Savagner, P., Epithelial-mesenchymal transitions: From cell plasticity to concept elasticity (2015) Curr Top Dev Biol., 112, pp. 273-300. , https://doi.org/10.1016/bs.ctdb.2014.11.021
Lim, J., Thiery, J.P., Epithelial-mesenchymal transitions: Insights from development (2012) Development, 139 (19), pp. 3471-3486. , https://doi.org/10.1242/dev.071209
Nakaya, Y., Sheng, G., Epithelial to mesenchymal transition during gastrulation: An embryological view (2008) Develop Growth Differ, 50 (9), pp. 755-766. , https://doi.org/10.1111/j.1440-169X.2008.01070.x
Solnica-Krezel, L., Sepich, D.S., Gastrulation: Making and shaping germ layers (2012) Annu Rev Cell Dev Biol, 28, pp. 687-717. , https://doi.org/10.1146/annurev-cellbio-092910-154043
Yu, M., Smolen, G.A., Zhang, J., Wittner, B., Schott, B.J., Brachtel, E., A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression (2009) Genes Dev, 23 (15), pp. 1737-1742. , https://doi.org/10.1101/gad.1809309
Shaw, T.J., Martin, P., Wound repair: A showcase for cell plasticity and migration (2016) Curr Opin Cell Biol, 42, pp. 29-37. , https://doi.org/10.1016/j.ceb.2016.04.001
Bedi U, Mishra VK, Wasilewski D, Scheel C, Johnsen SA. Epigenetic plasticity: a central regulator of epithelial-to-mesenchymal transition in cancer. Oncotarget. 2014
McDonald OG, Wu H, Timp W, Doi A, Feinberg AP. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol. 2011
18(8):867–74. https://doi. org/10.1038/nsmb.2084
Micalizzi, D.S., Maheswaran, S., Haber, D.A., A conduit to metastasis: Circulating tumor cell biology (2017) Genes Dev, 31 (18), pp. 1827-1840. , https://doi.org/10.1101/gad.305805.117
Fischer, K.R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S.T., Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance (2015) Nature, 527 (7579), pp. 472-476. , https://doi.org/10.1038/nature15748
Zheng, X., Carstens, J.L., Kim, J., Scheible, M., Kaye, J., Sugimoto, H., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer (2015) Nature, 527, pp. 525-530. , https://doi.org/10.1038/nature16064
Ye, X., Brabletz, T., Kang, Y., Longmore, G.D., Nieto, M.A., Stanger, B.Z., Upholding a role for EMT in breast cancer metastasis (2017) Nature, 547, pp. E1-E6. , https://doi.org/10.1038/nature22816
Aiello, N.M., Brabletz, T., Kang, Y., Nieto, M.A., Weinberg, R.A., Stanger, B.Z., Upholding a role for EMT in pancreatic cancer metastasis (2017) Nature, 547 (7661), pp. E7-E8. , https://doi.org/10.1038/nature22963
Boyer, B., Tucker, G.C., Valles, A.M., Franke, W.W., Thiery, J.P., Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells (1989) J Cell Biol, 109 (4), pp. 1495-1509. , Pt 1
Weidner, K.M., Behrens, J., Vandekerckhove, J., Birchmeier, W., Scatter factor: Molecular characteristics and effect on the invasiveness of epithelial cells (1990) J Cell Biol, 111 (5), pp. 2097-2108. , Pt 1
Jolly, M.K., Ward, C., Eapen, M.S., Myers, S., Hallgren, O., Levine, H., Epithelial–mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease (2018) Dev Dyn, 247, pp. 346-358. , https://doi.org/10.1002/dvdy.24541
Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013
Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015
525:256–60. https://doi. org/10.1038/nature14897
Hay, E.D., The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it (2005) Dev Dyn, 233 (3), pp. 706-720. , https://doi.org/10.1002/dvdy.20345
Sherwood, D.R., Cell invasion through basement mem-branes: An anchor of understanding (2006) Trends Cell Biol, 16, pp. 250-256. , https://doi.org/10.1016/j.tcb.2006.03.004
de Wever, O., Mareel, M., Role of tissue stroma in cancer cell invasion (2003) J Pathol, 200, pp. 429-447. , https://doi.org/10.1002/path.1398
Wyckoff, J., Wang, W., Lin, E.Y., Wang, Y., Pixley, F., Stanley, E.R., A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors (2004) Cancer Res, 64 (19), pp. 7022-7029. , https://doi.org/10.1158/0008-5472.CAN-04-1449
De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013
13(2):97–110. https://doi. org/10.1038/nrc3447
Nieto, M.A., Cano, A., The epithelial-mesenchymal transition under control: Global programs to regulate epithelial plasticity (2012) Semin Cancer Biol, 22 (5-6), pp. 361-368. , https://doi.org/10.1016/j.semcancer.2012.05.003
Zheng, H., Kang, Y., Multilayer control of the EMT master regulators (2014) Oncogene, 33 (14), pp. 1755-1763. , https://doi.org/10.1038/onc.2013.128
Dong L, Ge XY, Wang YX, Yang LQ, Li SL, Yu GY, et al. Transforming growth factor-beta and epithelial-mesenchymal transition are associated with pulmonary metastasis in adenoid cystic carcinoma. Oral Oncol. 2013
