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. Gasperini∗†‡, H. P. Beise∗, U. Schroeder∗, X. Antoine†, C. Geuzain

Abstract

We propose a multi-harmonic numerical method for solving wave scattering prob-
lems with moving boundaries, where the scatterer is assumed to move smoothly
around an equilibrium position. We first develop an analysis to justify the method
and its validity in the one-dimensional case with small-amplitude sinusoidal motions
of the scatterer, before extending it to large-amplitude, arbitrary motions in one-
and two-dimensional settings. We compare the numerical results of the proposed
approach to standard space-time resolution schemes, which illustrates the efficiency
of the new method.

words: high frequency scattering; scalar waves; moving boundary; Doppler e
tifrequency resolution.

Introduction
ave scattering theory, it is well-known that the motion of the target modulate
uency of the reflected wave, which is the so-called Doppler effect [15, 30]. For a
with uniform velocity, the Doppler frequency shift can be computed easily [13].
iction of Doppler shifts for more general movements is commonly obtained thr
le approximate models combined with signal processing [9, 10, 15, 16, 31, 38, 40
he radar detection of non uniformly moving scatterers has found a tremendous num

pplications in recent years, thanks to the availability of new high-frequency sensors
ces. For example, the radar frequency ranges 24-24.5 GHz and 61-61.5 GHz (th
d ISM bands) are standard for many applications, and the new 77-81 GHz ba
ently considered for automotive applications. The THz frequency range will appe
lications in the next few years, e.g. at 140 GHz. A major advantage of high-frequ
r sensing is its sensitivity to micro movements [15, 16], when the scatterer incl
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ral moving parts. This results in the so-called micro-Doppler effect [15, 16], whi
with great success from drone detection [8] or the analysis of pedestrian movemen

29] to the modeling of the effect of the rotation of helicopter rotor blades on the r
ature of the aircraft [2]. In the automotive industry, micro-Doppler sensing has rec
proposed [23, 31, 36, 38] for the contactless detection of vital signs like breathin

nts left alone on the back seat of overheating cars. The engineering of such very
uency radar sensing devices entails dealing with multiple challenges, as for instanc
lysis of random body movements and vehicle vibrations [23, 31, 38, 39, 40, 43], lea
adar signatures that can be classified for example by deep learning techniques [7, 8
rder to design these new sensors, an adequate full realistic simulation of the under
frequency scenarios is crucial.
oncretely, a suitable physical modeling of the (direct) problem leads to solve a t

endent wave propagation problem in a complex environment (e.g. the interior of a
ch has both a complex geometrical shape and involves various materials that int
ngly with the high frequency emitted signal. In addition, the moving target is
lly of complex shape and materials (e.g. the infant on the back seat of the car),
acterized by small amplitude displacements at extremely low frequencies comp
he emitter. The natural mathematical framework to model such physical problem
derivation of an adapted system of partial differential equations (PDEs), which
e solved numerically when the configuration under study involves complex geome
aterials. Additional effects such as random vibrations can be handled by addin
ifying the PDE system.
he solution in a PDE setting of moving target problems has already received
ntion in the mathematical and engineering communities. Analytical approache
ing wave-like problems with simple motions have been developed e.g. for rotating
les [12, 17, 21, 45] or vibrating objects [14, 17, 34, 40]. In addition, numerical sch
d e.g. on FDTD [34, 49, 50] or fast integral equation solvers [48] were also investig
e mathematical works related essentially to one-dimensional moving boundary p
s have also been proposed e.g. by Fokas and his co-authors [28] to recast the pro
Volterra integral equation in a fixed domain, or by Christov and Christov [20] fo
ptotic multiscale analysis of the Doppler effect in a half-space. To the best o
ors’ knowledge, however, the numerical solution of the micro-Doppler PDE mod
lem has not been addressed yet.
n the present paper, we propose an original frequency domain method to address
lem, which leads to the solution of coupled systems of Helmholtz-type equations. F
ransform the constant coefficients wave equation in the moving domain as a new w
equation in a fixed domain but with variable coefficients related to the metric ch
imilar approach was used for quasi-static electromagnetic models in [33]). Sinc
studying the micro-Doppler problem (small amplitude and low frequency oscilla
e scatterer) for a high frequency radar, we can then expand the solution in the Fo
ain in time as a Fourier series expansion centered around the radar frequency, m
ed by the low frequency perturbation induced by the scatterer movement. For s
litude movements, the variable coefficients wave equation can be simplified than
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small amplitude, and the series expansion can be truncated to keep a finite num
iscrete frequency components related to the small amplitude variations. The resu
roach then yields a coupled system of Hemholtz equations for the wave numbers de
he discrete frequency components kept by the approximation. For larger ampli
ements, a similar analysis can be developed based on adding more Fourier modes
frequency coupling is stronger, resulting in a larger system of coupled Helmholtz e
s with variable coefficients. This approach is valid for any dimension and configura
the resulting frequency domain coupled formulation can be solved by efficient nu
methods adapted to solving Helmholtz-type equations in the high frequency reg
he present paper, we propose an approach based on the finite element method
ch is known to be flexible to handle two- and three-dimensional complex engine
gurations, including complex materials and shapes. In addition, this choice a
onsider in the future an algorithmic adaptation of efficient high-order finite ele
ers based on domain decomposition [4, 24, 27, 44], where only a local resolution o
lem around the moving obstacle could be resolved. Let us remark that, dependin
problem, other high frequency numerical methods may also be adapted like for e
fast integral equations solvers [19] or even asymptotic adpproximation technique
lly, let us notice that the finite Fourier expansion method which leads to the cou
em of PDEs has also been used in the past under the name of the harmonic-bal
hod or the multi-harmonic approach [6, 11, 32, 33, 35, 41, 46]. It has been prove
articularly efficient for engineering problems, including situations related to wave
tions [22, 26, 47].
he paper is organized as follows. In Section 2 we define a sine-motion moving boun
tering problem and formulate it in a fixed domain. In Section 3 we develop a m
onic approach to solve the scattering problem for small and large amplitudes o

ndary motion. We illustrate in Section 4 the validity of the method through nume
putations and generalize it in Section 5 to general boundary motions which are
icitly prescribed. In Section 6, we extend the approach to higher-dimensional dom
illustrate the numerical method on a two-dimensional example. Finally, we conc
ection 7. Appendix A details some computations.

