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Abstract

Circulating tumor cells offer an unprece-
dented window into the metastatic cascade, 
and to some extent can be considered as 
intermediates in the process of metastasis. 
They exhibit dynamic oscillations in epithe-
lial to mesenchymal plasticity and provide 
important opportunities for prognosis, ther-
apy response monitoring, and targeting of 
metastatic disease. In this manuscript, we 
review the involvement of epithelial-mesen-
chymal plasticity in the early steps of metas-
tasis and what we have learned about its 

contribution to genomic instability and 
genetic diversity, tumor progression and ther-
apeutic responses using cell culture, mouse 
models and circulating tumor cells enriched 
from patients.
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2.1	 �Defining Epithelial-
Mesenchymal Plasticity

Cancer metastasis, the major cause of patient 
mortality, is a complex multi-step process in 
which tumor cells become invasive, intravasate 
into the blood, survive in the circulation, extrav-
asate out of the blood stream, and proliferate at 
the distal sites. During the early steps of metas-
tasis, tumor cells lose apico-basal polarity 
through disruption of cell-cell interactions and 
cytoskeletal remodeling to support invasion [1]. 
These changes are reminiscent of the normal 
physiological process, epithelial to mesenchy-
mal transition (EMT), that is required for gas-
trulation, neural crest cell migration, heart 
morphogenesis, organogenesis, and wound 
healing [1–7]. Utilization of EMT by cancer 
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cells to migrate, invade, and survive when non-
adherent provides an attractive model to under-
stand the critical steps involved in the initiation 
of metastasis. The process of canonical EMT in 
cancer cells is generally attributed to epigenetic 
changes that are thought to be largely reversible 
upon removal of EMT stimuli, resulting in the 
reversion of this phenotype through mesenchy-
mal-epithelial transition (MET). It is generally 
accepted that MET plays an important role in 
successful completion of the metastatic cascade 
with epithelial-like tumor formation [1, 7–11], 
and recently emerged controversies [12, 13] 
have been addressed [14, 15].

We will refer to these lineage switches as 
epithelial-mesenchymal plasticity (EMP) from 
this point forward to reflect the extensive bi-
directional plasticity of the process. EMP phe-
notypes have been observed in cell culture and 
in mouse tumor models of breast, lung, pros-
tate, pancreatic, colorectal, and ovarian cancers 
[16–18]. Detection of EMP in patient-derived 
tumor tissue specimens, however, has been 
complicated by the presence of stromal cells 
which express high levels of mesenchymal 
markers. As such, despite the dramatic invasive 
and tumorigenic phenotypes observed in mouse 
xenografts expressing EMP-regulating master 
transcriptional factors, Snail, Twist, and Slug 
among others, the direct observation of EMP in 
the metastasis of human epithelial cancers has 
remained elusive. Recently, tumor cells at vari-
ous stages of EMP were detected in the blood 
of breast cancer patients, suggesting that EMP 
is not bimodal but is a continuous process [19]. 
These circulating tumor cells (CTCs) are 
extremely rare and are the putative precursors 
of metastasis. Therefore, defining EMP as a 
single dramatic transition between two states 
may be an oversimplification and may limit the 
study of EMP in some circumstances [7]. In 
this chapter, we will review the process of EMP, 
the evidence for EMP in clinical samples, its 
contribution to breast cancer dissemination 
(with a focus on the metastatic intermediates, 
CTCs), and the therapeutic implications associ-
ated with this process.

2.1.1	 �Epithelial-Mesenchymal 
Plasticity to Model the Early 
Steps of Metastasis

During EMP, epithelial cells within the primary 
tumor switch lineage to take on a more mesen-
chymal phenotype [1, 20], which is associated 
with morphological changes and molecular 
reprogramming [5, 21]. This consists of a series 
of sequential processes: the loss of apico-basal 
polarity due to cytoskeletal and junctional remod-
eling, increased cell migration as the result of 
decreased cell-cell adhesion and increased motil-
ity (sometimes at the cost of proliferation), and 
the acquisition of invasive properties such as pas-
sage through a basement membrane [1]. The 
basement membrane between the epithelia and 
nearby blood vessels is the first barrier encoun-
tered by invading cells [22]. Invasion requires 
breach of the basement membrane, then break-
down of the extracellular matrix in the stroma by 
proteases such as matrix metalloproteinases [23]. 
EMP regulates expression of many of the genes 
required for this breach of the basement mem-
brane and matrix. Upon arrival at the secondary 
site, MET then proceeds in the reverse order, 
with increased polarity and cell-cell adhesion 
leading to decreased cell migration and an epi-
thelial phenotype associated with increased pro-
liferation. The steps of this process are highlighted 
in Fig. 2.1.

