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Abstract

In this work we explore the Perturb and Combine idea, celebrated in supervised learning,
in the context of probability density estimation in high-dimensional spaces with graphical
probabilistic models. We propose a new family of unsupervised learning methods of mix-
tures of large ensembles of randomly generated tree or poly-tree structures. The specific
feature of these methods is their scalability to very large numbers of variables and training
instances. We explore various simple variants of these methods empirically on a set of

discrete test problems of growing complexity.

1 Introduction

Learning of Bayesian networks aims at model-
ing the joint density of a set of random variables
from a random sample of joint observations of
these variables (Cowell et al., 1999). Such a
graphical model may be used for elucidating the
conditional independences holding in the data-
generating distribution, for automatic reasoning
under uncertainties, and for Monte-Carlo simu-
lations. Unfortunately, currently available algo-
rithms for Bayesian network structure learning
are either restrictive in the kind of distributions
they search for, or of too high computational
complexity to be applicable in very high dimen-
sional spaces (Auvray and Wehenkel, 2008).

In the context of supervised learning, a
generic framework which has led to many fruit-
ful innovations is called “Perturb and Com-
bine”. Its main idea is to on the one hand
perturb in different ways the optimization algo-
rithm used to derive a predictor from a data-set
and on the other hand to combine in some ap-

propriate fashion a set of predictors obtained by
multiple iterations of the perturbed algorithm
over the data-set. In this framework, ensembles
of weakly fitted randomized models have been
studied intensively and used successfully during
the last two decades. Among the advantages
of these methods, let us quote the improved
scalability of their learning algorithms and the
improved predictive accuracy of their models.
For example, ensembles of extremely random-
ized trees have been applied successfully in com-
plex high-dimensional tasks, as image and se-
quence classification (Geurts et al., 2006).

In this work we explore the Perturb and Com-
bine idea for probability density estimation. We
study a family of learning methods to infer mix-
tures of large ensembles of randomly generated
tree structured Bayesian networks. The specific
feature of these methods is their scalability to
very large numbers of variables and training in-
stances. We explore various simple variants of
these methods empirically on a set of discrete
test problems of growing complexity.



The rest of this paper is organized as follows.
Section 2 discusses the classical Bayesian frame-
work for learning mixtures of models. Section 3
describes the proposed approach and algorithms
presented in this paper and Section 4 reports
simulation results on a class of simple discrete
test problems. Section 5 discusses our work in
relation with the literature and Section 6 briefly
concludes and highlights some directions for fur-
ther research.

2 Bayesian modeling framework

Let X = {Xy,...,X,} be a finite set of dis-
crete random variables, and D = (z!,---  29)
be a data-set (sample) of joint observations
' = (2%, ,2!) independently drawn from
some data-generating density Pg(X).

In the full Bayesian approach, one assumes
that Pg(X) belongs to some space of densi-
ties D described by a model-structure M € M
and model-parameters 8 € O, and one infers
from the data-set a mixture of models described
by the following equation:

p(X|D)= > P(M|D)P(X|M,D), (1)
MeM

where P(M|D) is the posterior probability over
the model-space M conditionally to the data D,
and where P(X|M, D) is the integral:

/@ P(X|0r, M) dP(0ps| M, D). (2)

So Pp(X|D) is computed by:

> B(M|D)

MeMm Om

P(X|0rr, M) dP(0ps|M, D),

(3)
where dP(0y;|M, D) is the posterior density of
the model-parameter and P(X |0y, M) is the
likelihood of observation X for the structure M
with parameters 6.

When the space of model-structures M is the
space of Bayesian networks over X, approxima-
tions have to be done in order to make tractable
the computation of equation (3). (Chicker-
ing and Heckerman, 1997) show that equation

(2) can be simplified by the likelihood esti-
mated with the parameters of maximum poste-
rior probability 6y = argmaxg,, P(Ar| M, D),
under the assumption of a Dirichlet distribu-
tion (parametrized by its coefficients ;) for the
prior distribution of the parameters P(6yy).