Problem statement and reformulation in a fixed d
main

The initial boundary-value problem
assume that the bounded spatial domain is defined by: Ω(t) :=]0, `(t)[, where t
he time variable and x denotes the spatial variable. The modeling of the mo
ndary is described by the time-dependent function `(t). In the context of this w
is supposed to be smooth and bounded. For R+

∗ :=]0,∞[, we introduce the unkn
l wave field u := u(x, t), for x ∈ Ω(t) and t ∈ R+

∗ , solution to the constant coeffic
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e equation
∂ttu− c2∂xxu = 0,

re c is the wave velocity in the medium under consideration. At the fixed left boun
0 of Ω(t), we impose a single-source term A sin(ωft), with amplitude A ∈ R+

∗
ular frequency ωf := 2πνf > 0. In practice, νf is expected to be very large compare
frequency content of `(t). For instance, νf might be in frequency range 109 − 101

istic radar applications. The associated inhomogeneous Dirichlet boundary cond
en set as:

u(0, t) = A sin(ωft).
the moving right boundary, we fix a homogeneous Dirichlet boundary condition

u(`(t), t) = 0.

physical applications, we consider the time origin of the problem as an emission sta
= 0, and take into account the transient mode of the excited wave field. Finally
sake of well-posedness, we add the two initial conditions

u(x, 0) = 0

∂tu(x, 0) = 0.

The case of a motionless boundary
us consider the case where the right boundary is fixed, i.e. `(t) := L. Then, we ge
icit form of the solution (see Appendix A for a proof).

position 1. Let us assume that : Ω(t) = Ω :=]0, L[, ∀t > 0. We define κf :=
:= mπ/L and ωm := cκm, for m ∈ N. We suppose that: ωf 6= ωm, ∀m ∈ N. Then
tion u0 of (1) is given by: ∀x ∈ Ω, t > 0,

u0 = u0,νf +
∑

m∈N
u0,νm

re 



u0,νf (x, t) := A

sin(κfL) sin(κf(L− x)) sin(ωft),

u0,νm(x, t) := 2Aκf

L(κ2
f − κ2

m) sin(κmx) sin (ωmt) .

et us remark that u0 can be extended to t ∈ R, if we consider the source term
tting for t < 0, and the conditions (3), (4) and (5). Hence, this allows us to intro
Fu0, where the time Fourier transform F of a function v defined on R is given

v̂ := Fv(x, ξ) :=
∫

R
v(x, t)e−2iπξtdt.
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(6), one gets

û0 = A

2i sin(κfL) sin(κf(L− x))(δνm − δ−νm)

+
∑

m∈N
A

κf

iL(κ2
f − κ2

m) sin(κmx)(δνm − δ−νm)

=: û0,νf +
∑

m∈N
û0,νm ,

re δa is the Dirac distribution at a point a. Considering (8), we observe that
litude of the m-th mode û0,νm scales like κf/L|κ2

f −κ2
m|, and thus exhibits a fast d

he frequency νm moves away from νf (see e.g. Figure 1 for an example of su
tion). When νf is close to an eigenfrequency νm, then the solution tends to behave
gle-mode with infinite amplitude, hence concentrating the energy of the system.
n the case of a moving boundary, we expect that the overall behavior of the solu
s similar properties: a first main contribution centered around the frequency νf
ite discrete sum of other significant contributions centered around the resonance
t particularly for a small perturbation of the boundary oscillating at a frequenc
that 0 < ν` � νf . However, in practical applications, the domain is often part
and/or has wave absorbing objects at the boundary, which leads to non reso

e amplitude solutions. This situation is investigated in Section 6 for the two-
e-dimensional cases. For practical remote sensing applications based on the Dop
t, the useful information is mainly related to perturbations around νf .

Reformulation of the initial problem as a fixed domain pr
lem

us now analyze the case of a moving boundary. We first map Ω(t) to the fixed do
]0, L[. This results in a new wave-like equation from the metric change. The phy
tion u is obtained by applying the reverse change of variable, i.e. from Ω̃ to
e precisely, the change of space variable x̃ : (x, t) 7→ x̃(x, t) is such that x̃(0, t)
t), t) = L, for all t > 0, and is built as a smooth mapping with respect to x and t.
ial and time derivative operators then write

∂xu = ∂x̃

∂x
∂x̃ũ, ∂tu = ∂tũ+ ∂x̃

∂t
∂x̃ũ, ∂xxu =

(
∂x̃

∂x

)2

∂x̃x̃ũ+ ∂2x̃

∂x2∂x̃ũ,

∂ttu = ∂ttũ+
(
∂x̃

∂t

)2

∂x̃x̃ũ+ 2∂x̃
∂t
∂tx̃ũ+ ∂2x̃

∂t2
∂x̃ũ.

refore, the initial scattering problem can be rewritten as follows: find ũ(x̃, t) = u
maps from Ω̃× R+

∗ to R and that satisfies

tũ− c2



(
∂x̃

∂x

)2

∂x̃x̃ũ+ ∂2x̃

∂x2∂x̃ũ


+

(
∂x̃

∂t

)2

∂x̃x̃ũ+ 2∂x̃
∂t
∂x̃tũ+ ∂2x̃

∂t2
∂x̃ũ = 0,
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ũ(0, t) = A sin(ωft), ũ(L, t) = 0, ũ(x̃, 0) = 0 and

∂tũ(x̃, 0) = − ∂x̃

∂t

∣∣∣∣∣
t=0

∂x̃ũ(x̃, 0) = 0.

us remark that, similarly to [33], the spatial Jacobian ∂x̃
∂x

of x̃ appears in (9). In
wing, we provide a frequency domain method to solve the modified wave equation