2.1.2	 �Inducers and Effectors of EMP

EMP in both development and cancer is induced 
and maintained by a variety of signals: (i) extra-
cellular signals, (ii) master transcription factors, 
and (iii) post-transcriptional regulators. 
Extracellular signals regulating EMP consist of 
peptide growth factors (e.g. FGF, EGF, HGF, 
TGFβ), cytokines, differentiation factors (Wnt, 
Notch, SHH, NFκB pathways, RAS/receptor 
tyrosine kinases), and hormones secreted by the 
cancer cells themselves as well as the supporting 
cells in the tumor microenvironment [1, 7, 24–
30]. Additionally, hypoxia and extracellular com-
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ponents such as collagen also can induce EMP 
[1, 25–29, 31–33]. These extracellular signals are 
transduced to transcription factors that regulate 
the expression changes required to elicit 
epithelial-mesenchymal state change. The master 
transcriptional regulators of EMP include Snail/
Slug, Twist, and members of the Zeb transcrip-
tion factor family [1, 34]. EMP is also regulated 
by post-transcriptional processes including ubiq-

uitination, alternative splicing, and miRNAs that 
regulate protein translation, the most well charac-
terized being the miR-200 family which modu-
lates the expression of the (ZEB) proteins [1, 7, 
34–36].

Along with a multitude of additional modula-
tors and chromatin modifiers, these regulators 
coordinate the expression of proteins that main-
tain the epithelial state, apico-basal polarity, and 

Fig. 2.1  Metastatic cascade highlighting CTC and 
EMP characteristics. A small proportion of carcinoma 
cells exhibit epithelial mesenchymal plasticity, resulting 
in hybrid (E/M) phenotype rather than a distinctly mes-
enchymal phenotypes (M). These mesenchymally 
shifted cells are associated with loss of the basement 
membrane and migration / invasion into the tumor 
microenvironment, where they can remain dormant. 
Epithelial change in these cells is likely to underpin 
local recurrence, allowing a new colony to form. A 
higher proportion of mesenchymally shifted (E/M) cells 
is found in the vasculature as circulating tumor cells 

(CTCs), indicating their increased capacity for intrava-
sation and survival in the vasculature. A full spectrum of 
epithelial (E) to mesenchymal phenotypes is seen in the 
blood however, the hybrid phenotype dominates. CTC 
clusters containing cells at different stages of the EMP 
spectrum, and also normal immune cells and in some 
cases, tumor stromal cells, are also seen and have a 
higher prognostic value and a higher patho-biological 
potential. Dormant single cells / micrometastatic depos-
its can be seen in the bone marrow (depicted) or other 
metastatic sites. MET results in slightly altered gene 
expression profiles (EM)
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cell-cell adhesion, including Crumbs, PAR, 
Scribble, E-cadherin, α-catenin, γ-catenin/plako-
globin, and claudin. They also regulate proteins 
defining the mesenchymal state, cellular motility, 
and invasiveness, including N-cadherin, vimen-
tin, and fibronectin [1, 7, 19, 34]. Together, these 
many inputs create a broad and often redundant 
signaling network to induce and maintain these 
states of plasticity in tumor cells [1, 2, 5, 25–27, 
37–41].

2.1.3	 �EMP in Cancer Stem Cells 
and Drug Resistance

In addition to being involved in promoting 
metastasis, EMP has also been implicated in 
contributing to the maintenance of cancer stem 
cells (CSC). Like CSCs, cells undergoing EMP 
can survive under adverse conditions and exhibit 
resistance to chemotherapeutic interventions, 
although they do not necessarily self-renew 
[42]. Cells undergoing EMP coincidently 
acquire many CSC markers. In breast cancer, 
the presence of mesenchymal markers corre-
lated with the presence of CSC markers includ-
ing ALDH1, NANOG, OCT-4, and CD44 [43]. 
Double knockdown of the cancer stemness 
markers NANOG and OCT-4 reversed EMT in 
lung adenocarcinoma, while induction of these 
genes promoted EMT in breast cancer [43]. 
Similarly, knockdown of the OVOL2 transcrip-
tion factor in nasopharyngeal carcinoma cells 
decreased both EMT and stemness [44]. 
Upregulation of CSC markers and the appear-
ance of a CSC phenotype during EMP has been 
observed in cell lines, mouse models, and patient 
samples [43, 45–48]. However, EMP is not 
always associated with the appearance of CSC-
like properties. CSCs consist of both mesenchy-
mal and epithelial phenotypes under different 
contexts, while EMT is often associated with a 
more mesenchymal state [49]. Further, CSCs 
represent a minor population of all tumor cells, 
whereas EMP occurs in a much larger fraction 
of tumor cells suggesting that additional criteria 

are involved in defining the functional charac-
teristics of CSCs [50]. Further studies are 
required to better define the relationship between 
EMP and CSCs, specifically whether they repre-
sent a common phenomenon and if they are both 
induced and maintained through the same induc-
ers and pathways.