Giannoni, E., Parri, M., Chiarugi, P., EMT and oxidative stress: A bidirectional interplay affecting tumor malignancy (2012) Antioxid Redox Signal, 16 (11), pp. 1248-1263. , https://doi.org/10.1089/ars.2011.4280
Micalizzi DS, Haber DA, Maheswaran S. Cancer metastasis through the prism of epithelial-to-mesenchymal transition in circulating tumor cells. Mol Oncol. 2017
Choi, H.Y., Yoo, Y., Kim, J.-H., Dayem, A.A., Yee, C., Yang, G.-M., Hydrodynamic shear stress promotes epithelial-mesenchymal transition by down-regulating ERK and GSK3β activities (2019) Breast Cancer Res, 21, pp. 1-20. , https://doi.org/10.1186/s13058-018-1071-2
Aiello, N.M., Bajor, D.L., Norgard, R.J., Sahmoud, A., Bhagwat, N., Pham, M.N., Metastatic progression is associated with dynamic changes in the local microenvironment (2016) Nat Commun, 7. , https://doi.org/10.1038/ncomms12819
Jung HY, Fattet L, Yang J. Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res. 2015
Voutsadakis IA. The ubiquitin-proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer. J Biomed Sci. 2012
19:67. https://doi. org/10.1186/1423-0127-19-67
Bracken, C.P., Scott, H.S., Goodall, G.J., A network-biology perspective of microRNA function and dysfunction in cancer (2016) Nat Rev Genet, 17 (12), pp. 719-732. , https://doi.org/10.1038/nrg.2016.134
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014
15(3):178–96. https://doi. org/10.1038/nrm3758
Savagner, P., Leaving the neighborhood: Molecular mechanisms involved during epithelial-mesenchymal transition (2001) Bioessays, 23 (10), pp. 912-923. , https://doi.org/10.1002/bies.1132
Yang, J., Weinberg, R.A., Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis (2008) Dev Cell, 14 (6), pp. 818-829. , https://doi.org/10.1016/j.devcel.2008.05.009
Casas, E., Kim, J., Bendesky, A., Ohno-Machado, L., Wolfe, C.J., Yang, J., Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis (2011) Cancer Res, 71 (1), pp. 245-254. , https://doi.org/10.1158/0008-5472.CAN-10-2330
Dhasarathy, A., Phadke, D., Mav, D., Shah, R.R., Wade, P.A., The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer (2011) Plos One, 6 (10). , https://doi.org/10.1371/journal.pone.0026514
Yamauchi T, Fernandez JRE, Imamura CK, Yamauchi H, Jinno H, Takahashi M, et al. Dynamic changes in CD44v-positive cells after preoperative anti-HER2 therapy and its correlation with pathologic complete response in HER2-positive breast cancer. Oncotarget. 2018
Markiewicz, A., Nagel, A., Szade, J., Majewska, H., Skokowski, J., Seroczynska, B., Aggressive phenotype of cells disseminated via hematogenous and lymphatic route in breast cancer patients (2018) Transl Oncol, 11, pp. 722-731. , https://doi.org/10.1016/j.tranon.2018.03.006
Qi, X.K., Han, H.Q., Zhang, H.J., Xu, M., Li, L., Chen, L., OVOL2 links stemness and metastasis via fine-tuning epithelial-mesenchymal transition in nasopha-ryngeal carcinoma (2018) Theranostics, 8, pp. 2202-2216. , https://doi.org/10.7150/thno.24003
Mani, S.A., Guo, W., Liao, M.-J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., The epithelial-mesenchymal transition generates cells with properties of stem cells (2008) Cell, 133, pp. 704-715. , https://doi.org/10.1016/j.cell.2008.03.027
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003
Kroger C, Afeyan A, Mraz J, Eaton EN, Reinhardt F, Khodor YL, et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci U S A. 2019
Grosse-Wilde, A., D'hérouël, A.F., McIntosh, E., Ertaylan, G., Skupin, A., Kuestner, R.E., Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival (2015) Plos ONE, 10, pp. 1-28. , https://doi.org/10.1371/jour-nal.pone.0126522
Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017
Redfern, A.D., Spalding, L.J., Thompson, E.W., The Kraken Wakes: Induced EMT as a driver of tumour aggression and poor outcome (2018) Clin Exp Metastasis, 35 (4), pp. 285-308. , https://doi.org/10.1007/s10585-018-9906-x
Jolly, M.K., Mani, S.A., Levine, H., Hybrid epithelial/ mesenchymal phenotype(S): The ‘fittest’ for metastasis? (2018) Biochim Biophys Acta, 1870, pp. 151-157. , https://doi.org/10.1016/j.bbcan.2018.07.001
Markiewicz A, Zaczek AJ. The landscape of circulating tumor cell research in the context of epithelial-mesenchymal transition. Pathobiology. 2017
84:264–83. https://doi. org/10.1159/000477812
Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res. 2006
Choynzonov, E., Savelieva, O., Slonimskaya, E., Perelmuter, V., Tashireva, L., Tarabanovskaya, N., Heterogeneity of circulating tumor cells in neoadjuvant chemotherapy of breast cancer (2018) Molecules, 23, p. 727. , https://doi.org/10.3390/molecules23040727
