
Structured abstract

• Purpose

In order to understand the behaviour of magnetization processes in

ferromagnetic materials in function of temperature, a temperature-dependent

hysteresis model is necessary. This article investigates how temperature can

be accounted for in the Energy-Based hysteresis model, via an appropriate

parameter identification and interpolation procedure.

• Design/methodology/approach

The hysteresis model used for simulating the material response is

energy-consistent and relies on thermodynamic principles. The material

parameters have been identified by unidirectional alternating measurements and

the model has been tested for both simple and complex excitation waveforms.

Measurements and simulations have been performed on a soft ferrite toroidal

sample characterized in a wide temperature range.

• Findings

The analysis shows that the model is able to represent accurately arbitrary

excitation waveforms in function of temperature. The identification method

used to determine the model parameters has proven its robustness: starting

from simple excitation waveforms, the complex ones can be simulated precisely.

• Research limitations/implications

As parameters vary depending on temperature, a new parameter variation law

in function of temperature has been proposed.

• Practical implications

A complete static hysteresis model able to take the temperature into account

is now available. The identification is quite simple and requires very few

measurements at different temperatures.

• Originality/value

Results suggest that it is possible to predict magnetization curves within the

measured range starting from a reduced set of measured data.



1 Introduction

The growing demand for components to operate under extreme conditions [Cass et al.,

2007] motivates the analysis of the effect of temperature variations on magnetic

materials, in particular soft magnetic materials at high temperatures. Currently

available soft magnetic materials are required to cover a wide spectrum of applications,

from cores of transformers and motors to the extensive variety of inductive

components used in power electronics, automotive and household technologies. Soft

magnetic materials used in power electronics, such as MnZn ferrites, are strongly

dependent on temperature because of their low Curie temperature (Tc ≥ 493 K) [Fer,

2013]. Thus, designers need models able to predict the behaviour of such materials in

a large temperature range. For engineering applications, the main driving forces are

the ability to reproduce the hysteresis curves and to calculate related energy losses due

to magnetization processes. Determining such effects in complex geometries requires

the use of numerical methods such as the Finite Element method, where the inclusion

of material laws need to be computationally efficient and should ideally enable

the simulation of arbitrary waveforms at any temperature. A number of authors

have proposed strategies to take into account temperature in conventional hysteresis

models, such as Preisach [Preisach, 1935], [Preisach, 2017], [Stancu and Spinu,

1998], [Song and Roshko, 2000] or the Jiles-Atherton (JA) [Jiles and Atherton, 1986],

[Raghunathan et al., 2010]. The Preisach model focuses on a mathematical description

of the hysteresis property and reproduces magnetization curves accurately, but mostly

ignores the underlying physics of the magnetic material. The JA model generally fails

to predict accurately excitation fields for complex magnetization waveforms [Benabou

et al., 2008], [Petrun et al., 2017], due to several intrinsic drawbacks detailed in [Zirka

et al., 2012]. Among the existing alternative hysteresis models, the Energy-Based

(EB) model [Bergqvist, 1997], [Henrotte et al., 2006], [François-Lavet et al., 2011],

[Henrotte et al., 2014] has many advantages. Particularly, it relies on thermodynamic

principles and it is energy-consistent. This is extremely interesting for engineers,

who need hysteresis models based on physical foundations, able to take into account

both complex excitation waveforms and the influence of temperature on magnetic

properties [Bergqvist et al., 2014]. In this work, we present recent developments

on the dependence of the EB model on temperature, and propose a new parameter

variation law in function of temperature for soft ferrites. The hysteresis model is

validated through measurements, in case of both simple (unidirectional alternating

measurements) and complex (unidirectional with addition of harmonics) excitation

waveforms in order to explore its prediction of arbitrary magnetization curves at

any temperature. The objective of temperature-dependent model is twofold: 1) to
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predict the device performance at a given external temperature; and 2) to determine

the equilibrium temperature for a given operating mode, in a specific operating

environment, in order to optimize components in their design phase.

2 Methods

2.1 Experimental setup

Figure 1 illustrates the experimental setup for measuring magnetic hysteresis loops

using ring sample. A thermal chamber is used for measurements at different

temperatures. The sample is a toroidal core made of soft ferrite MnZn 3C90 [Fer,

2013] with primary and secondary windings (Table 1). Excitation is applied using an

arbitrary function generator which allows to impose current on the primary winding.