Across several cancer types, the mesenchy-
mal state is associated with increased drug 
resistance while the epithelial state is associated 
with increased sensitivity [34, 51–53]. In a 
mouse model of breast cancer, cells forced to 
revert to the epithelial state lost CSC markers 
and were increasingly sensitive to doxorubicin, 
paclitaxel, proteasome inhibitors, and MAPK/
EGFR inhibitors [54, 55]. Further, neoadjuvant 
chemotherapy in breast cancer has been shown 
to be ineffective against CTCs in the EMP state 
[56, 57]. EMP signatures were also found to be 
associated with treatment response and resis-
tance in non-small cell lung carcinoma, pancre-
atic, breast, and ovarian cancer [5, 12, 13, 30, 
58–60]. The mechanistic aspects of EMP 
thought to confer drug resistance are similar to 
those in CSCs and include elevated expression 
of antiapoptotic proteins and drug efflux trans-
porters and immunosuppression through the 
activities of EMP master transcription factors 
[50, 61].

2.1.4	 �Significance of EMP in Non-
epithelial Cancers

While EMP is important for tumors of epithelial 
origin to migrate to the metastatic site, tumors of 
non-epithelial origin  – leukemias, lymphomas, 
myelomas, sarcomas, and brain and spinal cord 
cancers – do not necessarily encounter these bar-
riers. For some non-epithelial cancers, such as 
glioblastoma, markers of EMP are still induced 
by microglia and macrophages via NFkB and 
support invasiveness [30, 62, 63]. Further, of the 
four glioblastoma subtypes, the mesenchymal 
subtype is the most aggressive and radioresistant 
[64–66]. In sarcomas such as osteosarcoma and 
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rhabdomyosarcoma, where the cell of origin is 
already highly mesenchymal, further upregula-
tion of the EMP transcription factor ZEB1 has 
been observed compared to normal tissue, and 
SNAIL expression was associated with poorer 
overall survival [67–69]. Higher expression of 
epithelial E-cadherin is also associated with 
improved survival in bone and soft tissue sarco-
mas [70].

2.1.5	 �Contribution of EMP 
to Genomic Instability 
and Genetic Diversity

A series of studies published several years ago 
showed that mitosis during Drosophila and 
Xenopus embryogenesis is actively inhibited in 
cells undergoing gastrulation. Premature induc-
tion of proliferation before the completion of gas-
trulation in cells undergoing EMP results in 
extensive developmental abnormalities [71–74]. 
Recent studies show that this embryonic process 
is exploited by the tumor cells to drive genomic 
instability and diversity [75] – changes that can 
have profound consequences on tumor progres-
sion and drug responses. Although transitioning 
of epithelial cells to a mesenchymal state is 
reversible upon removal of the EMP inducers, the 
induced abnormalities in ploidy and genomic 
heterogeneity are heritable. The mechanistic clue 
to this incompatibility came from detailed pro-
teomic analysis, which revealed that several 
nuclear envelope proteins are suppressed as epi-
thelial cells transition to a mesenchymal state. 
Nuclear envelope proteins, in addition to provid-
ing the structural framework of the nucleus and 
selectively modulating the passage of molecules 
between the cytoplasm and the nucleoplasm, also 
play critical roles in orchestrating proper mitosis. 
Therefore, while the suppression of nuclear enve-
lope proteins reduces the rigidity of the nucleus 
to facilitate EMP-associated migration and inva-
sion, the requirement of these proteins for mitosis 
[76, 77] might also render their decrease during 
EMP incompatible with simultaneous prolifera-

tion. Subsequent studies show that clonal epithe-
lial populations spontaneously generate 
mesenchymal variants, which can revert to an 
epithelial phenotype [78] contributing to chro-
mosome instability and the selection of robust 
variants capable of forming metastatic tumors. 
Disruption of tissue architecture associated with 
this cell fate switch has also been implicated in 
maintaining the fidelity of chromosome segrega-
tion [79].

