(Jk)
m′

k
+∆m′,mk

(β)d(Jk)m′

k
,mk+∆m(β),

where mk = −Jk, . . . , Jk−∆m and m′
k = −Jk, . . . , Jk−∆m′

(k = e, g).
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Appendix B: Explicit value of the (Cξξ)qq′ matrices

The matrices (Cξξ)qq′ = −C
(q)
ξo C

(q′)
oξ

∗
are structured into

4 blocks as

(Cξξ)qq′ = (
(Cpp)qq′ (CpZ)qq′
(CZp)qq′ (CZZ)qq′

) , (B1)

with (Crs)qq′ = −C
(q)
ro C

(q′)∗
os (r, s = p,Z). These blocks are

themselves further divided into 4 subblocks as

(Crs)qq′ = (
(Crese)

q
q′ (Cresg)

q
q′

(Crgse)
q
q′ (Crgsg)

q
q′
) , (B2)

where again (Crksl)
q
q′ = −C(q)rkoC

(q′)∗
osl (k, l = e, g). These

subblocks are detailed below.

1. The (Cpkpl)
q
q′

subblocks

For k, l = e, g, we have (Cpkpl)
q
q′ = (C̃pkpl)qqδq,q′ , with

(C̃pkpl)qq = −C̃
(q)
pkoC̃

(q)
opl . The (C̃pkpl)qq matrix elements are

indexed with the two numbers m = −Jk + δk,g, . . . , Jk and
m′ = −Jl + δl,g, . . . , Jl. They are a priori only nonzero

if m − nkq ∈ {m(q)− , . . . ,m
(q)
+ }, in which case they read

explicitly [(C̃pkpl)qq]m,m′ = ñk(C(q)m−nkq)
2(δm,−Jg+nkq +

ñlδm′,m+(nl−nk)q)/2. All (Cpp)qq′ matrix elements are real
numbers.

2. The (CpkZl)
q
q′

subblocks

For k, l = e, g, we have

(CpkZl)
q
q′ = ((C̃(1)pkZl)

q
q′ (C̃(2)pkZl)

q
q′ 0) . (B3)

The 0 block is of dimension dimxpk ×∑
2Jl
i=3 dimx

(i)
Zl

and,
for j = 1,2,

(C̃(j)pkZl)
q
q′ =

⎧⎪⎪⎨⎪⎪⎩

0
dimxpk×dimx

(j)
Zl

if ∣∆q∣ ≠ j,

(Č(j)pkZl)
q
q′ ⊗ (1, sgn(∆q)i) otherwise,

(B4)

with ∆q ≡ q′ − q and (Č(j)pkZl)
q
q′ = −C̃(q)pkoC̃

(q,∣∆q∣)
oZl,−sgn(∆q)

for ∆q ≠ 0 (see Section II). Hence, (CpkZl)qq =
0, ∀q. The (Č(j)pkZl)

q
q′ matrix elements are in-

dexed with the two numbers m = −Jk + δk,g, . . . , Jk
and m′ = −Jl, . . . , Jl − ∣∆q∣. They are a pri-

ori only nonzero if m − nkq ∈ {m(q)− , . . . ,m
(q)
+ }, in

which case they read explicitly [(Č(j)pkZl)
q
q′]m,m′ =

(ñkñlC(q)m−nkqC
(q′)
m−nkq+(nl−1)∆qδm′,m+(ñlq′−ñkq−j)/2)/2.

3. The (CZkpl)
q
q′

subblocks

For k, l = e, g, we have

(CZkpl)
q
q′ =

⎛
⎜⎜
⎝

(C̃(1)Zkpl)
q
q′

(C̃(2)Zkpl)
q
q′

0

⎞
⎟⎟
⎠
. (B5)

The 0 block is of dimension ∑2Jk
i=3 dimx

(i)
Zk

× dimxpl and,
for j = 1,2,

(C̃(j)Zkpl)
q
q′ =

⎧⎪⎪⎨⎪⎪⎩

0
dimx

(j)
Zk

×dimxpl
if ∣∆q∣ ≠ j,

(Č(j)Zkpl)
q
q′ ⊗ (1, sgn(∆q)i)T otherwise,

(B6)

with (Č(j)Zkpl)
q
q′ = −C̃(∣∆q∣,q

′)
Zko,sgn(∆q)C̃

(q′)
opl for ∆q ≠ 0, where

C̃
(∣∆q∣,q′)
Zko,ε

= −C̃(q
′,∣∆q∣)T

oZk,ε
for ε = ±1 (see Section II). Hence,

(CZkpl)qq = 0,∀q. The (Č(j)Zkpl)
q
q′ matrix elements are

indexed with the two numbers m = −Jk, . . . , Jk− ∣∆q∣ and
m′ = −Jl + δl,g, . . . , Jl. They are a priori only nonzero

if m − nkq − [1 − sgn(∆q)]∆q/2 ∈ {m(q
′)

− , . . . ,m
(q′)
+ },

in which case they read explicitly [(Č(j)Zkpl)
q
q′]m,m′ =

(ñkC(q
′)

−Jg C
(q)
−Jg−(nk−1)∆qδm,−Jg+(q′+ñkq−j)/2 + ñkñlC(q

′)
m′−nlq′

C(q)
m′−nlq′−(nk−1)∆qδm′,m+(ñlq′−ñkq+j)/2)/4. We note that

(CpkZl)
q
q′ ≠ −[(CZlpk)

q
q′]

T .