By means of the Ampere (1) and Faraday laws (2), the magnetic field h and the

magnetic flux density b are calculated from the measurements of the current in the

primary winding and the voltage on the secondary winding:

h(t) =
N1 · Vshunt(t)
Rshunt · le

(1)

b(t) = − 1

N2 ·Ae

∫
V2(t) · dt (2)

The EB model is validated against experimental data of 3C90 material. The hysteresis

loops have been measured using the experimental setup at various temperatures

(223 K, 248 K, 273 K, 293 K, 323 K, 348 K, 373 K, 398 K, 423 K and 448 K) and

compared with those calculated numerically.

Table 1: Symbols and description of each quantity.

Symbol Value Description

N1 60 primary winding

N2 39 secondary winding

Rshunt 2 Ω shunt resistance

Rs 176 Ω series resistance

le 73.2 mm effective magnetic path length of the core

Ae 36.9 mm2 effective cross-sectional area of the core
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Figure 1: System for measuring magnetic hysteresis loops b(h).

2.2 The Energy-Based hysteresis model

2.2.1 Thermodynamic basis

The model relies on thermodynamic foundation to represent the nonlinear behaviour

of ferromagnetic material [Bergqvist, 1997], [Henrotte et al., 2006], [François-Lavet

et al., 2011], [Henrotte et al., 2014]. The first law of thermodynamics expresses the

conservation of energy:

u̇ = h · J̇−D, J = b− µ0h (3)

where u is the magnetic energy density stored in the material, D is a dissipation

functional which will be defined more precisely thereafter, h·J̇ is the magnetic external

work, with h corresponding to the applied magnetic field, J the magnetic polarization

of the material, b the magnetic flux density and µ0 the permeability of vacuum1. The

model is based on a mechanical analogy, where the input is the magnetic field h. The

magnetic field can be decomposed in a reversible part hr and an irreversible part hir:

h = hr + hir (4)

acting respectively as spring force and friction force [Henrotte et al., 2006]. The

energy density u is assumed to be a function of J,

u = u(J) ⇒ u̇ =

(
∂u

∂J

)
· J̇ = hr · J̇ (5)

1The notation ˙ = ∂/∂t means time derivative (example: u̇ = ∂u/∂t).
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where the term hr is called reversible part of the magnetic field, in that the magnetic

work it delivers under a variation of the magnetic polarization is fully converted into

internal energy. Hysteresis in ferromagnetic materials can be interpreted physically

as defects at microscopical scale. Defects pin domain walls and prevent them

from moving under the effect of an external magnetic field. When the material is

magnetized or demagnetized, the walls suddenly rearrange and jump abruptly from

one pinning site to the next one, hence the (irreversible) hysteresis behavior. By using

(4) and (5) in (3), the dissipation functional D associated with the dry-friction force

writes:

D = hir · J̇ = κ
∣∣∣J̇∣∣∣ ⇒ hir =

∂D

∂J̇
= κ

J̇∣∣∣J̇∣∣∣ (6)

where κ in A/m is a material characteristic called pinning field, that opposes the

motion of domains walls. It is proportional to the pinning site energy that determines

the coercivity hc of the hysteresis loop. Hence, the dissipation D is the power delivered

by the irreversible magnetic field hir. Combining (3)-(6) provides the following

equation:

h− hr − hir = 0 ⇒ h− ∂u

∂J
− κ J̇∣∣∣J̇∣∣∣ = 0 (7)

Since the functional D is not differentiable in J̇ = 0, hir can be defined by means of

a subgradient of the functional D :

hir ∈
{
hir, |hir| ≤ κ if J̇ = 0, hir = κ

J̇∣∣∣J̇∣∣∣ otherwise

}
(8)

2.2.2 Two-scale model

Real ferromagnetic materials are characterized by a statistical distribution of pinning

fields [Bergqvist, 1997], [Bergqvist et al., 1997], [Henrotte et al., 2014]. For this reason,

a multi-scale model has been elaborated. It relies on the fact that the material,

homogeneous at the macroscopic scale, is composed of N heterogeneous microscopic

abstract subregions (also called cells), defined by a specific pinning force κk. The

reversible magnetic field hr is computed as the weighted sum of contributions hk
r of

a number of cells N (9):

hr =

N∑
k=1

ωkh
k
r (9)