Another approximation to consider is sim-
plifying the summation over all the possible
model-structures M. As the size of the set of
possible Bayesian network structures is super-
exponential in the number of variables (Robin-
son, 1977), the summation of equation (1) must
be performed over a strongly constrained sub-
space M obtained for instance by sampling
methods (Madigan and Raftery, 1994; Madigan
and York, 1995; Friedman and Koller, 2000),
yielding the approximation

w(X[D) = >~ P(M|D)P(X|0y, M). (4)
MeM

Let’s note here that this equation is simplified
once more when using classical structure learn-
ing methods, by keeping only the model M = M
maximising P(M|D) over M:

Py (X|D) = P(X|0y;, M). (5)
3 Randomized poly-tree mixtures

In this work, we propose to choose as set M
in equation (4) a randomly generated subset of
pre-specified cardinality of poly-tree models.

3.1 Poly-tree models

A poly-tree model for the density over X is de-
fined by a directed acyclic graph structure P
which skeleton is acyclic and connected, and
the set of vertices of which is in bijection with
X ={Xy,..., Xy}, together with a set of condi-
tional den51tles Pp(X;|pap(X;)), where pap(X;)
denotes the set of variables in bijection with the
parents of X; in P. The structure P represents
graphically the density factorization
n

Pp(X) =1

i=1

Pp(Xilpap(X;)). (6)

The model parameters are thus here specified
by the vector of conditional distributions:

O0p = (Pp(Xilpap(Xi)))iz, - (7)



The structure P can be exploited for proba-
bilistic inference over Pp(X) with a computa-
tional complexity linear in the number of vari-
ables n (Pearl, 1986).

One can define nested subclasses PP of poly-
tree structures by imposing constraints on the
maximum number p of parents of any node. In
these subclasses, not only inference but also pa-
rameter learning is of linear complexity in the
number of variables. The smallest such subclass
is called the tree subspace, in which nodes have
exactly one parent (p = 1).

When necessary, we will denote by P* (re-
spectively P1) the space of all possible poly-tree
(respectively tree) structures defined over X.

3.2 Mixtures of poly-trees

A mixture distribution Pp(Xq, ...
set P = {Py,..., Py} of m poly-trees is defined
as a convex combination of elementary poly-tree
densities, ie.

, Xp) over a

PA(X) = 3 uiPp(X), (8)
i=1

where p1; € [0,1] and ", u; = 1, and where
we leave for the sake of simplicity implicit the
values of the parameter sets 6; of the individual
poly-tree densities.

While single poly-tree models impose strong
restrictions on the kind of densities they can
faithfully represent, mixtures of poly-trees are
universal approximators. This latter property
remains true even if we restrict the mixture to
a mixture of tree models.

3.3 Random poly-tree mixture learning

Our generic procedure for learning a random
poly-tree mixture distribution from a data-set
D is described by Algorithm 1; it receives
as inputs X, D, m, and three procedures
DrawPolytree, LearnPars, Comp Weights.

Algorithm 1 (Learning a poly-tree mixture)
1. Repeat fori=1,--- ,m:
(a) P; = DrawPolytree,
(b) Op, = LearnPars(P;, D)

2. (ui)jy = CompWeights((P;, 0p,)},, D)

3. Return (,u,-, B, épi)m

i=1
3.4 Specific variants

In our first investigations reported below, we
have decided to compare various simple versions
of the above generic algorithm.

In particular, we consider both mixtures of
randomly generated subsets of unconstrained
poly-trees (by sampling from a uniform density
over P*), and mixtures of tree structures (by
sampling from a uniform density over P'). The
random sampling procedures are described in
Section 3.5.

As concerns the mixture coefficients, we will
compare two variants, namely uniform weight-
ing (coefficient p; = %,W = 1,...,m) and
Bayesian averaging (coefficient pu; proportional
to the posterior probability of the poly-tree
structure P;, derived from its BDeu score com-
puted from the data-set (Cowell et al., 1999)).

Notice that with large data-sets, the Bayesian
averaging approach tends to put most of the
weight on the poly-tree which has the largest
score; hence to better appraise the mixture ef-
fect, we will also provide results for the model
which uses only the highest score structure
among the m poly-trees of the ensemble, which
amounts to a kind of random search for the
MAP (Maximum A Posteriori) structure de-
fined in equation (5).