Li, H., Smolen, G.A., Beers, L.F., Xia, L., Gerald, W., Wang, J., Adenosine transporter ENT4 is a direct target of EWS / WT1 translocation product and is highly expressed in desmoplastic small round cell tumor (2008) Plos ONE, 3. , https://doi.org/10.1371/journal.pone.0002353
Bryant, J.L., Britson, J., Balko, J.M., Willian, M., Timmons, R., Frolov, A., A microRNA gene expression signature predicts response to erlotinib in epithelial cancer cell lines and targets EMT (2012) Br J Cancer, 106 (1), pp. 148-156. , https://doi.org/10.1038/bjc.2011.465
Marchini, S., Fruscio, R., Clivio, L., Beltrame, L., Porcu, L., Nerini, I.F., Resistance to platinum-based chemotherapy is associated with epithelial to mesenchymal transition in epithelial ovarian cancer (2013) Eur J Cancer, 49, pp. 520-530. , https://doi.org/10.1016/j.ejca.2012.06.026
Kurrey, N.K., Jalgaonkar, S.P., Joglekar, A.V., Ghanate, A.D., Chaskar, P.D., Doiphode, R.Y., Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells (2009) Stem Cells, 27, pp. 2059-2068. , https://doi.org/10.1002/stem.154
Sandberg CJ, Altschuler G, Jeong J, Stromme KK, Stangeland B, Murrell W, et al. Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt-signaling and a fingerprint associated with clinical outcome. Exp Cell Res. 2013
Ortensi, B., Setti, M., Osti, D., Pelicci, G., Cancer stem cell contribution to glioblastoma invasiveness (2013) Stem Cell Res Ther, 4 (1), p. 18. , https://doi.org/10.1186/scrt166
Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol. 2008
Colman, H., Zhang, L., Sulman, E.P., McDonald, J.M., Shooshtari, N.L., Rivera, A., A multigene predictor of outcome in glioblastoma (2010) Neuro-Oncology, 12 (1), pp. 49-57. , https://doi.org/10.1093/neuonc/nop007
Bhat, K.P.L., Balasubramaniyan, V., Vaillant, B., Ezhilarasan, R., Hummelink, K., Hollingsworth, F., Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma (2013) Cancer Cell, 24 (3), pp. 331-346. , https://doi.org/10.1016/j.ccr.2013.08.001
Somarelli JA, Shetler S, Jolly MK, Wang X, Bartholf Dewitt S, Hish AJ, et al. Mesenchymal-epithelial transition in sarcomas is controlled by the combinatorial expression of microRNA 200s and GRHL2. Mol Cell Biol. 2016
Shen, A., Zhang, Y., Yang, H., Xu, R., Huang, G., Overexpression of ZEB1 relates to metastasis and invasion in osteosarcoma (2012) J Surg Oncol, 105, pp. 830-834. , https://doi.org/10.1002/jso.23012
Alba-Castellón L, Batlle R, Francí C, Fernández-Aceñero MJ, Mazzolini R, Peña R, et al. Snail1 expression is required for sarcomagen-esis. Neoplasia. 2014
Wang N, Qi Y, Zou H, Zhang W-J, Li F, Pang L-J, et al. Down-regulated E-cadherin expression is associated with poor five-year overall survival in bone and soft tissue sarcoma: results of a meta-analysis. PLoS One. 2015
Grosshans, J., Wieschaus, E., A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila (2000) Cell, 101 (5), pp. 523-531
Mata, J., Curado, S., Ephrussi, A., Rorth, P., Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis (2000) Cell, 101 (5), pp. 511-522
Murakami, M.S., Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation (2004) Development, 131, pp. 571-580. , https://doi.org/10.1242/dev.00971
Seher, T.C., Leptin, M., Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation (2000) Curr Biol, 10, pp. 623-629. , https://doi.org/10.1016/S0960-9822(00)00502-9
Comaills, V., Kabeche, L., Morris, R., Buisson, R., Yu, M., Madden, M.W., Genomic instability is induced by persistent proliferation of cells undergoing epithelial-to-mesenchymal transition (2016) Cell Rep, 17, pp. 2632-2647. , https://doi.org/10.1016/j.celrep.2016.11.022
Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem. 2015
Guttinger, S., Laurell, E., Kutay, U., Orchestrating nuclear envelope disassembly and reassembly during mitosis (2009) Nat Rev Mol Cell Biol, 10 (3), pp. 178-191. , https://doi.org/10.1038/nrm2641
Gao C, Su Y, Koeman J, Haak E, Dykema K, Essenberg C, et al. Chromosome instability drives phenotypic switching to metastasis. Proc Natl Acad Sci U S A. 2016
Knouse, K.A., Lopez, K.E., Bachofner, M., Amon, A., Chromosome segregation fidelity in epithelia requires tissue architecture (2018) Cell, 175 (1), pp. 200-211. , https://doi.org/10.1016/j.cell.2018.07.042
Diepenbruck, M., Christofori, G., Epithelial-mesenchymal transition (EMT) and metastasis: Yes, no, maybe? (2016) Curr Opin Cell Biol, 43, pp. 7-13. , https://doi.org/10.1016/j.ceb.2016.06.002
Shaul, Y.D., Freinkman, E., Comb, W.C., Cantor, J.R., Tam, W.L., Thiru, P., Dihydropyrimidine accumulation is required for the epithelial-mesenchymal transition (2014) Cell, 158, pp. 1094-1109. , https://doi.org/10.1016/j.cell.2014.07.032
Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis Ben Gurion University of the Negev. Cell. 2004