The specific case of a boundary with sine motio

Analysis for the case of a small amplitude boundary mot
us consider the case where the motion of the right endpoint `(t) of the domain Ω
n by a small smooth time-dependent perturbation Lεf(ω`t) of L, where f is a sm
nded function with bounded derivatives f (p), oscillating with a frequency ν` = ω`/
ll compared to the emitter frequency νf , that is 0 < ν` � νf . Therefore, we have

`(t) = L(1 + εf(ω`t)),

ε � 1. In the one-dimensional case, we can assume that this is given by a l
tion x = x̃`(t)/L. To be more explicit, we now focus on the special case where
ndary has a small time sinusoidal motion around L, defined by

`(t) = L(1 + ε sin(ω`t)),

setting f(ω`t) := sin(ω`t). This leads to

∂x̃

∂x
= 1

1 + ε sin(ω`t)
= O(1), ∂x̃

∂t
= −x̃ εω` cos(ω`t)

1 + ε sin(ω`t)
= O(ε),

∂2x̃

∂x2 = 0, ∂2x̃

∂t2
= x̃

εω2
` (sin(ω`t)(1 + ε sin(ω`t))− 2ε cos(ω`t))

(1 + ε sin(ω`t))2 = O(ε).

eglecting the O(ε) terms in (9), we obtain the variable speed wave equation

∂ttṽ − c2
(
∂x̃

∂x

)2

∂x̃x̃ṽ = 0,

ch can be written as
`2

(Lc)2∂ttṽ − ∂x̃x̃ṽ = 0

× R+
∗ , with ṽ(0, t) = A sin(ωft), ṽ(L, t) = 0, ṽ(x̃, 0) = 0 and ∂tṽ(x̃, 0) = 0.

et us denote by � the d’Alembert operator

� := 1
c2∂tt − ∂x̃x̃,
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u0(x̃, t) as the solution to (1) in the case of fixed boundaries. We consider the mod
ator

�ε := `(t)2

(Lc)2∂tt − ∂x̃x̃ = � + ε�1,

re
�1 := 2 sin(ω`t) + ε sin(ω`t)2

c2 ∂tt.

a solution �εṽ = 1, we define the perturbative part ṽ1 by ṽ = u0 + ṽ1, leading to

�εṽ1 = −ε�1u0 = −ε�1


u0,νf +

∑

m∈N
u0,νm


 ,

rding to (6).
et us analyze the solution to the equations associated to each single source
lved in the series expansion of ṽ0, i.e.

�εṽ1,νf = −ε�1u0,νf ,

, for m ∈ N,
�εṽ1,νm = −ε�1u0,νm .

he right hand sides are C∞(Ω̃×R+
∗ ) functions and the corresponding boundary co

s are homogeneous Dirichlet conditions. Thus, since these equations are of hyperb
, we have the existence and uniqueness of the solutions and by superposition

ṽ1 = ṽ1,νf +
∑

m∈N
ṽ1,νm .

lly, we prove that there exist some functions ṽνf and ṽνm , m ∈ N, in C∞(Ω̃×R+
∗ )

the solution ṽ of (13) admits the following decomposition:

ṽ = ṽνf +
∑

m∈N
ṽνm ,

ṽνf = u0,νf + ṽ1,νf and ṽνm = u0,νm + ṽ1,νm , for m ∈ N.
his form provides a generalization of (6) to the case of a moving boundary base

approximation (13) of the full wave equation (9). Let us also remark that the prev
mposition can be extended to the case of smooth and bounded functions ` define
nction f .
e now focus on the term ṽνf appearing in the expansion (14). A similar appr

be adapted to the other terms ṽνm , for m ∈ N. Based on the method of separatio
ables, we define ṽνf (x̃, t) = Ẽ(x̃)Ṽ (t). The time-dependent component Ṽ (t) of ṽνf

ven as the solution of the variable coefficients ODE

∂ttṼ + ω2
f L

2

`(t)2 Ṽ = 0,
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hich we are seeking a solution in C∞(R+
∗ ). Since

ω2
f L

2

`(t)2 = ω2
f

(1 + ε sin(ω`t))2 ,

ε sin(ω`t) ∈]− 1, 1[, we have the power series expansion

ω2
f L

2

`(t)2 = ω2
f
∑

k∈N
(−1)k(k + 1) (ε sin(ω`t))k

= ω2
f

(
1− 2ε sin(ω`t) +O(ε2)

)
.

or ε� 1, we consider the approximate solution W̃ to the equation (15) based on
-order truncation of (16), i.e.

∂ttW̃ + ω2
f (1− 2ε sin(ω`t)) W̃ = 0.

us define the change of variable τ := πν`t+ π
4 and the function W (τ) := W̃ (πν`t+

n the second-order derivative writes

∂ttW̃ = (πν`)2∂ττW.

(17), we deduce the Mathieu’s equation

∂ττW + (α− 2q cos(2τ))W = 0,

α = (2νf
ν`

)2 and q = −αε. The solutions of (18) are given as linear combinatio
hieu functions of the first-kind [1]. According to Floquet’s theory [37], they ca
ten as φ(τ) = eiµτp(τ), with p a π-periodic function and µ the associated Floq
onent. Let us remark that the function φ(−τ) is also solution to the equation
enever φ(τ) and φ(−τ) are linearly independent, the general solution writes [1] as

W (τ) = eiµτ
∑

j∈Z
a+
j e

2ijτ + e−iµτ
∑

j∈Z
a−j e

−2ijτ

=
∑

j∈Z
a+
j e

2i(µ2 +j)τ + a−j e
−2i(µ2 +j)τ ,

a±j being the complex valued Fourier coefficients of p. SinceW (τ) is a periodic C∞
tion, |a±j | has a fast decay when |j| → +∞.
s q = O(ε), for sufficiently small perturbations ε, we may expand α in terms of µ

f. [1], ch. 20, p. 730)