In this sum, ωk are the weights associated to cells, namely they highlights the relative

importance of each contribution and must verify the condition
∑N

k=1 ωk = 1. Basing

on the knowledge of the magnetic field h, independent equations can be solved for

each cell:

h− hk
r − hk

ir = 0 ⇒ h− ∂uk

∂Jk
− κk J̇k∣∣∣J̇k

∣∣∣ = 0 (10)

5



The number of cells in which the EB model is discretized depends on the required

accuracy: models with higher number of cells will be more accurate, but also more

complex to handle from the computational point of view. The resolution of the

non-linear differential equations (10) is proposed in [Henrotte et al., 2006]. An

approximate solution is obtained on the basis of the explicit update rule, in which

the terms hk
r are upgraded as a function of the applied magnetic field h and of their

previous value hk
r0 according to:

hk
r =


hk
r0 if

∣∣h− hk
r0

∣∣ < κk

h− κk · h−hk
r0

|h−hk
r0|

otherwise
(11)

In Figure 2 a visual representation of the update rule is shown. The sphere of radius

κ centered in hr represents the subgradient (8). Equation (7) imposes that the tip of

applied magnetic field h is either inside the sphere or on its surface. If the tip of h

moves inside the sphere, then the condition

∣∣h− hk
r0

∣∣ < κk (12)

is fulfilled and the sphere remains fixed. If h tends to go beyond the sphere, the latter

has to shift to comply with the condition (12), i.e. the center of the sphere moves

according to (11). Since J = µ0M, the magnetization is computed thanks to (13):

M = Man(|hr|)
hr

|hr|
(13)

where Man is a scalar, monotone increasing anhysteretic magnetization function.

Finally, the magnetic flux density is computed as:

b = µ0(M + h) (14)

The present model is completely characterized by the anhysteretic curve Man and

hr

hir
h

hr

h 3

1

κ
2

κ

κ

Figure 2: Vector diagram of h = hr + hir for N = 1 (left) and N = 3 cells (right),

adapted from [Sixdenier and Scorretti, 2018].

by the couples of parameters (ωk, κ
k)k=1...N . Man can be represented by analytical

expressions, i.e. Langevin or double Langevin functions [Henrotte et al., 2006] or
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interpolated from experimental measurements [Sixdenier and Scorretti, 2018]. Thus,

the major loop is measured at several temperatures and Man(h, T ) is computed by

considering the median line of the major loop. Then, the anhysteretic function

Man(h, T ) for any value of h and T is obtained by 2D interpolation.

2.3 Parameters identification

The discrete parameters ωk and κk must verify the following constraints:

ωk ≥ 0 ;

N∑
k=1

ωk = 1 (15)

κ1 = 0 ; κk ≤ κk+1 (16)

In order to identify the material coefficients (ωk, κ
k)k=1...N , it has been proposed

[Jacques et al., 2018] to determine the pinning field probability density ω(κ). For

a given temperature, the identification procedure relies on a set of hysteresis loops

measured in unidirectional conditions. It focuses on the experimental curve hc(hp)

obtained from the measurement of a series of hysteresis loops of increasing amplitude

hp. The coercive field hc is detected on a cycle, for which the applied magnetic field

amplitude is hp. The hc(hp) characteristic is interpolated in the range [hpmin
, hpmax

]

and it is extrapolated as follow for field values outside the measurement range (17):

hc(hp) =


hc = hcmax

if hp > hpmax

hc = f(hp) if hpmin
< hp < hpmax

hc = hcmin
·
( hp

hpmin

)2
if hp < hpmin

(17)

where f(hp) is an interpolation function2. The quadratic extrapolation at low fields

derives from Rayleigh law [Rayleigh, 1887]. The next step is the definition of an

auxiliary continuous function F (h), based on the hc(hp) curve. The curve hc(hp)

contains enough information to completely identify F (h) [Jacques et al., 2018]. For

any magnetic field h which saturates the material (h > hpmax
) it is known that:

F (h) = h− hcmax (18)

For magnetic fields of lower magnitude, the function F satisfies:

F

(
h+ hc(h)

2

)
=
F (h)

2
(19)

The procedure consists in selecting an arbitrary initial value h0 > hpmax . The

subsequent terms of the series are recursively given by:

hn =
hn−1 + hc(h

n−1)

2
(20)

2In principle, any interpolation method can be used. We used piecewise linear interpolation

because this method ensures that no unphysical negative values are obtained.
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The values of function F (hn) can then be computed as:

F (hn) =

h
n − hcmax

if hn > hpmax

F (hn−1)
2 otherwise

(21)

By using (18)-(21), the curve F (h) can be sampled in an arbitrary number of points.