2.1.6	 �Mouse Models of EMP

The inherent plasticity of EMP makes unequivo-
cal determination of the lineage for a given cell 
difficult. Most studies evaluating the role of EMP 
in disease progression in  vivo have relied on 
xenograft mouse models and cultured cells. 
Experimental induction of EMP in cancer cells 
led to an increase in metastasis, and knockdown 
of EMP or premature induction of MET reduced 
metastasis [47, 80–82]. Interestingly, expression 
of the EMT-inducing homeobox transcription 
factor, Prrx1, led to EMT phenotypes in cultured 
cancer cells [47]. However, loss of Prrx1 in cul-
tured cells was required for efficient metastasis 
upon tail vein injection or orthotopic tumor for-
mation in mice [47]. Other studies utilized mouse 
models with intrinsic EMP reporters and gain-of-
function or loss-of-function of EMP master tran-
scription factors [13, 20]. In skin-specific 
Twist1-inducible mice, Twist1 induction caused 
higher rates of squamous cell cancer develop-
ment upon treatment with a carcinogen [83]. 
Reversal of this Twist1 induction upon tumor cell 
dissemination significantly increased metastasis. 
Together with the Prrx1 data, this result strongly 
supports a role for MET in metastatic outgrowth 
[83]. Single-cell lineage tracing with reporter 
genes irreversibly activated by lineage-specific 
promoters have been used to query the fate of the 
cells experiencing EMP.  Reporter genes thus 
activated by epithelial/mesenchymal promoters 
have been used to track EMP in mouse models 
and monitor the change in cellular states during 
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the course of metastasis and tumor progression 
[84]. Breast cancer models have found that a 
small fraction of primary and metastatic tumor 
cells undergo EMT [12]. Conversely, pancreatic 
cancer models showed about half of tumor cells 
had undergone EMT, rarely occurring in prema-
lignant lesions [85]. However, given the complex 
signaling networks involved in promoting EMP, 
it is difficult to reach concrete conclusions based 
on studies that rely on a single marker in a given 
model, particularly in the context of the EMP 
hybrid phenotype, where the degree of induction 
may be less strong.

2.1.7	 �Detecting EMP in Clinical 
Samples

Although lineage tracing in humans is not possi-
ble and acquisition of serial samples is quite dif-
ficult, evaluation of epithelial and mesenchymal 
markers in patient-derived tissue provides a snap-
shot of EMP in the clinical setting. 
Immunohistochemistry (IHC) of human breast 
cancer samples with mesenchymal markers such 
as vimentin, N-cadherin, cell cycle, and tumor 
specific markers such as HER2, showed evidence 
for EMT in triple negative and basal-like tumors 
but not in invasive lobular carcinomas [86, 87]. 
RNA in situ hybridization (RNA-ISH) using 
multiple probes to detect both epithelial and mes-
enchymal transcripts in the same samples delin-
eated the ratios of epithelial and mesenchymal 
tumor cell populations at the single cell level in 
the primary tumors and draining lymph nodes of 
human breast cancer specimens [19]. While most 
tumor cells exhibited an epithelial phenotype, 
triple negative breast cancer was enriched for 
cells with mesenchymal markers, and all sub-
types contained rare cells with combined epithe-
lial and mesenchymal staining [19]. RNA-ISH 
analysis was also performed on CTCs from breast 
cancer patients, where it performed significantly 
better at detecting mesenchymal cells compared 
to standard cytokeratin approaches (discussed in 
more detail below) [19]. CTCs provide a non-
invasive tool to monitor EMP in real time as 

patients progress through therapeutic 
interventions.

2.2	 �EMP in Circulating Tumor 
Cells

During metastasis, CTCs  – the putative meta-
static precursors  – travel through the blood. 
Although the majority of CTCs are destroyed in 
the blood through apoptosis, the remaining via-
ble cells reach and reside within distal sites in a 
dormant state until they adjust to the new micro-
environment and eventually proliferate. The rela-
tive accessibility of CTCs in the peripheral blood 
provides real time sampling of tumor cells to 
interrogate the contribution of EMP to metastasis 
and drug responsiveness [30].

Studies of CTCs provide some of the best evi-
dence for the involvement of EMP in promoting 
metastasis. Mesenchymal markers have been 
observed in CTCs from patients with glioblas-
toma, breast, liver, nasopharyngeal, colon, gas-
tric, bladder, pancreatic, and non-small cell lung 
cancers [7, 19, 30, 54, 56, 80, 88–97]. A summary 
of EMP studies in breast cancer CTCs is shown in 
Table 2.1. These studies showed that CTCs are a 
heterogeneous population and, as predicted, 
exhibit more mesenchymal characteristics com-
pared with the cells in the primary or metastatic 
tumors. A large fraction of individual CTCs was 
also found to express both epithelial and mesen-
chymal markers, suggesting that plasticity is a 
common component of the metastatic phenotype 
[7, 19, 30, 56, 80, 91–96]. Lineage tracing experi-
ments in animal models will be required to 
explore the stage of tissue residence or circulation 
at which CTCs undergo both EMT and MET [7].