α = µ2 + q2

2(µ2 − 1) +O( q
4

µ6 ) = µ2 +O(ε2).Jo
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ce, at first-order in ε, one gets µ ≈ √α = 2νf
ν`
, and, for small values of ε, we hav

roximation
W (τ) ≈

∑

j∈Z
a+
j e

2i( νf
ν`

+j)τ + a−j e
−2i( νf

ν`
+j)τ

,

ch yields, for τ = πν`t+ π
4 ,

W̃ (t) ≈
∑

j∈Z
ija+

j e
i
πνf
2ν` e2iπ(νf+jν`)t + (−i)ja−j e

−iπνf
2ν` e−2iπ(νf+jν`)t.

bining (±i)ja±j e±i
πνf
2ν` with the space dependent component Ẽ(x̃) of ṽ, we define

cients {ã±j (x̃)}j∈Z such that, for each integer j, we have

ã±j (x̃) = (±i)ja±j e
±iπνf

2ν` Ẽ(x̃).

formally obtain the following ansatz for small ε

ṽνf (x̃, t) ≈
∑

j∈Z
ã+
j (x̃)ei(ωf+jω`)t + ã−j (x̃)e−i(ωf+jω`)t.

et us define, for fixed integers J1 ≤ 0 and J2 ≥ 0 the finite sets of integers I = I−
J = J − ∪ J +, where

I− := {j ∈ Z,−J2 ≤ j ≤ −J1}, I+ := {j ∈ Z, J1 ≤ j ≤ J2},
J − := {−νf + ν`j}j∈I− , J + := {νf + ν`j}j∈I+ .

denote by ]I the cardinal of the set I. Since |ã±j (x̃)| is fastly decaying for |j| → ∞,
ifies that the method that we develop (most particularly for small ε) in the follo
ased on the approximation w̃I of ṽνf by the finite sum

w̃I(x̃, t) :=
∑

j∈I+
ã+
j (x̃)ei(ωf+jω`)t + ã−j (x̃)e−i(ωf+jω`)t,

re ]I = 2]I+ coefficients ã±j (x̃) have to be computed thanks to a coupled syste
ti-harmonic Helmholtz-type equations in the Fourier domain. The two integers J1
ust be carefully chosen to include the significant contributions to the solution.
y construction of the Fourier series expansion, we have ã+

j = ã−j . Thus, one gets

w̃I(x̃, t) =
∑

j∈I+
ã+
j (x̃)ei(ωf+jω`)t +

∑

j∈I+
ã+
j (x̃)e−i(ωf+jω`)t

=: w̃I
+(x̃, t) + w̃I

−(x̃, t),

re the Fourier coefficients of w̃I− are the complex conjugates of the Fourier coeffic
I+ .
et us remark that the expression (14) of ṽ also involves the functions ṽνm . How
r contribution to ṽ is less significant than ṽνf . In the case where a part of the do
pen or includes some absorption materials (see Section 6), they are even neglig
lly, if ε = 0, all the above computations are exact and J1 = J2 = 0.
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3.2
Let time
Fou 0),
one

A

F

0,

whe that
τaf(

(25)

In a and
v̂(0,

L (25)
arou tion
ŵI(

(26)

whi the
mod ay of
the ered
dist tion
ŵI

+ the
coeffi

∂x (27)

for j = 0
for j

E y the
bou holtz
equa

Journal Pre-proof
Derivation of a multi-harmonic approximate system
us assume that the Leibniz integral rule holds for ṽ. Then, assuming that the
rier transform v̂ of ṽ is defined according to (7) (with the extension ṽ = u0 for t <
gets: F∂x̃x̃ṽ(x̃, t) = ∂x̃x̃v̂(x̃, ξ), setting v̂(x̃, ξ) := F ṽ(x̃, t).
pplying F to (13)-(11) gives
(
∂x̃x̃ṽ −

1
c2

[
1 + ε2

2 + 2ε sin(ω`t)−
ε2

2 cos(2ω`t)
]
∂ttṽ

)

= ∂x̃x̃v̂ +
[(

1 + ε2

2

)
δ0 + iε(δ−ν` − δν`)−

ε2

4 (δ2ν` + δ−2ν`)
]
∗


(

2πξ
c

)2

v̂


 =

re ∗ is the convolution product. Denoting by τa the translation operator such
t) = f(t− a), we obtain the following problem: find v̂ : Ω̃× R→ R satisfying

∂x̃x̃v̂ +
[(

1 + ε2

2

)
+ iε (τ−ν` − τν`)−

ε2

4 (τ2ν` + τ−2ν`)
] 

(

2πξ
c

)2

v̂


 = 0.

ddition, for all ξ ∈ R, we have v̂(L, ξ) = 0, v̂(0, ξ) = 0 if |ξ| 6= νf , v̂(0, νf) = A
2i

−νf) = −A
2i .

et us now compute an approximation of the contribution v̂νf of the solution v̂ to
nd νf . From the ansatz (23), it is reasonable to look for an approximate solu
x̃, ξ) of v̂νf (x̃, ξ) as

ŵI = ŵI
+ + ŵI

− :=
∑

j∈I+
ã+
j δνf+jν` +

∑

j∈I+
ã+
j δ−(νf+jν`),

ch is a linear combination of Dirac distributions, centered around ±νf , spaced by
ulating frequency ν`, and with (unknown) spatial amplitudes {ã±j }I+ . The fast dec
coefficients |ã+

j | for |j| → +∞ guarantees that the finite supports J ± of the temp
ributions ŵI± are disjoint. Hence, we can restrict our analysis to the contribu
. Plugging the expansion of ŵI+(x̃, ξ) defined in (26) into (25), and identifying
cients in front of the Dirac distributions leads to

˜x̃ã
+
j + κ2

j

(
1 + ε2

2

)
ã+
j + iε(κ2

j+1ã
+
j+1 − κ2

j−1ã
+
j−1)− ε2

4 (κ2
j−2ã

+
j−2 + κ2

j+2ã
+
j+2) = 0,

∈ I+, with κj := (ωf + jω`)/c and for the boundary conditions ã+
0 (0) = A

2i , ã
+
j (0)