The pinning field (continuous) probability density ω(κ) is then deduced by derivating

F (h) twice:

ω(κ) =
∂2F (h)

∂h2

By using this procedure, the continuous distribution ω(κ) can be numerically

computed in a very high number of points. In practice, a discrete approximation of

the distribution ω(κ) is needed for Finite Element implementations [Henrotte et al.,

2014]. For this reason, the discrete sets of parameters (ωk, κ
k)k=1,...,N are derived

from the continuous distributions ω(κ) previously obtained, where the number N of

cells is much lower (tipically N ≤ 10).

3 Results

3.1 Experimental measurements

The EB model has been evaluated by comparing the simulated and measured

hysteresis loops for the ferrite 3C90 material. Experimental hysteresis loops have

been measured in differents conditions:

• simple excitation waveforms:

– variable-temperature: sinusoidal excitation waveform (f = 50 Hz), T

ranging from 223 to 448 K, hp = const (Figure 3 for hp = 230 A/m).

– variable-amplitude: sinusoidal excitation waveform (f = 50 Hz), hp

ranging from 20 to 230 A/m, T = const (Figure 3 for T = 293 K).

• complex excitation waveforms:

– sinusoidal excitation waveform (f = 50 Hz) with superimposed higher

harmonic (f = 150 Hz) for different levels of hmax, T = 293 K (Figure

4a):

h(t) = hmax(sin(2πft) + sin(6πft)) (22)

– pulse-width modulation (PWM) excitation (fundamental f = 1 kHz with

addition of 3rd and 7th harmonics) at T = 323 K (Figure 4b) and T =

373 K (not shown).
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Figure 3: Simple excitation waveforms: (a) measurements at hp = 230 A/m

in the temperature range, (b) Measurements at T = 293 K and hp =

40 A/m, 100 A/m, 230 A/m (zoom: coercive field hc = 12 A/m related to the cycle

for which hp = 230 A/m).
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T = 323 K.

Figure 4: Complex excitation waveforms.
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3.2 Parameters identification

The protocol previously described has been applied to 3C90 ferrite in the measured

temperature range. The hc(hp) characteristics have been measured for each series
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(a) Curve hc(hp) for 3C90 material (T =
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(b) Auxiliary function F (h) (T = 293 K).

Figure 5: Identification procedure.

of hysteresis loops of increasing hp, for each temperature. As an example, in Figure

5 we show the construction of the curve hc(hp) (Fig. 5a) and the corresponding

auxiliary function F (h) (Fig. 5b) at the temperature T = 293 K. The variation of

the hc(hp) curves in function of temperature is shown in Figure 6a. We observe that

the coercive field decreases as temperature raises, which is coherent with the cycles

depicted in Figure 3. Figure 6b depicts the estimated continuous distributions ω(κ|T ).

One observes that the average pinning field decreases, as the temperature increases.

This could be explained by the fact that for higher temperatures, thermal noise

makes easier to overcome pinning energy barriers, and therefore reduces the pinning

field. On the other hand, it is reported in literature [Raghavender et al., 2010] that

at the higher temperatures grain size increases. Therefore, the growth of grain size

increases the distance of pinning points in the material and, consequently, decreases
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the coercive field.
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Figure 6: Variation of parameters in function of temperature.

3.3 Various tests of the EB model

We tested the EB model with several kinds of signals and temperatures, by varying

the number of cells from 2 to 8. Results are shown in Figures 7-8-9.

3.3.1 Major loops

In Figure 7, simulations with N = 3 cells reproduce major loops at different

temperatures and amplitudes:

• Figure 7a compares measured and simulated b(h) loops with the same amplitude

(hp = 230 A/m) for different temperatures (T = 248 K, T = 348 K and T =

448 K).
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• Figure 7b compares measured and simulated curves with different amplitudes

(hp = 40 A/m, hp = 100 A/m and hp = 230 A/m) at the same temperature

(T = 293 K).