Finally, concerning parameter estimation, we
use the BDeu score maximization for each poly-
tree structure individually, which is tantamount
to selecting the MAP estimates using Dirich-
let priors. More specifically, in our experi-
ments which are limited to binary random vari-
ables, we used non-informative priors, which
then amounts to using & = 1/2, i.e. p(6,1—60)
9_1/2(1 — 9)_1/2 for the prior density of the pa-
rameters characterizing the conditional densi-
ties attached the poly-tree nodes.

3.5 Random generation of structures

Our mixture of random poly-trees and the ex-
perimental protocol described in Section 4 are
based on random sampling of several classes of
graphical structures (trees, poly-trees, and di-
rected acyclic graphs).



For sampling trees and poly-trees, we chose
to adapt the algorithm proposed by (Quiroz,
1989), which uses Prifer coding of undirected
tree structures. This algorithm allows to sam-
ple labelled undirected trees uniformly. We have
adapted it in order to sample uniformly from
the space directed (rooted) trees and poly-trees.
The resulting structure sampling algorithms are
efficient, since their complexity remains linear
in the number of variables. Notice however,
that only in the case of tree structures these
algorithms sample uniformly from the Markov
equivalence classes induced by these structures.
We do not know of any efficient adaptation
of these algorithms to sample uniformly from
structures of poly-trees with bounded number of
in-degrees or to sample uniformly from Markov
equivalence classes of poly-trees.

For sampling of directed acyclic graphs we
used, on the other hand, the procedure given
in (Ide et al., 2004), which allows to gener-
ate random structures which are of bounded
in-degree and which are constrained to be con-
nected. This scheme does neither yield a uni-
form sampling of these structures nor of their
equivalence classes.

4 Empirical simulations

4.1 Protocol

In order to evaluate the different variants of
our algorithm, we carried out repetitive exper-
iments for different data-generating (or target)
densities, by proceeding in the following way.

4.1.1 Choice of target density

All our experiments were carried out with
models for a set of eight binary random vari-
ables. We chose to start our investigations in
such a simple setting in order to be able to
compute accuracies exactly (see Section 4.1.4),
and so that we can easily analyze the graphi-
cal structures of the target densities and of the
inferred set of poly-trees.

To choose a target density Pg(X), we first
decide whether it will factorize according to a
poly-tree or to a directed acyclic graph struc-
ture. Then we use the appropriate random

structure generation algorithm (see Section 3.5)
to draw a structure and, we choose the param-
eters of the target density by selecting for each
conditional density of the structure (they are all
related to binary variables) two random num-
bers in the interval [0, 1] and by normalizing.

4.1.2 Generation of data-sets

For each target density and data-set size, we
generate 10 different data-sets by sampling val-
ues of the eight random variables using the
Monte-Carlo method with the target structure
and parameter values.

We carry out simulations with data-set sizes
of 250 and 2000 elements respectively. Given
the total number of 256 possible configurations
of our eight random variables, we thus look at
both small and large data-sets.

4.1.3 Learning of mixtures

For a given data-set and for a given variant
of the mixture learning algorithm we generate
ensemble models of growing sizes, respectively
m = 1, m = 10, and then up to m = 1000 by
increments of 10. This allows us to appraise the
effect of the ensemble size on the quality of the
resulting model.

4.1.4 Accuracy evaluation

The quality of any density inferred from a
data-set is evaluated by the symmetric Kulback-
Leibler divergence (Kullback and Leibler, 1951)
between this density and the data-generating
density Pg(X) used to generate the data-set.
This is computed by

KLs(Pg, Py)=K L(Pg|[Py HK L(Py|[Pa), (9)

where Pj/(X) denotes the density that is eval-
uated, and where

KL(P||P)=> P(X)In <£((§))> . (10)
XeX

and X denotes the set of all possible configura-
tions of the random variables in X.

We use this formula to evaluate our mix-
ture models, and we also provide baseline values
obtained with two different reference models,



namely a baseline approach My where a com-
plete directed acyclic model is used with pa-
rameter values inferred by BDeu score maxi-
mization on the data-set, as well as a golden
standard M; where the parameters of the tar-
get structure used to generate the data-set are
re-estimated by BDeu score maximization from
the data-set.

4.1.5 Software implementation

Our various algorithms of model gen-
eration  were  implemented  in CH++
with  the Boost library available at

http://www.boost.org/ and various APIs
provided by the ProBT(©) platform available at
http://bayesian-programming.org.