6= 0, ã+
j (L) = 0, and ã+

j (x̃) = 0 for x̃ ∈ Ω and j ∈ Z \ I+.
quation (27) describes the coupling between the frequency components induced b

ndary oscillations. As expected, taking ε = 0 gives a system of uncoupled Helm
tions, where the coefficients vanish for j 6= 0, and

ã+
0 (x̃) = A

2i
sin(κf(L− x))

sin(κfL) .
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n Section 4, we numerically solve (27) by means of the finite element method
end, we derive the following coupled weak formulation: find a∗j ∈ H1

Dj(Ω̃) := {
Ω̃) | a∗0(0) = A

2i , a
∗
j(0) = 0 for j 6= 0, a∗j(L) = 0} such that

−
∫

Ω̃
∂x̃a

∗
j∂x̃φdx̃+

∫

Ω̃

[
κ2
j

(
1 + ε2

)
a∗j + iε(κ2

j+1a
∗
j+1 − κ2

j−1a
∗
j−1)

−ε2(κ2
j−2a

∗
j−2 + κ2

j+2a
∗
j+2)

]
φdx̃ = 0

s for all test functions φ ∈ H1
0(Ω̃) and for j ∈ I+, with a∗j(x̃) = 0 for j ∈ Z \

then consider a regular covering Ω̃h of Ω̃ using nΩ̃ finite elements of size h. Al
tions are extended with an h subscript for the discrete version of the domains as
nknowns. We choose a linear element approximation and denote by

ŵI
+

h =
∑

j∈I+
a∗h,jδνf+jν`

solution of the discretization of the variational coupled system (28), with a∗h,j belon
he (nΩ̃ − 1)-dimensional finite element subspace VDj of H1

Dj(Ω̃).

The case of a larger amplitude boundary motion
previous method has been specifically designed for the case of small amplitude mot
rding to the approximate equation (27). In this subsection, we focus on a more ge
as we transfer the exact equation (9) directly to the frequency domain. The ran
ity of this approach is explored in a numerical study in Section 4.
or ε ∈]0, L[ and a linear transformation in x, (9) can be written as follows

`2∂ttũ+ (x̃2`′2 − c2L2)∂x̃x̃ũ− 2x̃``′∂x̃tũ+ x̃(2`′2 − ``′′)∂x̃ũ = 0,

ũ(0, t) = A sin(ωft), ũ(L, t) = 0 for t > 0, and ũ(x̃, 0) = 0, ∂tũ(x̃, 0) = 0
Ω̃. The methodology presented in the previous subsection is now applied to (29)
ξ) := F(ũ)(x̃, ξ) be the time Fourier transform of a solution u of (29). We ass
ũνf admits a decomposition of the form (14) (see also Figure 1). Let us now f
he component ûνf of û and search for an approximation ŵI+

gen of ûνf for ξ ∈ J +, in
of the ansatz (26) with coefficients ã+

j,gen.

Jo
ur

na
l P

re
-p

ro
of
11



D

(30)

for (27).
Let ε, ω,
or e

A hod,
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Journal Pre-proof
efining ωj = 1 + jω, this leads to the following coupled system of equations:

ω2
j

(
1 + ε2

2

)
ã+
j,gen −

3x̃ε2ω2

2 ∂x̃ã
+
j,gen −

(
x̃2ε2ω2

2 − 1
κ2

f

)
∂x̃x̃ã

+
j,gen

+iε
[
ω2
j+1ã

+
j+1,gen − ω2

j−1ã
+
j−1,gen + x̃ω

(
ωj+ 1

2
∂x̃ã

+
j+1,gen + ωj− 1

2
∂x̃ã

+
j−1,gen

)]

−ε
2

4
[
ω2
j−2ã

+
j−2,gen + ω2

j+2ã
+
j+2,gen − 2x̃ω

(
ωj− 5

2
∂x̃ã

+
j−2,gen − ωj+ 5

2
∂x̃ã

+
j+2,gen

)

+x̃2ω2(∂x̃x̃ã+
j−2,gen + ∂x̃x̃ã

+
j+2,gen)

]
= 0

j ∈ I+, with ω = ω`/ωf , and with the same boundary conditions as for system
us remark that, based on (30), different asymptotics could be analyzed, based on
ven εω.
s previously, in order to solve (30) numerically by means of the finite element met
onsider the associated weak formulation, which writes: find a∗j,gen ∈ H1

Dj
(Ω̃) such

∫

Ω̃

[(
ε2ω2x̃2

2 − 1
κ2

f

)
∂x̃a

∗
j,gen∂x̃φ+ ε2x̃ω2

4
(
∂x̃a

∗
j+2,gen + ∂x̃a

∗
j−2,gen

)
∂x̃φ

]
dx̃

−
∫

Ω̃

εx̃ω

2
[
εω∂x̃a

∗
j,genφ− 2i

(
ωj+ 1

2
∂x̃a

+
j+1,gen + ωj− 1

2
∂x̃a

+
j−1,gen

)
φ

+ ε
(
ωj+ 3

2
∂x̃a

∗
j+2,gen − ωj− 3

2
∂x̃a

∗
j−2,gen

)
φ
]
dx̃

+
∫

Ω̃

[
ω2
j

(
1 + ε2

2

)
a∗j,genφ+ iε

(
ω2
j+1a

∗
j+1,gen − ω2

j−1a
∗
j−1,gen

)
φ

−ε
2

4
(
ω2
j+2a

∗
j+2,gen + ω2

j−2a
∗
j−2,gen

)
φ

]
dx̃ = 0

s for all test functions φ ∈ H1
0(Ω̃) and j ∈ I+. We then use the same covering Ω̃

nd denote by ŵI+
gen,h the solution of the discretization of the variational coupled sy