The precision of the EB model in predicting the measured cycles has been quantified

by means of the relative normalized root mean square error (NRMSE) between

simulated and measured flux density:

NRMSE =

√∑Nmeas

n=1 ||bsim,n − bmeas,n||2√∑Nmeas

n=1 ||bmeas,n||2
× 100% (23)

where Nmeas is the number of measurement points. Figure 9 depicts the NRMSE for

a number of cells spanning from 2 to 8:

• Figure 9a represents the NRMSE as a function of temperature, for cycles of

fixed amplitude hp = 230 A/m (cf. Fig. 7a).

• Figure 9b represents the NRMSE as a function of cycle amplitude, for a fixed

temperature T = 293 K (cf. Fig. 7b).

It is observed that for major cycles, a quite good representation of hysteresis loops

(NRMSE < 5%) is generally obtained starting from 3 cells. For cycles of lower

amplitudes (Fig. 9b) results are mixed. The global trend is that the error is

proportionally lower for cycles of higher amplitude. This can be explained by the

argument that for cycles of high amplitude, all cells are activated simultaneously.

Moreover, when the material is saturated, the field is determined by the saturation

value of Man more than by the exact value of hr. Conversely, at low fields not all

cells are activated, and thus the details of (ωk, κ
k) play a much more important role.

Nevertheless, the NRMSE stabilizes for N ≥ 3, apart from very low-amplitude cycles

(hp ≤ 30 A/m) for which a higher number of cells can be used in order to increase

the accuracy. The fact that the error is particularly low in the case hp = 30 A/m is

unexplained, and it is likely to be a particular case.

3.3.2 Complex signals

The same identified parameters have been employed to simulate complex

magnetization trajectories. The model can effectively simulate signals with harmonics

(closed small loops at the tips of each loop) at a given temperature. Measurements

have been performed for T = 293 K, T = 323 K and T = 373 K. The cycles measured

and simulated with N = 4 cells for T = 293 K are depicted in Figure 8a. Figure

8b depicts the NRMSE for each temperature. It can be observed that EB model

produces stable minor loops, namely it closes the loops in a physically adequate
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manner, conversely to the original JA model [Benabou et al., 2008], [Zirka et al.,

2012], [Petrun et al., 2017]. Note that the model has been applied with the same

parameters identified with simple (sinusoidal) excitation waveforms. Simulated and

measured results are globally in good agreement, showing that the model is able to

predict complex loops at any temperature, at least within the measured range.
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Figure 8: Simulated/measured loops and NRMSE for complex excitation waveforms

at different temperatures (N = 4 cells).

4 Discussion

This study puts in evidence how the distribution of pinning field ω(κ) depends on

the temperature T . The observed trend is that the peak of the distribution shifts

towards lower values when the temperature increases (Fig. 6b). This evidence could

be explained by the argument that higher thermal noise reduces the energy required
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Figure 9: Quantitative evaluation of errors between measurements and simulations.

to overcome pinning energy barriers.

From the analysis of the precision of the model, it is observed that the NRMSE is

generally higher for low temperature (Fig. 9a) and/or for low applied field (Fig. 9b).

These two facts could be linked, in that under low thermal noise and/or low applied

field, cells corresponding to low pinning field are not simultaneously activated3, and

therefore the material exhibits a more complex behaviour.

3Cells which activate simultaneously are practically indistinguishable. This fact has been used

in [Sixdenier and Scorretti, 2018] to build simplified EB models.
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Figure 7a compares calculated and experimental loops for three temperatures

(248 K, 348 K, 448 K). In the case of T = 248 K it has been impossible to completely

saturate the material during the measurement (due to the fact that hp values have

been fixed for all temperatures). Therefore, the observed deviation could also be

explained by the fact that the identified anhysteretic curve Man may be less accurate.

As one could expect, the NRMSE decreases as the number of cells N , used to model

the material, increases. It is observed that three cells are generally enough to obtain

an optimal result, in that a higher number of cells does not reduces significantly the

NRMSE.