4. The (CZkZl)
q
q′

subblocks

For k, l = e, g, we have

(CZkZl)
q
q′ = ∑

ε=±1

(C̃ZkZl,ε)
q
q′ ⊗ (1 −εi

εi 1
)

+ (C̃ZkZl)
q
q ⊗ ( 1 −qi

−qi −1
) δq′,−q,

(B7)

with (C̃ZkZl,ε)
q
q′ and (C̃ZkZl)qq as described below.

If diagp(X1, . . . ,Xn) denotes the rectangular matrix
whose elements are matrix blocks, with X1, . . . ,Xn the
only nonzero such elements exactly located on the pth

superdiagonal (or subdiagonal if p < 0) of the rectangular
matrix, then we have

(C̃ZkZl,ε)
q
q′ = diag−ε∆q ((C̃

(∆m−)
ZkZl,ε

)qq′ , . . . , (C̃
(∆m+)
ZkZl,ε

)qq′) ,
(B8)

where ∆m− = max [1,1 + ε∆q], ∆m+ = ∆m− +
2 min (Je, Jg) − 1, and, for ∆m = ∆m−, . . . ,∆m+,

(C̃(∆m)ZkZl,ε
)qq′ is a matrix block of dimension

(dimx
(∆m)
Zk

/2) × (dimx
(∆m−ε∆q)
Zl

/2). These blocks
are a priori only nonzero for ∆m+ εq ≤ Je + Jg, in which

case they identify to −C̃(∆m,q+ε∆m)Zko,ε
C̃
(q+ε∆m,∆m−ε∆q)
oZl,ε

,

with matrix elements [(C̃(∆m)ZkZl,ε
)qq′]m,m′ = (ñkñl/4)
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C(q)
m−(1+ñk)q/2+(1−εñk)∆m/2C

(q′)
m+(1−εñl)∆m/2−(ñkq−ñl∆q+q′)/2

δm′,µ, where µ = m + (ñlq′ − ñkq + ε∆q)/2,
m = −Jk, . . . , Jk −∆m, and m′ = −Jl, . . . , Jl −∆m + ε∆q.

We also have

(C̃ZkZl)
q
q =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0(dimxZk /2)×(dimxZl /2) if q = 0,

((ČZkZl)
q
q 0

0 0dk×dl
) otherwise,

(B9)

with, for k = e, g, dk ≡ ∑2Jk
i=2 dimx

(i)
Zk

/2 =

Jk(2Jk − 1) and (ČZkZl)qq = −C̃(1,0)Zko,−qC̃
(0,1)
oZl,q

. The

(ČZkZl)qq matrix elements are indexed with the
two numbers m = −Jk, . . . , Jk − 1 and m′ =
−Jl, . . . , Jl − 1. They read explicitly [(ČZkZl)qq]m,m′ =
(ñkñl/4)C(q)m+(1−q)/2C

(−q)
m′+(1+q)/2δm′,m−(ñk+ñl)q/2.

The (CZkZl)
q
q′ subblocks are such that (CZZ)qq′ =

[(CZZ)q
′

q ]† and (CZgZe)
q
q′ = [(CZeZg)

q
q′]

T , ∀q, q′. In ad-

dition, ∑q(CZZ)qq is a real matrix.
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[30] J. Söding, R. Grimm, Yu. B. Ovchinnikov, Ph. Bouyer,
and Ch. Salomon, “Short-distance atomic beam deceler-
ation with stimulated light force,” Phys. Rev. Lett. 78,
1420-1423 (1997).



12

[31] Equation (33) holds if dimx
3/2
ξ ∑j ∣Ωj ∣/min(ωc,Γ)≪ 1.

[32] G. Casella and R. L. Berger, Statistical Interference, 2nd
ed. (Duxbury, 2002).

[33] J. J. Sakurai and J. Napolitano, Modern quantum me-
chanics (Addison-Wesley, 1994).

[34] L. C. Biedenharn and J. D. Louck, Angular momentum
in quantum physics: theory and application (Cambridge
Univ. Press, 1984).


	Radiation pressure on a multi-level atom: an exact analytical approach
	Abstract
	I Introduction
	II General and exact expression of the radiation pressure force
	A Hamiltonian and master equation
	B Optical Bloch equations
	1 The A (t) matrix
	2 The b column vector

	C Periodic regime
	D General and exact expression of the radiation force

	III Specific regimes
	A Low-intensity regime
	B Plane waves with same frequency
	C Plane waves with same pure polarization
	D Plane waves with same frequency and pure polarization
	E N = 2 case

	IV Conclusion
	 Acknowledgments
	A Reference frame rotation
	1 The Too (, , ) block
	2 The Tpp () block
	3 The TZp (, ) block
	4 The TpZ (, ) block
	5 The TZZ (, , ) block

	B Explicit value of the (C)qq matrices
	1 The (Cpkpl)qq subblocks
	2 The (CpkZl)qq subblocks
	3 The (CZkpl)qq subblocks
	4 The (CZkZl)qq subblocks

	 References