.
efore proceeding to extensive numerical tests that will illustrate our approach
rt in Figure 1 the amplitude spectrum of the numerical solution ûh of (29) at a
e point x̃ = 0.5 (L = 1), without moving boundary (ε = 0, in red, where (2
valent to (1) and û ≡ û0) and with moving boundary (ε = 0.1, in blue). Concretely
tion ûh is computed by solving (29) numerically (with a second-order finite differ
me in time and linear finite elements in space), leading to ũh, and then applying
. The physical parameters are A = 1, c = 300, νf = 360 and ν` = 2. The freque
e eigenmodes û0,νm are νm = mc/2 and correspond to the peaks of the red curve

0, we observe that i) there is a main contribution for νf = 360 associated to û0,νf an
ave some uniformly distributed contributions û0,νm . This is in line with what is st
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1. Frequency spectrum |ûh(0.5, ξ)| without (ε = 0, in red) and with boundary m
0.1, in blue). This illustrates both the assumption on the decomposition (14) of ũ an
tz (26).

roposition 1. In the case of the oscillating boundary (ε = 0.1), we see again
ributions related to νf and νm but with some additional new excited modes, loca
nd these frequencies and spaced by ν`.
et us recall that the contributions uνm , m ∈ N, are not significant in practice
lly the domain involves some open boundary parts and some dissipation effects. H
e we have a Dirichlet boundary condition, we assume that νf is not close to an e
uency νm. Therefore, the restriction of ûh to J denoted by ûJh is expected to pro
latively accurate approximation of ûνf . To illustrate this claim, we report on F
he comparison between ũh and ũJh (defined as the inverse Fourier transform of ûJh
0.5, computed by means of iFFT. We observe that the phases of the two func
in agreement and the envelope of the signal is well reproduced, with same frequ
2. The difference between the signals is a consequence of the boundary moveme
he second approximation consists in validating the computation of ûJ by the app
ion w̃Igen. To this end, we report in Fig. 2b the absolute error |ũJh (0.5, t)− w̃Igen,h(0.
the same configuration. We observe a good agreement between the solutions, w
rms that the expected ansatz (26) is valid for w̃Igen.
he values of J1 and J2 that define the interval I can be justified a posteriori by en
umerical criteria but their a priori determination remains an open question. In
of a general boundary motion, the choice of J1 and J2 is also related to the frequen
input signal and the perturbation amplitude ε. Indeed, we observe that the coeffic
en| decay slower for increasing |j| as ε gets larger.
onsequently, the values of −J1 and J2 used to truncate (30) have to be incre
xpected. We illustrate this property in Figure 3 where we report the amplitud
.5, ξ) computed by the brute force method, for νf = 3250 and c = 1280. The valu
ry from 0.01 to 0.1.Jo
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(b) |ũJh (0.5, t)− w̃Igen,h(0.5, t)] vs. t.

2. On the top figure, time signals ũh(0.5, t) in blue and ũJh (0.5, t) in red. On the bo
e, their absolute difference vs. t. The physical parameters are νf = 360, ν` = 2, c = 300
0.1.
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3. Increasing the amplitude ε of the sinusoidal perturbation (11) leads to the excitati
ger frequency band in the solution ûh(0.5, ξ), with νf = 3250, c = 1280, and ν` = 1.

Numerical examples
he following, the amplitude of emission is set to A = 1, and the values of J1 and J2
the definition of I and J , see (22)) are a priori selected relatively to the refer

tion û by the criterion

max
j∈Z\I

‖ûh(·, νf + jν`)‖∞,Ω̃h ≤ 10−3 × ‖ûh(·, νf)‖∞,Ω̃h

uch a way that ]I+ is minimized. This assumption ensures that ûJ+

h is restricte
significant components of ûhνf around νf , with a normalized amplitude less than 1
e, we set ‖f‖∞,Ω̃h = max

x̃∈Ω̃h
|f(x̃)|.

Convergence of the frequency-domain solution ŵI
+

gen,h

computational cost of the proposed frequency domain method depend on the
of the system that we have to solve and on the number of finite elements nΩ̃ =
corresponding algorithm requires the solution of a linear system with a sparse b

tadiagonal matrix of size n]I+, with tridiagonal blocks. On the other hand the b
e method used to compute the reference solution ûJ

+

h is based on the resolutio
with a P1 finite element method in space and a second-order Crank-Nicolson
me which requires the solution of nt tridiagonal linear systems of size nΩ̃, followe
computation of nΩ̃ FFTs of size nt.
n order to assess the accuracy of the method, we compare the numerical solu
,h and ûJ

+

h in different physical settings. To this end, we first define the pointJo
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r between the Fourier spectra |ûJ+

h | and |ŵI
+

gen,h|

err(ûJ+

h , ŵI
+

gen,h, x̃) :=
‖|ûJ+

h (x̃, ·)| − |ŵI+
gen,h(x̃, ·)|‖1,J+

‖ûJ+

h (x̃, ·)‖
1,J+

re ‖f‖1,J+ = ∑
ξ∈J+ |f(ξ)|.

hanks to the non-homogeneous left boundary condition for the space-time pro
the denominator ‖ûJ+

h (x̃, ·)‖
1,J+ of (33) never vanishes for x̃ ∈ Ω̃h. Next, we d

overall error on the computational domain as

Err(ûJ+

h , ŵI
+

gen,h) := 1
L

∫

Ω̃h
err(ûJ+

h , ŵI
+

gen,h, x̃)dx̃.

igure 4a reports Err(ûJ+

h , ŵI
+

gen,h) with respect to increasing the source frequency ν
rent values of h. The time-domain solution ûJ+

h was computed on the same spatial
I+
gen,h, with time discretization parameters adapted to reach the numerical converg
omplement, we show in Figure 4b the size of I+ used to evaluate ŵI+

gen,h vs. νf ,
300, ν` = 1 and ε = 0.1.
e observe that ŵI+

gen,h provides a more accurate approximation of ûJ+

h when the so
uency νf is not close to an eigenfrequency νm of the system. Otherwise, the ne
nmode ûνm shares components of non negligible amplitude with ûνf , which make
r increase. This sketches validity regions for the presented method, which corres
he assumptions made in Section 3.3. Moreover, Figure 4b illustrates that ]I+ m
relatively small on some regions of ξ between the eigenfrequencies. In fact, the exp
rmination of these precise regions is related to the a priori determination of ]I+

ains an open question.
owever, it is very interesting to notice that for particular values of the ratio

f/c, the minimal size ]I+ can remain small even for very large values of νf . For exam
re 5 reports the spectrum |ŵI+

gen,h| for νf = 3.2× 109 and c = 3× 108, i.e. for a rea
r application. In this case, 11 frequency components suffice for an accurate calcula
e solution.