4.1 Temperature-dependent extension

In practical applications, engineers need to predict the continuous distribution ω(κ)

curves at any temperature and/or directly a discretized approximation (ωk, κk).

4.1.1 Continuous ω(κ|T ) curves interpolation

In order to assess the robustness of our approach, we have performed a cross-validation

by comparing the original functions ω(κ|T ) obtained for all available temperatures

with interpolated curves obtained by using only half of the dataset. Namely, we have

interpolated the distribution by having available only ω(κ|T ) for a few temperatures

(T = 223 K, 273 K, 323 K, 373 K and 448 K) and tried to reconstruct the five

remaining curves (T = 248 K, 293 K, 348 K, 398 K, 423 K). Figure 10 shows

the original curves (full lines), obtained by the identification method, and the

new computed ones. The interpolated and original curves are in good agreement.

This suggests that the model could have been identified by using a reduced set of

measurements.

4.1.2 Discrete (ωk, κ
k) sets function of temperature

A first variation law of parameters in function of temperature is proposed. The

continuous distributions ω(κ|T ) have been discretized in N = 3 cells, thus achieving

discrete parameters (ωk(T ), κk(T ))k=1,...,N , with temperature T ranging from 223 K

to 448 K. As for parameters ωk, the same property
∑N

k=1 ωk = 1 must hold at any

temperature. Parameters κk are related to a local pinning force or a local coercive

field. Therefore the variations of (ωk(T ), κk(T ))k=1...N as a function of temperature

T could be obtained by the knowledge of the macroscopic coercive field hc(T ), which

has already been measured. More precisely, we hypothesise that, at any temperature,
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Figure 10: Reconstructed continuous distributions ω(κ|T ) and original ones

(248 K, 293 K, 348 K, 398 K, 423 K, in full lines).

the products ωk(T ) · κk(T ) rescale as:

ωk(T ) · κk(T )

ωk(T0) · κk(T0)
=

hc(T )

hc(T0)
(24)

in which the ratio is known for a reference temperature T0. Remark that this is

consistent with [Sixdenier and Scorretti, 2018].
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Figure 11: Variation law of parameters with temperature (T0 = 223 K).

Figure 11 shows the curves of (24) for the second and third cell. The first cell k = 1 is

not represented, since the constraint κ1 = 0 is imposed (cf. equation 16), hence (24)
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is meaningless. Moreover, κ1 takes into account the reversible part of the applied field

and thus it is not related to the coercive field. Concerning the two irreversible cells,

there is a fairly good agreement between the rescaled product of parameters for k = 2

and the coercive field. The third cell shows the same trend, but it may be noted the

presence of erratic behaviour starting from T = 293 K. The same trend is observed

for cells of order higher than 3 but with a much more erratic behaviour (not shown).

A possible explanation is that starting from k ≥ 4 the effect of cells is negligible (Fig.

9a), henceforth the parameters of these cells cannot be identified accurately (Table

2).

Therefore, EB models identified at a reference temperature could be used to

simulate the behaviour of magnetic materials at other temperatures, at the price

of a few measurements to be performed in the desired range of temperature.

5 Conclusions and perspectives

In this paper the Energy-Based hysteresis model has first been analyzed under

various magnetization waveforms, and at different temperatures. Globally, results of

measured and simulated hysteresis loops are in good agreement at any temperature,

and reveal that the identification strategy used to obtain the model parameters is

robust and stable, as the parameters identified by simple excitation waveforms can

be used to simulate hysteresis loops subject to complex magnetization waveforms.

An extension to the existing EB model has then been proposed, so as to take into

account the effect of temperature with only a few measurements, based on a 2D

interpolation. A scaling law of the model parameters (ωk, κ
k) with the temperature

has been suggested and partially validated. This constitutes a first step towards

predicting hysteresis loops for complex signals and for any temperature falling in the

range of available measurements.

However, a considerable amount of work has to be done, on one hand in order to

confirm the obtained results and to obtain a better physical rationale which explains

the observed trends. On the other hand, methods to predict the behaviour of materials

as a function of temperature are valuable tools for engineers. A possible way to

obtain this information could be microscopic imaging. In fact, it has been reported

in literature [Mager, 1952], [Adler and Pfeiffer, 1974], [Landgraf et al., 2011] that

the coercive field is inversely proportional to grain size. Therefore the existence of a

possible link between grain size, pinning force distribution and temperature deserves

to be investigated.