4.2 Results
4.2.1

Figure 1 provides a representative set of
learning curves for a target density correspond-
ing to the directed acyclic graph (DAG) rep-
resented on the top of the figure. The middle
and lower parts represent the learning curves
obtained with respectively 250 and 2000 obser-
vations in the data-set. The horizontal axis cor-
responds to the number m of mixture terms,
whereas the vertical axis corresponds to the
K Ly measures with respect to the target den-
sity. All the curves represent average results
obtained over ten different data-sets of the spec-
ified size.

The dashed horizontal lines in the lower parts
of these graphics correspond to the golden stan-
dard M, whereas the plain horizontal line (not
shown on the middle graphic) correspond to the
My baseline (its results are very bad on the
small data-set and were therefore not shown).

The dashed, respectively black and red,
curves in the upper part of both diagrams corre-
spond to uniform mixtures of, respectively trees
and poly-trees. We observe that their perfor-
mances are quite disappointing, even though
uniform poly-tree mixtures are slightly better
than uniform tree mixtures.

The two plain curves, respectively black and
red, in the lower parts of the diagrams cor-
respond to mixtures of respectively trees and
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Figure 1: Example results. Top: target den-
sity DAG structure. Middle: learning curves
with data-set size of 250 observation. Bottom:
learning curves with 2000 observation. (see text
for explanation of curves legends).

poly-trees, when they are weighted proportion-
ally to their posterior probability given the
data-set. They provide much better perfor-
mances, as compared to the baseline M, and
are competitive with the golden standard M.
We also observe that for the smaller sample size
the tree mixtures outperform the poly-tree mix-
tures, whereas for the larger sample size they
provide identical performances.

For the sake of comparison, we have also pro-
vided the behaviour of the “trivial mixture” (in
green) which retains only the highest scoring
structure of the generated ensemble. We ob-
serve that in small sample conditions, this lat-
ter model is outperformed by the plain Bayesian
mixtures, while in the case of large sample size
it is largely equivalent.

We complete these results with the two sets
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Figure 2: Example results for a target density
with poly-tree structure.

of curves of Figure 2, obtained in similar con-
ditions but when the target density factorizes
according to a poly-tree structure. Overall,
the previous conclusions still hold true. The
main difference that we observe, is that in the
case of the poly-tree target density the KL
scores seem to converge more rapidly towards
My when the mixture size m increases.

4.2.2 Analysis of asymptotic behavior

Since in most trials, our learning curves sta-
bilized around m = 1000, we consider interest-
ing to provide a synthetic picture of the per-
formances of the different methods under these
“asymptotic” conditions. To this end, we show
on Figure 3 overall asymptotic performances in
the form of box plots of the K Ly values of the
different methods.

On this figure, each box plot (box-and-
whisker diagram) depicts the density of K L
values of a particular algorithm variant (from
left to right the golden standard M;, the
weighted poly-tree mixtures and the weighted
tree mixtures), for a fixed sample size, but over
the combination of 5 different target DAG struc-
tures, 3 different target poly-tree structures,

d=250 d=2000
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Figure 3: Synthesis of asymptotic behavior

(m = 1000, relative K Ly wrt baseline My).

and for each case 10 data-sets. For the sake
of interpretation, the K L, values are normal-
ized by dividing them by the value obtained in
the same conditions (same target density, and
same data-set) by the My baseline method (and
the latter values are not represented on the box-
plots). In the left part we show the results ob-
tained with a sample size of d = 250 and in the
right part with a sample of size d = 2000.

We can synthesize these results as follows.
For both large and small sample sizes the
poly-tree mixtures outperform (but only very
slightly) the tree mixtures; this effect is less
notable in small sample conditions. In large
sample conditions (d = 2000), the poly-tree
mixtures have only a small advantage over the
baseline method M, (their relative scores be-
ing on the average only slightly smaller than 1).
However, in small sample conditions (d = 250),
both poly-tree and tree mixtures are signifi-
cantly better than the baseline, and, actually
they yield K Ls scores which are already quite
close to those of the the golden standard M;.