2.2.1	 �Hybrid-EMP and CTC Clusters

Recent studies regarding EMP in CTCs address a 
longstanding dispute in the field: whether EMP 
should be defined as a binary process with epithe-
lial and mesenchymal endpoints as observed in 
most non-disease cases (with notable exceptions 
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of cohort migration as outlined below), or 
whether EMP is a spectrum phenotype with 
potentially stable higher-plasticity manifesta-
tions along the continuum from epithelial to mes-
enchymal phenotype [1, 53]. Highly-plastic cells 
with both epithelial and mesenchymal pheno-
types (hereafter referred to as hybrid-EMP) are 
observed in many CTCs as well as in  vivo; in 
fact, hybrid-EMP CTCs are more commonly 
observed than fully mesenchymal cells in many 
studies [8, 129]. Two recent studies of mouse 
pancreatic ductal adenocarcinoma (PDAC) and 
skin squamous cell cancer showed that these 
hybrid-EMP cells are more plastic than either 
epithelial or mesenchymal cells, with a higher 
ability to interconvert among the types in culture 
[8, 129]. Epigenetic, transcriptional, and post-
transcriptional mechanisms were identified as 
regulating this interconversion, suggesting fur-
ther study is needed to devise a unified mecha-
nism for hybrid-EMP plasticity or to identify 
disease-specific mechanisms [8, 129]. Based on 
this data, we and others define EMP as a spec-
trum of phenotypes with highly plastic intercon-
version among the different states, with increased 
appreciation that the location of any particular 
cell along this continuum has important implica-
tions for both cancer and development [1, 7, 8, 
129–137]. However, it is important to note that 
while the existence and importance of hybrid-
EMP is accepted, it is still unclear whether it rep-
resents an intermediate phase during EMP or a 
final state, and even whether the same signaling 
pathways at work during EMP are also responsi-
ble for hybrid-EMP [7, 8].

Practically, the label hybrid-EMP is assigned 
to varied states, which include cells that down-
regulate epithelial markers but do not upregulate 
the full complement of mesenchymal markers, as 
well as cells expressing both epithelial and mes-
enchymal markers [8, 129]. For example, cells 
with upregulation of mesenchymal processes 
such as loss of polarity and increased motility 
and invasion but without loss of cell-cell adhe-
sion or cell individualization. Indeed, although 
individual cell migration is a hallmark of EMT, 

recent studies have highlighted the presence of 
multicellular CTC clusters (up to 100 cells) in the 
circulation of patients with advanced cancers 
such as inflammatory breast cancer, and cohort 
migration is accepted as a frequent mode of inva-
sion [1, 51, 138–147]. Clusters are more effective 
at colonizing secondary sites than single CTCs 
and correlate with a worse prognosis [7, 19, 80, 
139]. Importantly, there is an association between 
CTC expression of mesenchymal markers and 
cluster formation. Many clusters are coated in 
platelets, which are a source of TGFβ and may 
help induce or maintain mesenchymal character-
istics [30, 148]. These clusters necessarily main-
tain cell-cell contacts and some epithelial-like 
expression (notably the desmosomal protein 
plakoglobin), suggesting that they exhibit the 
hybrid-EMP phenotype described above [8, 51, 
80, 149, 150]. Indeed, tumor spheres of hybrid-
EMP mouse prostate cancer cells exhibited col-
lective cell migration and cluster delamination 
while fully mesenchymal spheres only showed 
single-cell invasion [8]. It is not clear whether 
hybrid-EMP clusters are composed of a homog-
enous population of hybrid-EMP CTCs versus a 
mixed population of epithelial CTCs and mesen-
chymal CTCs [80]. However it is important to 
note that lineage tracing and tumor transplanta-
tion experiments show that CTC clusters do not 
form in the bloodstream through aggregation of 
single CTCs, but originate from polyclonal pri-
mary tumors, suggesting that the hybrid-EMP 
phenotype is established before invasion into the 
circulation [139, 151]. Although these clusters 
may seem impossibly large for invasion or 
extravasation through the blood vessel into the 
secondary tissue, studies have shown that CTC 
clusters can traverse the capillaries of Zebrafish 
by rapid reorganization into single-file chains 
[140]. Finally, although cohort migration is high-
lighted in the study of cancer CTCs, it should be 
noted that similar modes of invasion occur during 
development, wound healing, and mammary 
reorganization in some species, underscoring the 
fact that this hybrid-EMP phenotype is not 
restricted to the cancer environment [1].
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2.2.2	 �Role of EMP in CTCs 
During Progression 
and Therapeutic Response

