Chen, V.C., The Micro-Doppler Effect in Radar, 2nd Ed. second ed., 2019, Artech House.
Gill, T.P., The Doppler Effect: An Introduction to the Theory of the Effect. 1965, Logos Press.
Censor, D., Scattering of electromagnetic waves in uniformly moving media. J. Math. Phys. 11:6 (1970), 1968–1976.
Z.A. Cammenga, C.J. Baker, G.E. Smith, R. Ewing, Micro-Doppler target scattering, in: IEEE Radar Conference, 2014, pp. 1451–1455.
Cammenga, Z.A., Smith, G.E., Baker, C.J., High range resolution micro-doppler analysis. Ranney, K.I., Doerry, A., Gilbreath, G.C., Hawley, C.T., (eds.) Radar Sensor Technology XIX; and Active and Passive Signatures VI Proceedings of SPIE, vol. 9461, 2015.
Gu, C., Wang, G., Li, Y., Inoue, T., Li, C., A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in Doppler vital sign detection. IEEE Trans. Microw. Theory Tech. 61:12 (2013), 4678–4688.
Li, C., Cummings, J., Lam, J., Graves, E., Wu, W., Radar remote monitoring of vital signs. Microw. Mag. IEEE 10 (2009), 47–56.
Liu, Z., Peng, B., Li, X., Analysis of phase noise influence on micro-Doppler feature extraction on vibrating target. Prog. Electromagn. Res. C 85 (2018), 177–190.
D.A. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, M. Cord, Temporal deep learning for drone micro-Doppler classification, in: H. Rohling (Ed.), 2018 19th International Radar Symposium (IRS), 2018.
Garcia-Rubia, J., Kilic, O., Dang, V., Nguyen, Q., Nghia, T., Analysis of moving human micro-doppler signature in forest environments. Prog. Electromagn. Res. 148 (2014), 1–14, 10.2528/PIER14012306.
Agnihotri, V., Sabharwal, M., Goyal, V., Effect of frequency on micro-doppler signatures of a helicopter. 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (IcABCD), 2019, 1–5, 10.1109/ICABCD.2019.8851024.
Dias Da Cruz, S., Beise, H.-P., Schröder, U., Karahasanovic, U., A theoretical investigation of the detection of vital signs in presence of car vibrations and RADAR-based passenger classification. IEEE Trans. Veh. Technol. 68:4 (2019), 3374–3385.
U. Karahasanovic, D. Tatarinov, Radar-based detection of thoracoabdominal asynchrony during breathing using autocorrelation function analysis, in: 2018 11th German Microwave Conference (GEMIC 2018), 2018, pp. 403–406.
Liu, Z., Peng, B., Li, X., Analysis of phase noise influence on micro-Doppler feature extraction of vibrating target. J. Eng.-JOE 2019:20 (2019), 6834–6839, 10.1049/joe.2019.0434.
Peng, B., Wei, X., Deng, B., Chen, H., Liu, Z., Li, X., A sinusoidal frequency modulation fourier transform for radar-based vehicle vibration estimation. IEEE Trans. Instrum. Meas. 63:9 (2014), 2188–2199.
Brooks, D., Schwander, O., Barbaresco, F., Schneider, J.-Y., Cord, M., Complex-valued neural networks for fully-temporal micro-Doppler classification. 20th International Radar Symposium (IRS), 2019, 1–10, 10.23919/IRS.2019.8768161.
Chen, X., Yu, X., Guan, J., He, Y., High-resolution sparse representation of micro-Doppler signal in sparse fractional domain. Machine Learning and Intelligent Communications Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol. 227, 2018, Springer, 225–232.
Censor, D., Scattering of electromagnetic waves by a cylinder moving along its axis. IEEE Trans. Microw. Theory Tech. 17:3 (1969), 154–158.
V.C. Chen, C.-T. Lin, W.P. Pala, Time-varying Doppler analysis of electromagnetic backscattering from rotating object, in: 2006 IEEE Radar Conference, Vols 1 and 2, IEEE Radar Conference, 2006, p. 807+.
Chuang, C.W., Backscatter of a large rotating conducting cylinder of arbitrary cross-section. IEEE Trans. Aerosp. Electron. Syst. 27:1 (1979), 92–95.
Van Bladel, J., Electromagnetic fields in the presence of rotating bodies. Proc. IEEE 64:3 (1976), 301–318.
Harfoush, F., Taflove, A., Kriegsmann, G.A., A numerical technique for analyzing electromagnetic wave scattering from moving surfaces in one and two dimensions. IEEE Trans. Antennas and Propagation 37:1 (1989), 55–63.