Influence of the number of frequency components ]I+

ilarly to (34), we report on Figure 6a the error Err(ûJ+

h , ŵ
I+

1
gen,h) for different sizes

he test interval I+
1 . The reference interval I+ is fixed with cardinal ]I+ = 111

ition, Figure 6b gives the error between ŵI+
gen,h and ŵ

I+
1

gen,h for ]I+
1 > 111. The param

h = 0.01, c = 300, νf = 500, ν` = 1 and ε = 0.1. The fast decay of the error
rdance with the notion of minimal truncation interval ]I+, and Err(ûJ+

h , ŵ
I+

1
gen,h) se

n about 3.5×10−3 for ]I+
1 ≥ 111. In particular, for ]I+

1 ≥ 111, the triangular inequ
ils that

(ûJ+

h , ŵ
I+

1
gen,h) ≤ Err(ûJ+

h , ŵI
+

gen,h) + Err(ŵI+

gen,h, ŵ
I+

1
gen,h) ≈ 3.5× 10−3 + Err(ŵI+

gen,h, ŵ
I
g
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|ŵI+

h gain
use

In F ν` in
[0, 4 tion
step

A eases
the ) are
beco gion
of v ce of
ε = ween
ŵI
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5. Evaluation of |ŵI+
gen,h| for a high frequency source, with νf = 3.2× 109 and c = 3×

number of bumps along the space variable directly depends on the value of the wavenu
2πνf/c. We use ]I+ = 11, ε = 0.01, ν` = 1 and h = 0.001.

, as we observe in Figure 6b, this stabilization is of average amplitude 10−13. This
es the fast convergence of ŵI+

gen,h with respect to the parameter ]I+. This result o
he possibility to obtain a relevant estimation of I+, using iteratively the algor
ch computes ŵI+

gen,h.

Validity of the small-amplitude approximation ŵI
+

h

ustify the range of validity of the proposed approximate solution ŵI+ , let us com
| to |ŵI+

gen,h|. In order to define I+ for each physical configuration {c, νf , ν`, ε}, we a
the criterion (32). Now, similarly to (34), we consider the error

Err(ŵI+

gen,h, ŵ
I+

h ) = 1
L

∫

Ω̃h
err(ŵI+

gen,h, ŵ
I+

h , x̃)dx̃.

igure 7, we report the error for increasing values of ε ranging from 0 to 0.2 and for
]. The other parameters are fixed to νf = 360 and c = 300. The spatial discretiza
is h = 0.01.
s expected, increasing the boundary motion amplitude ε and the frequency ν` incr
relative difference between the two methods. Indeed, the dropped terms in (13
ming non negligible for relatively high magnitudes of ε, which leads to define a re
alidity of the approximation ŵI+ around small values of ε. In particular, the choi
0.1 (1/10 of the size of the domain L = 1) ensures a relative difference of 10−3 bet
and ŵI+

gen,h.
n the following section, we provide a generalization of the frequency domain me
ore complicated boundary motions, while maintaining ε � 1. This assumptio
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rdance to the previous discussion and Figure 7, allows us to focus on developing
roximate numerical method ŵI+ for small ε.

Scattering with general boundary motions
introduce a generalization of the previous approach to a motion `(t) which has
ri explicit expression. Let us denote by ũ(x̃, t) the solution of (9). We assume
velocity of the motion of the boundary is much smaller than the phase speed o
tted waves. In addition, we limit the study to the case where, for fixed t, the ch
ariables Ω(t) to Ω̃ is linear in spatial coordinates. The motion ` is expected to
R) periodic time-dependent function taking its values in the interval [L− εL, L+
us denote by ν` the frequency of the motion.
ecause ` never vanishes, Wiener 1/f theorem [42] for Fourier series entails tha

lication x̃ : (x, t) 7→ x̃(x, t) can be expanded as a time Fourier series around ν`. T
inearity of x in x̃ and due to the form of `, such an expansion also holds for (∂x̃

∂x
)2

corresponding time Fourier transform thus writes

F


(
∂x̃

∂x

)2

 =

∑

n∈Z
cnδnν` ,

some complex-valued coefficients cn. Since ` is not necessarily explicitly given
putation of the coefficients cn of ` is based on the FFT in the time domain. Than
linear of change of variable in x, the coefficients are constant in the spatial domain
lso notice that if the boundary motion is not periodic, the formulation of the Fo
sform is not a Dirac comb, which leads to a non-discrete system of equations.
lmost-periodic in the sense of Bohr [3], a Fourier-type transform exists in the
Z cnδλn , with cn ∈ C and λn ∈ R. However, this expansion is based on the param
hich are not necessarily multiples of λ0. We do not treat these cases here.
e now consider (12), which approximates (9) in the case of small amplitude pe

ons, but with a general motion `. The application of the Fourier transform on
s

4π2ξ2

c2 v̂ + (
∑

n∈Z
cnδnν`) ∗ ∂x̃x̃v̂ = 0,

the boundary conditions v̂(0, ξ) = 0 if |ξ| 6= νf , v̂(0,±νf) = ±A
2i , and v̂(L, ξ) =