The proposed approach has currently only been tested with a single material. Future

work will be dedicated to evaluating its validity with different materials, as well as
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Table 2: Discrete parameters ωk, κk for each temperature, where k = 1, ..., N .

N = 2 N = 3 N = 4 N = 5

ωk κk ωk κk ωk κk ωk κk

T = 223 K 0.3329 0.0000 0.2886 0.0000 0.2871 0.0000 0.2880 0.0000

0.6670 121.6793 0.6571 40.6363 0.5611 32.0651 0.5512 31.2924

0.0542 156.5175 0.1276 81.8019 0.1281 78.0576

0.0241 189.431 0.0326 130.6511

2.31e−7 2294424.8

T = 248 K 0.4064 0.0000 0.3284 0.0000 0.3250 0.0000 0.3334 0.0000

0.5936 120.4370 0.6284 32.8608 0.5149 25.5380 0.0227 2.6633

0.0432 145.8048 0.1445 63.9543 0.4705 27.8393

0.0156 147.8423 0.1565 62.3466

0.0167 147.1808

T = 273 K 0.4953 0.0000 0.3758 0.0000 0.3778 0.0000 0.3691 0.0000

0.5047 120.4085 0.5923 26.6819 0.5938 27.0429 0.4235 2.6633

0.0319 141.2010 0.0284 143.8204 0.1376 27.8393

7.539e−7 3423.9374 0.0698 62.3466

1.046e−7 108.1089

T = 293 K 0.6120 0.0000 0.4469 0.0000 0.4483 0.0000 0.4342 0.0000

0.3879 119.6603 0.5308 21.3301 0.5310 21.4869 0.4138 125.5438

0.0222 125.5747 0.0207 125.5438 0.1497 27.8393

2.064e−7 69035.7289 0.0022 115.9689

2.486e−6 322.3601

T = 323 K 0.7183 0.0000 0.5488 0.0000 0.5264 0.0000 0.5272 0.0000

0.2817 118.2481 0.4195 18.4937 0.3086 9.6997 0.3136 10.0647

0.0316 120.3354 0.1509 33.5657 0.1458 34.0267

0.0142 129.6345 0.01335 129.9505

9.495e−6 408.6364

T = 348 K 0.7908 0.0000 0.6513 0.0000 0.6513 0.0000 0.6183 0.0000

0.2091 117.6531 0.3382 20.2308 0.3382 20.2323 0.2204 7.6453

0.0106 102.2365 0.0106 102.0321 0.1607 32.6415

1.976e−6 707.9873 1.0186e−6 − 115789.78

0.0007 127.2204

T = 373 K 0.7857 0.0000 0.6375 0.0000 0.6265 0.0000 0.6383 0.0000

0.2143 117.9743 0.3414 18.7272 0.2682 11.9799 0.3376 18.3745

0.0211 119.8614 0.0937 36.5363 0.0238 85.0523

0.012 126.3739 1.867e−6 16163.72

0.0003 558.7124

T = 398 K 0.7693 0.0000 0.5614 0.0000 0.5613 0.0000 0.5370 0.0000

0.2307 118.7189 0.4308 15.266 0.4307 15.2648 0.3187 8.3228

0.0078 105.7655 0.0079 106.0202 0.1429 28.7854

5.6404e−7 2906.27 7.7661e−7 70850.24

0.0012 298.5686

T = 423 K 0.7879 0.0000 0.5803 0.0000 0.5722 0.0000 0.5722 0.0000

0.2120 119.6366 0.3993 13.5199 0.3308 10.2054 0.3320 10.2346

0.0204 133.4828 0.0867 27.9707 0.0856 28.1412

0.0102 143.5946 0.0100 144.3593

7.0364e−7 2933.352

T = 448 K 0.8148 0.0000 0.5643 0.0000 0.5445 0.0000 0.5445 0.0000

0.1852 119.5290 0.4146 10.0618 0.3292 5.9373 0.3306 5.9669

0.021 128.0142 0.1152 20.5528 0.1139 20.7185

0.0109 145.5584 0.0107 146.3299

4.0234e−7 3418.89
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integrating it in Finite Element software to provide an accurate mapping of magnetic

losses for practical electrotechnical applications.
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