Machine Learning; Artificial Neural Network; Direct Energy Deposition,; Thermal Model
Abstract :
[en] In the last decade, machine learning is increasingly attracting researchers in several scientific areas and, in particular, in the additive manufacturing field. Meanwhile, this technique remains as a black box technique for many researchers. Indeed, it allows obtaining novel insights to overcome the limitation of classical methods, such as the finite element method, and to take into account multi-physical complex phenomena occurring during the manufacturing process. This work presents a comprehensive study for implementing a machine learning technique (artificial neural network) to predict the thermal field evolution during the direct energy deposition of 316L stainless steel and tungsten carbides. The framework consists of a finite element thermal model and a neural network. The influence of the number of hidden layers and the number of nodes in each layer was also investigated. The results showed that an architecture based on 3 or 4 hidden layers and the rectified linear unit as the activation function lead to obtaining a high fidelity prediction with an accuracy exceeding 99%. The impact of the chosen architecture on the model accuracy and CPU usage was also highlighted. The proposed framework can be used to predict the thermal field when simulating multi-layer deposition
Research Center/Unit :
University of Liège, UEE Research Unit, MSM division
Disciplines :
Materials science & engineering
Author, co-author :
El Fetni, Seifallah ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Duchene, Laurent ; Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles des matériaux et struct. du gén. civ.
Tran, Hoang Son ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département ArGEnCo
Language :
English
Title :
Thermal field prediction in DED manufacturing process using Artificial Neural Network
Publication date :
12 April 2021
Event name :
ESAFORM 2021 24th International Conference on Material Forming
Event organizer :
ESAFORM
Event place :
Liège, Belgium
Event date :
from 13-04-2021 to 17-04-2021
Audience :
International
Main work title :
ESAFORM 2021: The 24th International ESAFORM Conference on Material Forming
Author, co-author :
Habraken, Anne ; Université de Liège - ULiège > Urban and Environmental Engineering
Duchene, Laurent ; Université de Liège - ULiège > Urban and Environmental Engineering
Mertens, Anne ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Metallic materials for additive manufacturing
Publisher :
PoPuPs, Liège, Belgium
ISBN/EAN :
9782870190029
Peer reviewed :
Peer reviewed
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
H-S. Tran, J. T. Tchoufang, H. Paydas, A. Mertens, R. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Bechers, A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des., vol. 128, pp. 130-142, 2017
A. Mertens, S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire, J. Lecomte-Beckers, “Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures,” Powder Metall., vol. 57, no. 3, pp. 184-189, 2014
Chinnapat Panwisawas, Bama Perumal, R. Mark Ward, Nathanael Turner, Richard P. Turner, Jeffery W. Brooks, Hector C. Basoalto, “Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling,” Acta Mater., vol. 126, pp. 251-263, 2017
E. Toyserkani, A. Khajepour and S. Corbin, “3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process,” Opt. Lasers Eng., vol. 41, no. 6, pp. 849-867, 2004
M. Alimardani, E. Toyserkani, and J. P. Huissoon, “A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process,” Opt. Lasers Eng., vol. 45, no. 12, pp. 1115-1130, 2007
A. Hussein, L. Hao, C. Yan, and R. Everson, “Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting,” Mater. Des., vol. 52, pp. 638-647, 2013
P. Cadiou, S. Courtois, M. Carin, M Berckmans, W Le masson, “3D heat transfer, fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (Cmt-Waam),” Addit. Manuf., vol. 36, p. 101541, 2020
B. Ahmad, S. O. van der Veen, M. E. Fitzpatrick, and H. Guo, “Measurement and modelling of residual stress in wire-feed additively manufactured titanium,” Mater. Sci. Technol. (United Kingdom), vol. 34, no. 18, pp. 2250-2259, 2018
V. Fallah, M. Alimardani, S. F. Corbin, and A. Khajepour, “Temporal development of melt-pool morphology and clad geometry in laser powder deposition,” Comput. Mater. Sci., vol. 50, no. 7, pp. 2124-2134, 2011
N.S. Johnson, P.S. Vulimiri, A.C. To, X. Zhang, C.A. Brice, B.B. Kappes, A.P. Stebner, Invited review: Machine learning for materials developments in metals additive manufacturing, Additive Manufacturing, Volume 36, 2020,101641
Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik l., “Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules,” ACS Cent. Sci., vol. 4, no. 2, pp. 268-276, 2018
I. Bose and R. K. Mahapatra, “Business data mining - A machine learning perspective,” Inf. Manag., vol. 39, no. 3, pp. 211-225, 2001
J. Li, R. Jin, and H. Z. Yu, “Integration of physically-based and data-driven approaches for thermal field prediction in additive manufacturing,” Mater. Des., vol. 139, pp. 473-485, 2018
J. Li, R. Jin, and H. Z. Yu, “Integration of physically-based and data-driven approaches for thermal field prediction in additive manufacturing,” Mater. Des., vol. 139, pp. 473-485, 2018
Tapia, G., Khairallah, S., Matthews, M. et al. "Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel." Int J Adv Manuf Technol 94, 3591-3603 (2018)
Waqas Muhammad, Abhijit P. Brahme, Olga Ibragimova, Jidong Kang, Kaan Inal, "A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys", International Journal of Plasticity, Volume 136,2021
A. Swaroop, V. Himasree, and T. Thomas, “Machine learning based a priori prediction on powder samples of sintering-driven abnormal grain growth,” Comput. Mater. Sci., vol. 187, no. October 2020, p. 110117, 2021
W. Muhammad, A. P. Brahme, O. Ibragimova, J. Kang, and K. Inal, “A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys,” Int. J. Plast., vol. 136, no. June 2020, p. 102867, 2021
Seifallah Fetni, Tommaso Maurizi Enrici, Tobia Niccolini, Son Hoang Tran, Olivier Dedry, Ruben Jardin, Laurent Duchêne, Anne Mertens, Anne Marie Habraken, 2D thermal finite element analysis of laser cladding of 316L+WC Composite coatings, Procedia Manufacturing, Volume 50, 2020, Pages 86-92
H. T. Haile and F. B. Dejene, “Effect of target to substrate distance on the material properties of the Y 2 SiO 5:Ce 3+ thin film by pulsed laser deposition,” Appl. Phys. A Mater. Sci. Process., vol. 125, no. 3, pp. 1-9, 2019
T.Q.D. Pham, T.-V. Hoang, T.Q. Pham, P.T. Huynh, X.V. Tran, S. Fetni, L. Duchêne, H.S. Tran, A.-M. Habraken, “Data-driven Prediction of Temperature Evolution in Metallic Additive Manufacturing Process”, ESAFORM int. conf. April, 2021
L. Das, A. Sivaram, and V. Venkatasubramanian, “Hidden representations in deep neural networks: Part 2. Regression problems,” Comput. Chem. Eng., vol. 139, p. 106895, 2020