Adler, E. and Pfeiffer, H. (1974), “The influence of grain size and impurities on the magnetic properties of the soft magnetic alloy 47.5% NiFe”, IEEE Transactions on Magnetics, Vol. 10 No. 2, pp. 172-174.
Benabou, A., Leite, J., Clénet, S., Simão, C. and Sadowski, N. (2008), “Minor loops modelling with a modified Jiles–Atherton model and comparison with the Preisach model”, Journal of Magnetism and Magnetic Materials, Vol. 320 No. 20, pp. e1034-e1038.
Bergqvist, A. (1997), “Magnetic vector hysteresis model with dry friction-like pinning”, Physica B, Vol. 233 No. 4, pp. 342-347.
Bergqvist, A., Lin, D. and Zhou, P. (2014), “Temperature-dependent vector hysteresis model for permanent magnets”, Vol. 50 No. 2, pp. 345-348.
Bergqvist, A., Lundgren, A. and Engdahl, G. (1997), “Experimental testing of an anisotropic vector hysteresis model”, IEEE Transactions on Magnetics, Vol. 33 No. 5, pp. 4152-4154.
Cass, C., Wang, Y., Burgos, R., Chow, T.P., Wang, F. and Boroyevich, D. (2007), “Evaluation of SiC JFETs for a three-phase current-source rectifier with high switching frequency”, Twenty Second Annual IEEE Applied Power Electronics Conference and Exposition (APEC).
Ferroxcube (2013), “Soft ferrites and Accessories - Data handbook”, available at: https://elnamagnetics.com/wp-content/uploads/catalogs/Ferroxcube/catalog.pdf
François-Lavet, V., Henrotte, F., Stainier, L., Noels, L. and Geuzaine, C. (2011), “Vectorial incremental nonconservative consistent hysteresis model”, ACOMEN.
Henrotte, F., Nicolet, A. and Hameyer, K. (2006), “An energy-based vector hysteresis model for ferromagnetic materials”, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 25 No. 1, pp. 71-80.
Henrotte, F., Steentjes, S., Hameyer, K. and Geuzaine, C. (2014), “Iron loss calculation in steel laminations at high frequencies”, IEEE Transactions on Magnetics, Vol. 50 No. 2, pp. 333-336.
Jacques, K., Steentjes, S., Henrotte, F., Geuzaine, C. and Hameyer, K. (2018), “Representation of microstructural features and magnetic anisotropy of electrical steels in an energy-based vector hysteresis model”, AIP Advances, Vol. 8 No. 4, p. 047602.
Jiles, D.C. and Atherton, D.L. (1986), “Theory of ferromagnetic hysteresis”, Journal of Magnetism and Magnetic Materials, Vol. 61 Nos 1/2, pp. 48-60.
Landgraf, F.J.G., da Silveira, J.R.F. and Rodrigues, D. Jr, (2011), “Determining the effect of grain size and maximum induction upon coercive field of electrical steels”, Journal of Magnetism and Magnetic Materials, Vol. 323 Nos 18/19, pp. 2335-2339.
Mager, A. (1952), “About the influence of grain size on the coercivity”, Annalen Der Physik, Vol. 446 No. 1, pp. 15-16.
Petrun, M., Steentjes, S., Hameyer, K. and Dolinar, D. (2017), “Comparison of static hysteresis models subject to arbitrary magnetization waveforms”, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 36 No. 3, pp. 774-790.
Preisach, F. (1935), “Über die magnetische Nachwirkung”, Zeitschrift für Physik, Vol. 94 Nos 5/6, pp. 277-302.
Preisach, F. (2017), “On the magnetic aftereffect”, IEEE Transactions on Magnetics, Vol. 53 No. 3, pp. 1-11.
Raghavender, A., Zadro, K., Pajic, D., Skoko, Z. and Biliškov, N. (2010), “Effect of grain size on the néel temperature of nanocrystalline nickel ferrite”, Materials Letters, Vol. 64 No. 10, pp. 1144-1146.
Raghunathan, A., Melikhov, Y., Snyder, J.E. and Jiles, D.C. (2010), “Theoretical model of temperature dependence of hysteresis based on mean field theory”, IEEE Transactions on Magnetics, Vol. 46 No. 6, pp. 1507-1510.
Rayleigh, L. (1887), “XXV. Notes on electricity and magnetism. iii. On the behaviour of iron and steel under the operation of feeble magnetic forces”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 23 No. 142, pp. 225-245.
Sixdenier, F. and Scorretti, R. (2018), “Numerical model of static hysteresis taking into account temperature”, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 31 No. 2, p. e2221.
Song, T. and Roshko, R. (2000), “Preisach model for systems of interacting superparamagnetic particles”, IEEE Transactions on Magnetics, Vol. 36 No. 1, pp. 223-230.
Stancu, A. and Spinu, L. (1998), “Temperature- and time-dependent Preisach model for a stoner–wohlfarth particle system”, IEEE Transactions on Magnetics, Vol. 34 No. 6, pp. 3867-3875.
Zirka, S.E., Moroz, Y.I., Harrison, R.G. and Chwastek, K. (2012), “On physical aspects of the Jiles-Atherton hysteresis models”, Journal of Applied Physics, Vol. 112 No. 4.