The implications of hybrid-EMP phenotypes on 
tumor histology and prognosis are significant. 
Hybrid-EMP cells are detected in both primary 
and metastatic tumors and are particularly preva-
lent in individual and clustered CTC populations 
as noted above [19]. Single-cell evaluation of 
both EMP markers and tumor-specific markers 
(such as HER2) in breast cancer confirm that 
these hybrid-EMP cells are tumor-derived [19]. 
Mesenchymal mouse PDAC tumors were poorly 
differentiated while hybrid-EMP tumors were 
moderately to well-differentiated [8]. Similar 
results are observed in human poorly differenti-
ated quasi-mesenchymal, squamous, or basal-
like PDAC tumors versus well-differentiated 
classical/exocrine-like, classical, or pancreatic 
progenitor/ADEX tumors [8, 152–154]. The pro-
portion of breast cancer CTCs with fully epithe-
lial, predominantly mesenchymal, or hybrid-EMP 
seems to be dependent on tumor type and stage, 
consistent with data for primary and metastatic 
tumor cells. Pre-invasive ductal carcinoma in situ 
(DCIS) lesions exhibit exclusively epithelial phe-
notypes, while invasive breast cancers contain 
rare hybrid-EMP cells, suggesting incomplete 
MET [19]. Further, CTCs from patients with lob-
ular type (ER+/PR+) cancers were predominantly 
epithelial while CTCs from patients with HER2+ 
or triple negative breast cancers were predomi-
nantly mesenchymal [19].

Studies show that EMP phenotypes in CTCs 
indicate poor prognosis and resistance to therapy. 
Hybrid-EMP mouse skin cancer cells produced 
more metastasis after tail vein injection than 
fully mesenchymal cells [129]. In humans, EMP 
CTCs confer poor prognosis in breast, prostate, 
liver, colorectal, head and neck, pancreatic, 
endometrial, and lung cancers [155]. Hybrid-
EMP cells are more anoikis-resistant and drug-
resistant [53, 156], giving them a better chance 
of metastatic colonization. Although the signal-
ing pathways mediating anoikis resistance are 
not fully understood, EMP markers such as 
TGFβ, Twist, Snail, and miR200 have also been 

shown to have effects on survival in circulation 
[157, 158]. This is particularly significant to 
breast cancer treatment, as apoptosis is the main 
inducer of regression in systemic therapy and 
resistance of disseminated tumor cells to apopto-
sis is correlated with worse prognosis [159]. 
EMP CTCs were also associated with chemo-
therapy or radiotherapy resistance in ovarian, 
breast, and colorectal cancer [109, 160, 161]. 
Interestingly, when one breast cancer patient was 
followed longitudinally, mesenchymal-CTCs 
decreased with therapy response and then 
increased upon development of resistance, a phe-
nomenon that was observed over two successive 
rounds of treatment. This increase in mesenchy-
mal-CTCs was accompanied by the appearance 
of CTC-clusters [19].

2.2.3	 �The Influence of EMP on CTC 
Isolation Technologies

The plasticity of mixed epithelial and mesenchy-
mal CTC phenotypes in the blood has been highly 
consequential in defining the capture efficiency 
of antibody-based CTC isolation approaches that 
rely on the expression of the epithelial marker 
EpCAM on the surface of tumor cells. The only 
FDA approved technique for in vitro diagnostic 
use, CellSearch®, (Veridex, Menarini Silicon 
Biosystems) uses immunomagnetic beads coated 
with antibodies against EpCAM. Other CTC iso-
lation modalities rely on physical characteristics 
such as size, density, deformability, and charge. 
However, because CTCs are highly heteroge-
neous and many CTCs exhibit a hybrid-EMP or 
fully mesenchymal phenotype, enrichment by a 
single epithelial surface marker or physical char-
acteristic may not be sufficient to capture the full 
array of CTCs in the blood [7]. To overcome this 
limitation, techniques using multiple antibodies 
that mark epithelial and mesenchymal states (e.g. 
a combination of EpCAM, cytokeratin, and 
vimentin) and tumor-specific cell surface mark-
ers including HER2 and EGFR have been more 
effective in sampling the different populations of 
CTCs circulating in the blood [19]. However, 
these “double positive” isolation technologies 
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still fail to enrich for hybrid-EMP CTCs that 
express neither epithelial nor mesenchymal com-
monly examined markers [8]. Negative depletion 
of leukocytes with antibodies directed against 
white blood cells provides an efficient method to 
overcome the limitations posed by positive selec-
tion. These technologies rely on a permissive 
size-based separation to eliminate red blood cells 
followed by immunomagnetic depletion of white 
blood cells with CD45 antibodies [162–165]. 
They are considered negative selection because 

they enrich for CTCs based on known properties 
of the other cellular components of the blood, 
rather than making assumptions about CTC phe-
notypes that could bias the population of CTCs 
after isolation. The capability of each technique 
to isolate epithelial, mesenchymal, and hybrid-
EMP CTCs is shown in Table  2.2. They each 
have their strengths and weaknesses, which are 
important to appreciate, however to date there in 
no universally accepted preferred method that 
allows comprehensive capture of all CTCs.