Zheng, K., Li, Y., Qin, S., An, K., Wei, G., Analysis of micromotion characteristics from moving conical-shaped targets using the lorentz-FDTD method. IEEE Trans. Aerosp. Electron. Syst. 67:11 (2019), 7174–7179.
Zheng, K.-S., Li, J.-Z., Wei, G., Xu, J.-D., Analysis of Doppler effect of moving conducting surfaces with Lorentz-FDTD method. J. Electromagn. Waves Appl. 27:2 (2013), 149–159.
Zhang, H.L., Sha, Y.X., Guo, X.Y., Xia, M.Y., Chan, C.H., Efficient analysis of scattering by multiple moving objects using a tailored MLFMA. IEEE Trans. Aerosp. Electron. Syst. 67:3 (2019), 2023–2027.
Fokas, A.S., Pelloni, B., Method for solving moving boundary value problems for linear evolution equations. Phys. Rev. Lett. 84:21 (2000), 4785–4789.
Christov, I.C., Christov, C.I., On mechanical waves and doppler shifts from moving boundaries. Math. Methods Appl. Sci. 40:12 (2017), 4481–4492.
Halbach, A., Geuzaine, C., Steady-state nonlinear analysis of large arrays of electrically actuated micromembranes vibrating in a fluid. Eng. Comput. 155:3 (2017), 591–602.
Dular, P., Geuzaine, C., Henrotte, F., Legros, N., A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Trans. Magn. 34:5, 1 (1998), 3395–3398.
Boubendir, Y., Antoine, X., Geuzaine, C., A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231:2 (2012), 262–280.
Dolean, V., Jolivet, P., Nataf, F., An Introduction to Domain Decomposition Methods: Theory and Parallel Implementation. 2015, SIAM, Philadelphia.
El Bouajaji, M., Thierry, B., Antoine, X., Geuzaine, C., A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations. J. Comput. Phys. 294 (2015), 38–57.
Thierry, B., Vion, A., Tournier, S., El Bouajaji, M., Colignon, D., Marsic, N., Antoine, X., Geuzaine, C., GetDDM: An open framework for testing optimized Schwarz methods for time-harmonic wave problems. Comput. Phys. Commun. 203 (2016), 309–330.
Chew, W.C., Michielssen, E., Song, J.M., Jin, J.M, Fast and Efficient Algorithms in Computational Electromagnetics. 2001, Artech House, Inc.
Bouche, D., Molinet, D., Mittra, R., Asymptotic Methods in Electromagnetism. 1997, Springer.
H.G. Brachtendorf, G. Welsch, R. Laur, Fast simulation of the steady-state of circuits by the harmonic balance technique, in: Proceedings of ISCAS’95 - International Symposium on Circuits and Systems, Vol. 2, 1995, pp. 1388–1391.
Cardona, A., Coune, T., Lerusse, A., Geradin, M., A multiharmonic method for non-linear vibration analysis. Internat. J. Numer. Methods Engrg. 37:9 (1994), 1593–1608.
Gyselinck, J., Geuzaine, C., Dular, P., Legros, W., Multi-harmonic modelling of motional magnetic field problems using a hybrid finite element-boundary element discretisation. J. Comput. Appl. Math. 168:1–2 (2004), 225–234.
Ju, P., Global residue harmonic balance method for Helmholtz-Duffing oscillator. Appl. Math. Model. 39:8 (2015), 2172–2179.
Mickens, R., A generalization of the method of harmonic balance. J. Sound Vib. 111:3 (1986), 515–518.
Wong, C.W., Zhang, W.S., Lau, S.L., Periodic forced vibration of unsymmetrical piecewise-linear systems by incremental harmonic-balance method. J. Sound Vib. 149:1 (1991), 91–105.
Cochelin, B., Vergez, C., A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324:1–2 (2009), 243–262.
Dunne, J.F., Hayward, P., A split-frequency harmonic balance method for nonlinear oscillators with multi-harmonic forcing. J. Sound Vib. 295:3–5 (2006), 939–963.
Yamada, S., Bessho, K., Harmonic field calculation by the combination of finite element analysis and harmonic-balance method. IEEE Trans. Magn. 24:6 (1988), 2588–2590.
Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. 1964, Dover Publications.
Kuchment, P., Floquet Theory For Partial Differential Equations. 1993, Birkhauser Verlag, Basel.
Newman, D.J., A simple proof of Wiener 1∕f theorem. Proc. Amer. Math. Soc. 48:1 (1975), 264–265.
Bohr, H., Almost Periodic Functions. 1947, American Mathematical Society.