Abstract :
[en] Recycled concrete aggregate (RCA) possess high water absorption, due to the porosity of the attached hardened cement paste they contain. Fine particles of RCA are composed of larger amounts of hardened cement paste, which makes their valorization even more difficult in concrete or mortar. One way to valorize these fine particles could be to use them as mineral addition, however their water absorption coefficient has to be determined, which is tricky for powders. The objective of this work is to estimate the remaining intra granular porosity of a ground powder using two different original approaches. The first modelling approach considers that the porous monolith material is composed of series of pores with characteristic volumes. A pore is considered opened due to grinding if it is cut by the surface of the particle and if its size is larger than the smallest inter granular pore. The remaining porosity after grinding is computed from the pore size distribution of the monolith material and the particle size distribution of the powder. The second experimental approach is based on mercury intrusion porosimetry tests performed on the powder. The separation between inter and intra granular porosity allows the estimation of the powder’s remaining porosity. The obtained results show a good agreement between the two approaches in the case of disconnected pores. However, in the case of connected porosity, the experimental approach over estimates the amount of inter-granular porosity.
Name of the research project :
VALDEM - Solutions intégrées de VALorisation des flux matériaux issus de la DEMolition : Approche transfrontalière vers une économie circulaire
Scopus citations®
without self-citations
2