Table 2.2  Methods of CTC isolation and EMP recovery

Method Name

Detection of Epithelial (E), 
Mesenchymal (M), or Hybrid 
(H) CTCs References

Physical separation
Size based filtration/microfluidics Microcavity array 

(MCA); FAST disc; 
CellSieve

E = M = H [166–168]

Density based centrifugation Ficoll; OncoQuick E = M = H [169]
Size and deformability ISET®; Celsee M > H > E [170, 171]
Cell surface charge PEG E = M = H [172]
Density based centrifugation followed by 
invasion

CAM M > E [173]

Negative selection
Microfluidic size based then negative 
selection for CD45

CTC-iChip; 
Cytelligen® and iFISH

E = M = H [162, 163]

Density separation of tetrameric antibody 
complexes for CD45, CD66b and 
glycophorin

RARE E = M = H [164]

Density gradient separation then 
anti-CD45 based negative 
immunomagnetic enrichment

unnamed E = M = H [165]

Positive selection
Cell surface vimentin CSV 84-1 M [118]

Cell surface EpCAM and FRα unnamed E = M > H [174]

High throughput microscopy for 
immunofluorescence or FISH

Epic CTC Platform®; 
FAST

E = M > H [175–177]

EpCAM based immunomagnetic 
separation

CellSearch® E [170]

Microfluidic size based then EpCAM 
based immunomagnetic separation

CTC-chip; 
Herringbone; eDAR; 
OncoBean

E [178–181]

Sized based filtration then EpCAM, CK, 
vimentin, and twist RNA-ISH

CanPatrol E = M > H [94]

Flow Cytometry for surface epithelial 
markers

IE/FC E [182]

Filtration using selective size 
amplification

SSA-MOA E [183]

Clusters
Size based filtration FMSA; Cluster-Chip M = H > E [143, 144, 

184]
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2.3	 �Clinical Correlates 
and Future Study

2.3.1	 �EMP as a Biomarker 
for Progression, 
Aggressiveness, and Drug 
Selection

The functional connections between EMP and 
cancer progression are well-established and are 
supported by prognostic correlations observed in 
patient-derived samples. In ovarian cancer, higher 
EMP scores are correlated with worse prognosis, 
both for overall and disease-free survival [156]. 
In metastatic breast, pancreatic, and hepatocellu-
lar carcinomas, increases in EMP CTCs are asso-
ciated with progression, poor therapeutic 
response, metastasis, and worse prognosis while 
patients responding to therapy show a decrease in 
EMP CTCs [7, 19, 43, 80, 93, 95, 127]. The 
hybrid-EMP phenotype predominates in many 
cancer types, including aggressive breast cancer 
and melanoma, and may therefore indicate a 
worse prognosis than tumors with a purely mes-
enchymal phenotype [80]. Further, cancer cells 
exhibiting hybrid-EMP were more plastic, and 
more efficient in tumor budding, invasion, stem-
ness, CTC cluster formation, and drug resistance 
[34, 51]. Because CTCs are hematogenously cir-
culating and represent many stages of metastasis, 
evaluation of EMP in CTCs may have clinical 
relevance as a biomarker [93]. However, these 
studies are still preliminary and the prognostic 
value of EMP CTCs in monitoring therapeutic 
resistance or progression has not been fully deter-
mined and no recommendation for clinical moni-
toring has been issued [127, 185].

2.3.2	 �Prevention or Reversal of EMP 
as a Therapeutic Target

In addition to serving as a biomarker, EMP may 
be an attractive therapeutic target to slow or halt 
metastasis. Current clinical trials aiming to pre-
vent or reverse EMT are testing TGFβ inhibition 
(LY2157299  in glioblastoma and hepatocellular 
carcinoma), clusterin (a TGFβ mediator) inhibi-

tion (AB-16B5 in advanced solid tumors), plate-
let inhibition (aspirin in metastatic breast and 
colorectal cancer), AXL inhibition (TP-0903  in 
refractory solid tumors), and Src kinase inhibi-
tion, with mixed results [186–192]. Reversing 
transition to a mesenchymal state through re-
differentiation could reduce invasiveness and 
resensitize cells to current therapies. However, 
there are concerns associated with therapies tar-
geting EMP. First, MET is likely required for out-
growth at the secondary site and therefore such a 
treatment may actually support metastasis, pos-
sibly through reactivating dormant tumor cells 
[47, 83, 193–196]. Indeed, knockdown of the 
EMP transcription factors PRRX1 and Twist1 in 
breast cancer cells increased lung metastasis in 
mice [47]. Reciprocally, induction of Twist1 in a 
skin cancer model inhibited metastatic outgrowth 
[83]. Second, even if we could be confident that 
EMP inhibition would not be detrimental to the 
patient, the benchmarks for such a reversal are 
unclear. As described, EMP is not a single pheno-
type, but a broad array of intermediate states in 
different cells. It is therefore difficult to deter-
mine how far along the EMP continuum to 
reverse the cells, and how to achieve consistent 
effects in such a heterogeneous population. The 
best course of action will likely be different for 
different contexts and cancer types, further com-
plicating the issue [7].

