V. Auvray and L. Wehenkel. 2008. Learning inclusion-optimal chordal graphs. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI-2008).
L. Breiman. 1996. Bagging predictors. Machine Learning, 24(2):123-140.
L. E. Brown, I. Tsamardinos, and C. F. Aliferis. 2004. A novel algorithm for scalable and accurate bayesian network learning. Medinfo, 11(Pt 1):711-715.
D.M. Chickering and D. Heckerman. 1997. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Machine Learning, 29(2-3):181-212.
C.K. Chow and C.N. Liu. 1968. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462-467.
R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter. 1999. Probabilistic Networks and Expert Systems. Springer.
S. Dasgupta. 1999. Learning polytrees. In Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 134-14, San Francisco, CA. Morgan Kaufmann.
A.P. Dempster, N.M. Laird, and D.B. Rubin. 1977. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1-38.
N. Friedman and D. Koller. 2000. Being Bayesian about network structure. In C, editor, Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence (UAI-00), pages 201-210, SF, CA, June 30-July 3. Morgan Kaufmann Publishers.
N. Friedman, I. Nachman, and D. Pe'er. 1999. Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm. In UAI '99: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pages 206-215. Morgan Kaufmann.
P. Geurts, D. Ernst, and L. Wehenkel. 2006. Extremely randomized trees. Machine Learning, 63(1):3-42.
J.S. Ide, F.G. Cozman, and F.T. Ramos. 2004. Generating random bayesian networks with constraints on induced width. In ECAI, pages 323-327.
M. Jaeger. 2004. Probabilistic decision graphs-combining verification and AI techniques for probabilistic inference. International Journal of Uncertainty, Fuzzi-ness and Knowledge-Based Systems, 12(Supplement-1):19-42.
S. Kullback and R. Leibler. 1951. On information and sufficiency. Annals of Mathematical Statistics, 22(1):79-86.
D. Lowd and P. Domingos. 2005. Naive bayes models for probability estimation. In Proceedings of the Twenty-Second International Conference (ICML 2005), pages 529-536. ACM.
D. Madigan and A.E. Raftery. 1994. Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of The American Statistical Association, 89:1535-1546.
D. Madigan and J. York. 1995. Bayesian graphical models for discrete data. International Statistical Review, 63:215-232.
M. Meila-Predoviciu. 1999. Learning with Mixtures of Trees. Ph.D. thesis, MIT.
J. Pearl. 1986. Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 29:241-288.
A. Quiroz. 1989. Fast random generation of binary, t-ary and other types of trees. Journal of Classification, 6(1):223-231, December. available at http://ideas.repec.org/a/spr/jclass/v6y1989i1p223-231.html.
R.W. Robinson. 1977. Counting unlabeled acyclic digraphs. In C. H. C. Little, editor, Combinatorial Mathematics V, volume 622 of Lecture Notes in Mathematics, pages 28-43, Berlin. Springer.
R.Y. Rubinstein and D.P. Kroese. 2004. The Cross-Entropy Method. A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning. Information Science and Statistics. Springer.