Tsai, J.H., Donaher, J.L., Murphy, D.A., Chau, S., Yang, J., Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis (2012) Cancer Cell, 22 (6), pp. 725-736. , https://doi.org/10.1016/j.ccr.2012.09.022
Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008
Rhim, A.D., Mirek, E.T., Aiello, N.M., Maitra, A., Bailey, J.M., McAllister, F., EMT and dissemination precede pancreatic tumor formation (2012) Cell, 148, pp. 349-361. , https://doi.org/10.1016/j.cell.2011.11.025
Sarrio, D., Rodriguez-Pinilla, S.M., Hardisson, D., Cano, A., Moreno-Bueno, G., Palacios, J., Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype (2008) Cancer Res, 68 (4), pp. 989-997. , https://doi.org/10.1158/0008-5472.CAN-07-2017
McCart Reed AE, Kutasovic JR, Vargas AC, Jayanthan J, Al-Murrani A, Reid LE, et al. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. J Pathol. 2016
238:489–94. https://doi. org/10.1002/path.4668
Alix-Panabieres C, Mader S, Pantel K. Epithelial-mesenchymal plasticity in circulating tumor cells. J Mol Med (Berl). 2017
Francart, M.E., Lambert, J., Vanwynsberghe, A.M., Thompson, E.W., Bourcy, M., Polette, M., Epithelial-mesenchymal plasticity and circulating tumor cells: Travel companions to metastases (2018) Dev Dyn, 247 (3), pp. 432-450. , https://doi.org/10.1002/dvdy.24506
Zhang, Z., Fan, W., Deng, Q., Tang, S., Wang, P., Xu, P., The prognostic and diagnostic value of circulating tumor cells in bladder cancer and upper tract urothelial carcinoma: A meta-analysis of 30 published studies (2017) Oncotarget, 8, pp. 59527-59538. , https://doi.org/10.18632/oncotarget.18521
Khoo, B.L., Lee, S.C., Kumar, P., Tan, T.Z., Warkiani, M.E., Ow, S.G., Short-term expansion of breast circulating cancer cells predicts response to anti-cancer therapy (2015) Oncotarget, 6 (17), pp. 15578-15593. , https://doi.org/10.18632/oncotarget.3903
Thiery JP, Lim CT. Tumor dissemination: an EMT affair. Cancer Cell. 2013
Chen, Y.-Y., Ma, L., Gong, W.-F., Zhong, J.-H., Han, Z.-G., Qi, L.-N., Circulating tumor cells undergoing EMT provide a metric for diagnosis and prognosis of patients with hepatocellular carcinoma (2018) Cancer Res, 78, pp. 4731-4744. , https://doi.org/10.1158/0008-5472.can-17-2459
Wu, S., Liu, S., Liu, Z., Huang, J., Pu, X., Li, J., Classification of circulating tumor cells by epithelial-mesenchymal transition markers (2015) Plos ONE, 10, pp. 1-14. , https://doi.org/10.1371/jour-nal.pone.0123976
Zhao, X.-H., Wang, Z.-R., Chen, C.-L., Di, L., Bi, Z.-F., Li, Z.-H., Molecular detection of epithelial-mesenchymal transition markers in circulating tumor cells from pancreatic cancer patients: Potential role in clinical practice (2019) World J Gastroenterol, 25, pp. 138-150. , https://doi.org/10.3748/wjg.v25.i1.138
Hodara, E., Morrison, G., Cunha, A., Zainfeld, D., Xu, T., Xu, Y., Multiparametric liquid biopsy analysis in metastatic prostate cancer (2019) JCI Insight, 4 (5). , https://doi.org/10.1172/jci.insight.125529
Chistiakov, D.A., Chekhonin, V.P., Circulating tumor cells and their advances to promote cancer metastasis and relapse, with focus on glioblastoma mul-tiforme (2018) Exp Mol Pathol, 105, pp. 166-174. , https://doi.org/10.1016/j.yexmp.2018.07.007
Aktas, B., Tewes, M., Fehm, T., Hauch, S., Kimmig, R., Kasimir-Bauer, S., Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients (2009) Breast Cancer Res, 11 (4)
Armstrong, A.J., Marengo, M.S., Oltean, S., Kemeny, G., Bitting, R.L., Turnbull, J.D., Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers (2011) Mol Cancer Res, 9 (8), pp. 997-1007. , https://doi.org/10.1158/1541-7786.MCR-10-0490
Gradilone, A., Raimondi, C., Nicolazzo, C., Petracca, A., Gandini, O., Vincenzi, B., Circulating tumor cells lacking cytokeratin in breast cancer: The importance of being mesenchymal (2011) J Cell Mol Med, 15, pp. 1066-1070
Kallergi, G., Papadaki, M.A., Politaki, E., Mavroudis, D., Georgoulias, V., Agelaki, S., Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients (2011) Breast Cancer Res, 13 (3). , https://doi.org/10.1186/bcr2896
Markou, A., Strati, A., Malamos, N., Georgoulias, V., Lianidou, E.S., Molecular characterization of circulating tumor cells in breast cancer by a liquid bead array hybridization assay (2011) Clin Chem, 57 (3), pp. 421-430. , https://doi.org/10.1373/clinchem.2010.154328
Raimondi, C., Gradilone, A., Naso, G., Vincenzi, B., Petracca, A., Nicolazzo, C., Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients (2011) Breast Cancer Res Treat, 130, pp. 449-455
Strati A, Markou A, Parisi C, Politaki E, Mavroudis D, Georgoulias V, et al. Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR. BMC Cancer. 2011
11:422. https://doi. org/10.1186/1471-2407-11-422