2.4	 �Controversies

Two papers published in 2015 using lineage trac-
ing mouse models raised doubts about whether 
EMP is strictly necessary for metastasis in vivo 
(although they maintain support for a role in che-
moresistance) [12, 13, 30, 197]. However, numer-
ous papers in response to these findings have 
drawn on decades of research in support of a role 
for EMP in metastasis, pointing out that the com-
plexity of this dynamic process  – with interac-
tions between multiple transcription factors, 
important intermediate and hard to detect pheno-
types, and necessary plasticity between epithelial 
and mesenchymal states to complete the meta-
static cycle – makes it very difficult to interpret 
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the results of a single lineage tracing model [7, 
14, 15, 80, 195]. Future models of greater nuance 
relying on multiple EMP markers and single cell 
analysis will help to fully understand the role of 
EMP in metastasis.

2.5	 �Remaining Questions

Despite over 30 years of study, new and old ques-
tions remain to be addressed to clarify the role 
that EMP, and therefore CTCs and CTC clusters, 
play in metastasis. As we continue to probe fur-
ther into the impact of EMP on tumorigenesis 
and metastasis, our increased awareness of the 
hybrid-EMP phenotypes exhibited by many 
tumor cells, but especially CTCs, will provide 
more insight into this process. Further studies are 
needed to define how many distinct subtypes 
there are within the continuum, how stable/plas-
tic these subtypes are relative to each other, and 
whether their functional characteristics remain 
the same across different cancer types. This will 
require a collaborative decision regarding the 
markers of epithelial and mesenchymal pheno-
types, the setting of thresholds for expression, 
and establishing of assays that mimic intercon-
version between states in patients. It will also 
need to be determined whether these hybrid-EMP 
subtypes are best modeled as a continuum or as a 
trans-differentiation. This will be informed by 
studies examining how cells transition between 
the subtypes, including examinations of both 
transcriptional and post-transcriptional 
regulations.

Beyond defining hybrid-EMP, it is becoming 
clear that hybrid-EMP in CTCs and tumor cells 
alike is correlated with a worse prognosis and 
higher metastatic potential that fully epithelial or 
mesenchymal cells [53, 129]. It remains to be 
determined whether it is the hybrid-EMP cells 
themselves, or just the existence of a more het-
erogeneous population of tumor cells, that is the 
cause of this observation. On the one hand, 
metastasis requires both mesenchymal and epi-
thelial processes, and cells locked into a mesen-
chymal state may fail to initiate a tumor in the 
secondary site. It is possible that hybrid-EMP 

CTCs encompass the population of CSCs that are 
the crucial determinants of successful tumor re-
initiation. On the other hand, different cancer 
types and individual cancers exhibit different lev-
els of hybrid-EMP, and yet many cancers are 
metastatic. With the recent identification of CTC 
clusters and the appreciation of their higher met-
astatic potential, it is possible that heterogeneous 
clusters of CTCs, containing cells with epithelial, 
hybrid-EMP, and mesenchymal phenotypes can 
form and cooperatively make the metastatic jour-
ney, with the mesenchymal cells “shepherding” 
the epithelial cells to their destination. Our ability 
to address these and other mechanistic questions 
will be aided by technological developments. 
Already, CTC isolation technologies have given 
us an opportunity to study some of these ques-
tions in the most appropriate setting  – invaded 
cells that are the putative precursors of metasta-
sis. Because these rare cells must be enriched, it 
will be crucial to select the appropriate isolation 
technology so that our evaluation of the breadth 
of EMP phenotypes in CTCs is not biased. To 
confidently accomplish this, we will need to stan-
dardize epithelial, mesenchymal, and CTC mark-
ers. Upon isolation of a physiologically relevant 
CTC population, advances in genomics and pro-
teomics will allow for comprehensive mapping 
of transcriptional, epigenetic, and post-
transcriptional differences in EMP phenotypes in 
individual CTCs and throughout disease progres-
sion. Finally, although CTCs are the metastati-
cally competent population, upon isolation they 
still provide only a snapshot in the EMP progres-
sion of that cell. As with all EMP studies, animal 
models and lineage tracing technologies will be 
crucial to visualize and ultimately understand the 
implications of EMP on metastasis in vivo.
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