5 Discussion

Our choice of using random mixtures of poly-
trees was inspired by several considerations.
First of all, choosing the best structure in



the space of poly-trees is not an adequate solu-
tion from an algorithmic point of view. Indeed,
(Dasgupta, 1999) shows that finding the opti-
mal poly-tree model is not tractable for very
high dimensional spaces. On the other hand,
the space of poly-trees is a priori a rather rich
space, and it is characterized by efficient infer-
ence algorithms. Hence, even a very large mix-
ture of poly-tree densities can be queried effi-
ciently for making inferences about the data-
generating density. Furthermore, using mix-
tures of poly-trees allows in principle to repre-
sent any density.

In our experiments on the very simple prob-
lems with 8 binary variables, we observed how-
ever that in most cases using a mixture of poly-
trees was not really better than keeping only
the single best found poly-tree (except in very
small sample size conditions).

Our second reason for looking at poly-tree
mixtures was that we thought that these mod-
els would be more powerful than tree mixtures.
Indeed, (Meila-Predoviciu, 1999) already pro-
posed to use mixtures of tree models and has
designed algorithms to find the optimal com-
bination of tree structures and of the coeffi-
cients of the mixture during the learning phase.
She jointly uses the MWST (Maximum Weight
Spanning Tree) structure learning algorithm
published in the late sixties (Chow and Liu,
1968) and the Expectation-Maximization algo-
rithm for coefficients’ estimation (Dempster et
al., 1977). While this proposal is very elegant,
we believe that it is not scalable to very large
mixtures, both from the point of view of compu-
tational complexity and from the point of view
of risk of over-fitting the data-set.

Our simulation results showed however that
using random mixtures of poly-trees is only very
marginally advantageous with respect to the use
of random mixtures of trees. On the other hand,
in small sample conditions the mixtures of trees
or poly-trees turned out to be quite often of
comparable accuracy than the golden standard
M1, and in general largely superior to the com-
plete structure baseline M.

Concerning the weighting scheme, our exper-
iments also confirmed that uniform mixtures of

randomized poly-tree or tree structured den-
sities do not work properly in the context of
density estimation. This is quite different from
the observations made in the context of tree-
based supervised learning, where uniform mix-
tures of totally randomized trees often provide
very competitive results (Geurts et al., 2006).
The main difference between these two contexts
is that in supervised learning one can easily gen-
erate a sample of randomized trees which fit well
the data-set, whereas in the context of density
estimation random tree or poly-tree structures
mostly strongly under-fit the data-set.

6 Summary and future works

We have proposed in this paper to transpose the
“Perturb and Combine” idea celebrated in su-
pervised learning to the context of unsupervised
density estimation. We have presented a generic
framework for doing this, based on random mix-
tures of poly-tree or tree structured Bayesian
networks.

The first results obtained in the context of
a simple test protocol are already interesting,
while they also highlight a certain number of
immediate future research directions.

Thus, a first line of research will be to ap-
ply our experimental protocol to a larger set of
problems including high-dimensional ones and
a larger range of sample sizes. We believe also
that a more in depth analysis of the results
with respect to the basic properties of the target
distributions would be of interest. Of course,
these investigations should also aim at system-
atically comparing all these algorithm variants
both from a computational complexity and from
an accuracy point of view with state-of-the-art
optimal structure learning algorithms as well as
with other mixture models proposed in the lit-
erature.

Nevertheless, from these first results we are
tempted to conclude that, in order to effectively
transpose the Perturb and Combine idea to the
context of density estimation, it will be nec-
essary to design structure sampling algorithms
which are able to efficiently focus on structures
that can be fitted well enough to the available



data-set. In this respect, one straightforward
idea would be to transpose the Bagging idea
of (Breiman, 1996) to the density estimation
context. In particular, we suggest that the use
of bootstrap sampling in combination with the
efficient algorithm of finding the optimal tree
model, i.e. solving equation (5) in the tree space
Pl using the MWST algorithm, could be a very
promising direction.

Another more generic direction of research,
is to adapt importance sampling approaches
(e.g. the cross-entropy method (Rubinstein and
Kroese, 2004)) in order to generate random-
ized ensembles of simple structures (trees, poly-
trees, etc.) that fit well the given data-set.

In a later stage, we intend to extend these al-
gorithms to the case of continuous random vari-
ables as well as when there are missing data.
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