Barriere G, Riouallon A, Renaudie J, Tartary M, Rigaud M. Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. BMC Cancer. 2012
12:114. https://doi. org/10.1186/1471-2407-12-114
Barriere, G., Riouallon, A., Renaudie, J., Tartary, M., Rigaud, M., Mesenchymal characterization: Alternative to simple CTC detection in two clinical trials (2012) Anticancer Res, 32 (8), pp. 3363-3369
Giordano A, Gao H, Anfossi S, Cohen E, Mego M, Lee BN, et al. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther. 2012
Kasimir-Bauer S, Hoffmann O, Wallwiener D, Kimmig R, Fehm T. Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res. 2012
14(1):R15. https:// doi.org/10.1186/bcr3099
Mego, M., Gao, H., Lee, B.N., Cohen, E.N., Tin, S., Giordano, A., Prognostic value of EMT-circulating tumor cells in metastatic breast cancer patients undergoing high-dose chemotherapy with autologous hematopoietic stem cell transplantation (2012) J Cancer, 3, pp. 369-380. , https://doi.org/10.7150/jca.5111
Mego M, Mani SA, Lee BN, Li C, Evans KW, Cohen EN, et al. Expression of epithelial-mesenchymal transition-inducing transcription factors in primary breast cancer: the effect of neoadjuvant therapy. Int J Cancer. 2012
130(4):808–16. https://doi. org/10.1002/ijc.26037
Baccelli, I., Schneeweiss, A., Riethdorf, S., Stenzinger, A., Schillert, A., Vogel, V., Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay (2013) Nat Biotechnol, 31 (6), pp. 539-544. , https://doi.org/10.1038/nbt.2576
Cierna Z, Mego M, Janega P, Karaba M, Minarik G, Benca J, et al. Matrix metalloproteinase 1 and circulating tumor cells in early breast cancer. BMC Cancer. 2014
14:472. https://doi. org/10.1186/1471-2407-14-472
Markiewicz A, Ksiazkiewicz M, Welnicka-Jaskiewicz M, Seroczynska B, Skokowski J, Szade J, et al. Mesenchymal phenotype of CTC-enriched blood fraction and lymph node metastasis formation potential. PLoS One. 2014
Markiewicz, A., Welnicka-Jaskiewicz, M., Seroczynska, B., Skokowski, J., Majewska, H., Szade, J., Epithelial-mesenchymal transition markers in lymph node metastases and primary breast tumors – relation to dissemination and proliferation (2014) Am J Transl Res, 6 (6), pp. 793-808
Papadaki, M.A., Kallergi, G., Zafeiriou, Z., Manouras, L., Theodoropoulos, P.A., Mavroudis, D., Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer (2014) BMC Cancer, 14. , https://doi.org/10.1186/1471-2407-14-651
Serrano, M.J., Ortega, F.G., Alvarez-Cubero, M.J., Nadal, R., Sanchez-Rovira, P., Salido, M., EMT and EGFR in CTCs cytokeratin negative non-metastatic breast cancer (2014) Oncotarget, 5 (17), pp. 7486-7497. , https://doi.org/10.18632/oncotarget.2217
Polioudaki, H., Agelaki, S., Chiotaki, R., Politaki, E., Mavroudis, D., Matikas, A., Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer (2015) BMC Cancer, 15, pp. 1-10. , https://doi.org/10.1186/s12885-015-1386-7
Satelli, A., Brownlee, Z., Mitra, A., Meng, Q.H., Li, S., Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule-and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response (2015) Clin Chem, 61, pp. 259-266. , https://doi.org/10.1373/clinchem.2014.228122
Ueo H, Sugimachi K, Gorges TM, Bartkowiak K, Yokobori T, Muller V, et al. Circulating tumour cell-derived plastin3 is a novel marker for predicting long-term prognosis in patients with breast cancer. Br J Cancer. 2015
Wang, H.Y., Ahn, S., Kim, S., Park, S., Jung, D., Park, S., Detection of circulating tumor cell-specific markers in breast cancer patients using the quantitative RT-PCR assay (2015) Int J Clin Oncol, 20 (5), pp. 878-890. , https://doi.org/10.1007/s10147-015-0798-3
Bourcy, M., Suarez-Carmona, M., Lambert, J., Francart, M.E., Schroeder, H., Delierneux, C., Tissue factor induced by epithelial-mesenchymal transition triggers a procoagulant state that drives metastasis of circulating tumor cells (2016) Cancer Res, 76 (14), pp. 4270-4282. , https://doi.org/10.1158/0008-5472.can-15-2263
Bulfoni, M., Gerratana, L., Del Ben, F., Marzinotto, S., Sorrentino, M., Turetta, M., In patients with metastatic breast cancer the identification of circulating tumor cells in epithelial-to-mesenchymal transition is associated with a poor prognosis (2016) Breast Cancer Res, 18 (1). , https://doi.org/10.1186/s13058-016-0687-3
Hensler, M., Vancurova, I., Becht, E., Palata, O., Strnad, P., Tesarova, P., Gene expression profiling of circulating tumor cells and peripheral blood mononuclear cells from breast cancer patients (2016) Oncoimmunology, 5 (4). , https://doi.org/10.1080/2162402x.2015.1102827
Hyun KA, Koo GB, Han H, Sohn J, Choi W, Kim SI, et al. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget. 2016
Reijm, E.A., Sieuwerts, A.M., Smid, M., Vries, J.B., Mostert, B., Onstenk, W., An 8-gene mRNA expression profile in circulating tumor cells predicts response to aromatase inhibitors in metastatic breast cancer patients (2016) BMC Cancer, 16. , https://doi.org/10.1186/s12885-016-2155-y
Horimoto Y, Tokuda E, Murakami F, Uomori T, Himuro T, Nakai K, et al. Analysis of circulating tumour cell and the epithelial mesenchymal transition (EMT) status during eribulin-based treatment in 22 patients with metastatic breast cancer: a pilot study. J Transl Med. 2018
Guan, X., Ma, F., Li, C., Wu, S., Hu, S., Huang, J., The prognostic and therapeutic implications of circulating tumor cell phenotype detection based on epithelial-mesenchymal transition markers in the first-line chemotherapy of HER2-negative metastatic breast cancer (2019) Cancer Commun, 39 (1), p. 10. , https://doi.org/10.1186/s40880-018-0346-4
Markiewicz A, Topa J, Nagel A, Skokowski J, Seroczynska B, Stokowy T et al. Spectrum of epithelial-mesenchymal transition phenotypes in circulating tumour cells from early breast cancer patients. Cancer. 2019
11(1). https://doi. org/10.3390/cancers11010059
Pastushenko, I., Brisebarre, A., Sifrim, A., Fioramonti, M., Revenco, T., Boumahdi, S., Identification of the tumour transition states occurring during EMT (2018) Nature, 556. , https://doi.org/10.1038/s41586-018-0040-3
Grigore, A.D., Jolly, M.K., Jia, D., Farach-Carson, M.C., Levine, H., Tumor budding: The name is EMT. Partial EMT (2016) J Clin Med, 5 (5). , https://doi.org/10.3390/jcm5050051
Jolly MK, Tripathi SC, Somarelli JA, Hanash SM, Levine H. Epithelial/mesenchymal plasticity: how have quantitative mathematical models helped improve our understanding? Mol Oncol. 2017
Arnoux V, Nassour M, L'Helgoualc'h A, Hipskind RA, Savagner P. Erk5 controls Slug expression and keratinocyte activation during wound healing. Mol Biol Cell. 2008
Blanco MJ, Barrallo-Gimeno A, Acloque H, Reyes AE, Tada M, Allende ML, et al. Snail1a and Snail1b cooperate in the anterior migration of the axial mesendoderm in the zebrafish embryo. Development. 2007
Futterman, M.A., Garcia, A.J., Zamir, E.A., Evidence for partial epithelial-to-mesenchymal transition (PEMT) and recruitment of motile blastoderm edge cells during avian epiboly (2011) Dev Dyn, 240 (6), pp. 1502-1511. , https://doi.org/10.1002/dvdy.22607
Grande, M.T., Sanchez-Laorden, B., Lopez-Blau, C., de Frutos, C.A., Boutet, A., Arevalo, M., Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease (2015) Nat Med, 21 (9), pp. 989-997. , https://doi.org/10.1038/nm.3901
Leroy, P., Mostov, K.E., Slug is required for cell survival during partial epithelial-mesenchymal transition of HGF-induced tubulogenesis (2007) Mol Biol Cell, 18 (5), pp. 1943-1952. , https://doi.org/10.1091/mbc.e06-09-0823
Lovisa, S., Lebleu, V.S., Tampe, B., Sugimoto, H., Vadnagara, K., Carstens, J.L., Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis (2015) Nat Med, 21 (9), pp. 998-1009. , https://doi.org/10.1038/nm.3902
Helvert, S., Storm, C., Friedl, P., Mechanoreciprocity in cell migration (2018) Nat Cell Biol, 20 (1), pp. 8-20. , https://doi.org/10.1038/s41556-017-0012-0
Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014
Suo, Y., Xie, C., Zhu, X., Fan, Z., Yang, Z., He, H., Proportion of circulating tumor cell clusters increases during cancer metastasis (2017) Cytometry A, 91 (3), pp. 250-253. , https://doi.org/10.1002/cyto.a.23037
Murlidhar, V., Reddy, R.M., Fouladdel, S., Zhao, L., Ishikawa, M.K., Grabauskiene, S., Poor prognosis indicated by venous circulating tumor cell clusters in early stage lung cancers (2017) Cancer Res, 77, pp. 5194-5206. , https://doi.org/10.1158/0008-5472.CAN-16-2072
Au, S.H., Edd, J., Stoddard, A.E., Wong, K.H.K., Fachin, F., Maheswaran, S., Microfluidic isolation of circulating tumor cell clusters by size and asymmetry (2017) Sci Rep, 7. , https://doi.org/10.1038/s41598-017-01150-3
Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 2015
12:685–91. https://doi. org/10.1038/nmeth.3404
Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019
Gkountela, S., Castro-Giner, F., Szczerba, B.M., Vetter, M., Landin, J., Scherrer, R., Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding (2019) Cell, 176 (1-2), pp. 98-112. , https://doi.org/10.1016/j.cell.2018.11.046
Thiery, J.P., Acloque, H., Huang, R.Y.J., Nieto, M.A., Epithelial-mesenchymal transitions in development and disease (2009) Cell, 139, pp. 871-890. , https://doi.org/10.1016/j.cell.2009.11.007
Labelle, M., Begum, S., Hynes Richard, O., Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis (2011) Cancer Cell, 20, pp. 576-590. , https://doi.org/10.1016/j.ccr.2011.09.009
Cheung KJ, Ewald AJ. A collective route to metastasis: seeding by tumor cell clusters. Science (New York, NY). 2016
Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol. 2009
10:445–57. https://doi. org/10.1038/nrm2720
Cheung, K.J., Padmanaban, V., Silvestri, V., Schipper, K., Cohen, J.D., Fairchild, A.N., Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters (2016) Proc Natl Acad Sci U S A, 113 (7), pp. E854-E863. , https://doi.org/10.1073/pnas.1508541113
Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011
17(4):500–3. https://doi. org/10.1038/nm.2344
Bailey, P., Chang, D.K., Nones, K., Johns, A.L., Patch, A.M., Gingras, M.C., Genomic analyses identify molecular subtypes of pancreatic cancer (2016) Nature, 531 (7592), pp. 47-52. , https://doi.org/10.1038/nature16965
Mitra, A., Mishra, L., Li, S., EMT, CTCs and CSCs in tumor relapse and drug-resistance (2015) Oncotarget, 6. , https://doi.org/10.18632/oncotarget.4037
Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY, et al. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med. 2014
Tiwari, N., Gheldof, A., Tatari, M., Christofori, G., EMT as the ultimate survival mechanism of cancer cells (2012) Semin Cancer Biol, 22 (3), pp. 194-207. , https://doi.org/10.1016/j.semcancer.2012.02.013
Frisch, S.M., Schaller, M., Cieply, B., Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis (2013) J Cell Sci, 126 (1), pp. 21-29. , https://doi.org/10.1242/jcs.120907
Krawczyk N, Hartkopf A, Banys M, Meier-Stiegen F, Staebler A, Wallwiener M, et al. Prognostic relevance of induced and spontaneous apoptosis of disseminated tumor cells in primary breast cancer patients. BMC Cancer. 2014
14:394. https://doi. org/10.1186/1471-2407-14-394
Chebouti, I., Kasimir-Bauer, S., Buderath, P., Wimberger, P., Hauch, S., Kimmig, R., EMT-like circulating tumor cells in ovarian cancer patients are enriched by platinum-based chemotherapy (2017) Oncotarget, 5, pp. 48820-48831. , https://doi.org/10.18632/oncotarget.16179
Yokobori, T., Iinuma, H., Shimamura, T., Imoto, S., Sugimachi, K., Ishii, H., Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis (2013) Cancer Res, 73 (7), pp. 2059-2069. , https://doi.org/10.1158/0008-5472.CAN-12-0326
Karabacak, N.M., Spuhler, P.S., Fachin, F., Lim, E.J., Pai, V., Ozkumur, E., Microfluidic, marker-free isolation of circulating tumor cells from blood samples (2014) Nat Protoc, 9 (3), pp. 694-710. , https://doi.org/10.1038/nprot.2014.044
Ge, F., Zhang, H., Wang, D.D., Li, L., Lin, P.P., Enhanced detection and comprehensive in situ phenotypic characterization of circulating and disseminated hetero-ploid epithelial and glioma tumor cells (2015) Oncotarget, 6 (29), pp. 27049-27064. , https://doi.org/10.18632/oncotarget.4819
Naume, B., Borgen, E., Tossvik, S., Pavlak, N., Oates, D., Nesland, J.M., Detection of isolated tumor cells in peripheral blood and in BM: Evaluation of a new enrichment method (2004) Cytotherapy, 6 (3), pp. 244-252. , https://doi.org/10.1080/14653240410006086
Wang, Z.P., Eisenberger, M.A., Carducci, M.A., Partin, A.W., Scher, H.I., Ts'o, P.O., Identification and characterization of circulating prostate carcinoma cells (2000) Cancer, 88 (12), pp. 2787-2795
Hosokawa, M., Kenmotsu, H., Koh, Y., Yoshino, T., Yoshikawa, T., Naito, T., Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system (2013) Plos ONE, 8. , https://doi.org/10.1371/journal.pone.0067466
Kim T-H, Lim M, Park J, Oh JM, Kim H, Jeong H, et al. FAST: size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid–liquid interface. Anal Chem. 2017
Hayashi, M., Zhu, P., McCarty, G., Meyer, C.F., Pratilas, C.A., Levin, A., Size-based detection of sarcoma circulating tumor cells and cell clusters (2017) Oncotarget, 8 (45), pp. 78965-78977. , https://doi.org/10.18632/oncotarget.20697
Rosenberg, R., Gertler, R., Friederichs, J., Fuehrer, K., Dahm, M., Phelps, R., Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood (2002) Cytometry, 49, pp. 150-158. , https://doi.org/10.1002/cyto.10161
Hou, J.M., Krebs, M., Ward, T., Sloane, R., Priest, L., Hughes, A., Circulating tumor cells as a window on metastasis biology in lung cancer (2011) Am J Pathol, 178 (3), pp. 989-996. , https://doi.org/10.1016/j.ajpath.2010.12.003
Gogoi, P., Sepehri, S., Zhou, Y., Gorin, M.A., Paolillo, C., Capoluongo, E., Development of an automated and sensitive microfluidic device for capturing and characterizing circulating tumor cells (CTCs) from clinical blood samples (2016) Plos One, 11. , https://doi.org/10.1371/journal.pone.0147400
Kim YJ, Kang YT, Cho YH. Poly(ethylene glycol)-modified tapered-slit membrane filter for efficient release of captured viable circulating tumor cells. Anal Chem. 2016
Friedlander, T.W., Premasekharan, G., Paris, P.L., Looking back, to the future of circulating tumor cells (2014) Pharmacol Ther, 142 (3), pp. 271-280. , https://doi.org/10.1016/j.pharmthera.2013.12.011
Chen, L., Peng, M., Li, N., Song, Q., Yao, Y., Xu, B., Combined use of EpCAM and FR α enables the high-efficiency capture of circulating tumor cells in non-small cell lung cancer Sci Rep, 2018, pp. 1-10. , https://doi.org/10.1038/s41598-018-19391-1
Cho, E.H., Wendel, M., Luttgen, M., Yoshioka, C., Marrinucci, D., Lazar, D., Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors (2012) Phys Biol, 9 (1). , https://doi.org/10.1088/1478-3975/9/1/016001
Marrinucci, D., Bethel, K., Kolatkar, A., Luttgen, M.S., Malchiodi, M., Baehring, F., Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers (2012) Phys Biol, 9 (1). , https://doi.org/10.1088/1478-3975/9/1/016003
Kuhn P, Bruce RH, Ladanyi A, Lerner RA, Hsieh HB, Curry DN, et al. A rare-cell detector for cancer. Proc Natl Acad Sci. 2004
Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007
450:1235–9. https://doi. org/10.1038/nature06385
Stott, S.L., Lee, R.J., Nagrath, S., Yu, M., Miyamoto, D.T., Ulkus, L., (2010) Isolation and Characterization of Circulating Tumor Cells from Patients with Localized and Metastatic Prostate. Cancer, 2, p. 25ra23
Zhao, M., Wei, B., Chiu, D.T., Imaging multiple biomarkers in captured rare cells by sequential immunostaining and photobleaching (2013) Methods, 64 (2), pp. 108-113. , https://doi.org/10.1016/j.ymeth.2013.08.006
Murlidhar V, Zeinali M, Grabauskiene S, Ghannad-Rezaie M, Wicha MS, Simeone DM, et al. A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. Small. 2014
Magbanua MJM, Carey LA, DeLuca A, Hwang J, Scott JH, Rimawi MF, et al. Circulating tumor cell analysis in metastatic triple-negative breast cancers. Clin Cancer Res. 2015
Kim, M.S., Sim, T.S., Kim, Y.J., Kim, S.S., Jeong, H., Park, J.-M., SSA-MOA: A novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter (2012) Lab Chip, 12, p. 2874. , https://doi.org/10.1039/c2lc40065k
Harouaka, R.A., Zhou, M.D., Yeh, Y.T., Khan, W.J., Das, A., Liu, X., Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells (2014) Clin Chem, 60 (2), pp. 323-333. , https://doi.org/10.1373/clinchem.2013.206805
Cabel, L., Proudhon, C., Gortais, H., Loirat, D., Coussy, F., Pierga, J.Y., Circulating tumor cells: Clinical validity and utility (2017) Int J Clin Oncol, 22 (3), pp. 421-430. , https://doi.org/10.1007/s10147-017-1105-2
Patel V, Keating MJ, Wierda WG, Gandhi V. Preclinical combination of TP-0903, an AXL inhibitor and B-PAC-1, a procaspase-activating compound with ibrutinib in chronic lymphocytic leukemia. Leuk Lymphoma. 2016
Giannelli, G., Villa, E., Lahn, M., Transforming growth factor-beta as a therapeutic target in hepatocellular carcinoma (2014) Cancer Res, 74 (7), pp. 1890-1894. , https://doi.org/10.1158/0008-5472.CAN-14-0243
Rodon, J., Carducci, M., Sepulveda-Sanchez, J.M., Azaro, A., Calvo, E., Seoane, J., Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-beta receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer (2015) Investig New Drugs, 33 (2), pp. 357-370. , https://doi.org/10.1007/s10637-014-0192-4
Puls LN, Eadens M, Messersmith W. Current status of SRC inhibitors in solid tumor malignancies. Oncologist. 2011
Hospital ZPPs. Aspirin on CTCs of advanced breast and colorectal cancer. 2015. https://ClinicalTrials. gov/show/NCT02602938
Biotherapeutics A. Phase I dose escalation study of AB-16B5 in subjects with an advanced solid malignancy. 2015. https://ClinicalTrials.gov/show/ NCT02412462
(2016) Tolero Pharmaceuticals I. First-In-Human Study of Oral TP-0903 (A Novel Inhibitor of AXL Kinase) in Patients with Advanced Solid Tumors, , https://ClinicalTrials.gov/show/NCT02729298
Metastasis, A.G.K., Epithelial to mesenchymal and back again (2013) Nat Rev Cancer, 13 (1), p. 3. , https://doi.org/10.1038/nrc3428
Brabletz, T., To differentiate or not – routes towards metastasis (2012) Nat Rev Cancer, 12, pp. 425-436. , https://doi.org/10.1038/nrc3265
Beerling, E., Seinstra, D., de Wit, E., Kester, L., van der Velden, D., Maynard, C., Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity (2016) Cell Rep, 14 (10), pp. 2281-2288. , https://doi.org/10.1016/j.celrep.2016.02.034
Nieto, M.A., Epithelial plasticity: A common theme in embryonic and cancer cells (2013) Science, 342 (6159). , https://doi.org/10.1126/science.1234850
Maheswaran, S., Haber, D.A., Ex vivo culture of CTCs: An emerging resource to guide cancer therapy (2015) Cancer Res, 75, pp. 2411-2416. , https://doi.org/10.1158/0008-5472.CAN-15-0145