∈ R. Since the boundary conditions are homogeneous with a harmonic source t
ssume that ṽ admits a non-trivial expansion of the form (14). Then the argum
ented in Section 3 justify that we keep our focus on the component v̂νf .
n the numerical simulations, the Fourier expansion (35) is truncated to (2N+1) te
ed, since ` is C∞(R) and never vanishes, the Fourier coefficients cn are fastly deca
we can therefore assume that the infinite sum (35) can be suitably truncated at o
s ∑N

n=−N cnδnν` . Moreover, since ` is periodic with fundamental frequency ν`,
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onable to search for an approximate solution ŵI+
νf

of v̂νf under the form of the fo
tz (26). Then, plugging the series expansion of ŵI+

νf
and (35) truncated at ord

(36), and identifying the coefficients in front of the Dirac distributions leads to
wing system of equations

κ2
j ã

+
j +

N∑

n=−N
cn∂x̃x̃ã

+
j−n = 0, j ∈ I+,

re J1 and J2 have to be adequately chosen and κj = (ωf +jω`)/c. We have the boun
itions: ã+

0 (0) = A
2i , ã

+
j (0) = 0 for j 6= 0, ã+

j (L) = 0 and ã+
j (x̃) = 0 for j ∈ Z \ I+.

s previously, to solve (37) by the finite element method, we use the weak formula
a∗j ∈ H1

Dj(Ω̃) such that, for all j ∈ I+,

κ2
j

∫

Ω̃
a∗jφdx̃−

N∑

n=−N
cn

∫

Ω̃
∂x̃a

∗
j−n∂x̃φdx̃ = 0,

s for all test functions φ ∈ H1
0(Ω̃). The same covering Ω̃h of Ω̃ is used. The nota

designates the solution of the discrete weak coupled system (38).
he case of a sine motion is already investigated in the previous sections. Le
ider the following function `N` that involves N` modes

`N`(t) = L(1 + ε
N∑̀

k=0

sin((2k + 1)ω`t)
2k + 1 ).

the numerical simulations, the interval I+ is computed by using the previous crit
. For different values of ε ∈ [0.01, 0.1], we report in Figure 8a the minimal cardina
function of the number N` of modes in `N` . We keep the usual settings A = 1, c =
360, ν` = 1 and h = 0.01. It is known that `N` converges to the square shaped s
t) = L+ 4 sign(sin(t)) when N` → +∞. As expected, the minimal cardinal ]I+ o
em (38) increases with both N` and ε. The error Err(ûJ+

h , ŵI
+
h ) between the solu

and the reference ûJ+

h is reported in Figure 8b for the same values of boundary mo
litudes as in Figure 8a. The multi-harmonic formulation exhibits stable converg
t. the number of boundary modes, the error level being simply related to the s
litude approximation used to compute ŵI+

h .

Extension to higher dimensions
now formally extend the approach developed for (1) to the space-time dimension
d in space and 1 in time). To this end, we assume that a wave is emitted by a sourc
boundary Γs = ∂Ωs, and is scattered by an obstacle Ωobst(t) with smooth boun
= ∂Ωobst(t), moving with frequency ν` around an equilibrium position Γ(0). We
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8. Left: ]I+ vs. N`. Right: error Err(ûJ+

h , ŵI
+
h ) vs. N`. The parameters are: A

300, νf = 360, and ν` = 1.

Γs Ωext(t)
Γ(t)

9. Example of a two-dimensional domain Ωext(t) with source boundary Γs and m
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ne the d-dimensional domain of propagation, denoted by Ωext(t), as the exterior do
boundaries Γs and Γ(t). We schematically illustrate the configuration in Figure
e define the position vector r := (x1, ..., xd)T ∈ Ωext(t) and the associated Lap

ator ∆r := ∂x1x1 + ...+ ∂xdxd . Then, we obtain the extension of (1) as

∂ttu− c2∆ru = 0

unknown total wave field u(r, t), for r ∈ Ωext(t) and t ∈ R+
∗ . The field is give

y u(r, t)|Γs = A sin(ωft). Since Ωext(t) is unbounded, the system does not have
nmodes and the energy of the system is concentrated around the source frequenc
initial conditions are u(r, 0) = 0 and ∂tu(r, 0) = 0.
et us analyze the case of the three-dimensional spatial situation. We first map Ω
fixed domain Ω̃ext with boundaries Γ̃s and Γ̃ = Γ(0), by the change of space vari

r̃ : (r, t) 7→ r̃(r, t) = (x̃1, x̃2, x̃3)T ,

that r̃(Γ(t), t) = Γ̃ and r̃(Γs, t) = Γ̃s. Then we set: u(r, t) = ũ(r̃, t) for
For x̃ := (x̃1, x̃2, x̃3, t)T ∈ Ω̃ext × R+

∗ , let us define the gradient operators ∇
, ∂x̃2 , ∂x̃3 , ∂t)T and ∇r̃ := (∂x̃1 , ∂x̃2 , ∂x̃3)T . Then, we have ∂tu = ∂t(ũ) = ∂tx̃ · ∇x̃ũ,

∂ttu = ∂ttx̃ · ∇x̃ũ+ ∂tx̃ · ∂t(∇x̃ũ)
= ∂ttx̃ · ∇x̃ũ+ ∂tx̃ · ∇x̃∂t(ũ)
= ∂ttx̃ · ∇x̃ũ+ (∂tx̃ · ∇x̃)2 ũ.

us define the time dependent spatial Jacobian matrix of (r, t) 7→ r̃(r, t) as J
x̃i]i,j∈{1,2,3}. Then, the spatial gradient writes ∇r = JT∇r̃. Since ∇rt = 0, it dir
ws that:

∆ru = ∇r · ∇ru
= ∇r · (JT∇r̃ũ)
= (∇r · JT )∇r̃ũ+∇r̃ · JJT∇r̃ũ,

ence, substituting (40) and (41) into (39) leads to the equation

∂ttx̃ · ∇x̃ũ+ (∂tx̃ · ∇x̃)2 ũ− c2
[
(∇r · JT )∇r̃ũ+∇r̃ · JJT∇r̃ũ

]
= 0.

reviously, if we choose x̃i, i = 1, 2, 3 of first order in xi we get (∇r ·JT ) = 0. More
e amplitude of the movement is small and bounded by a small perturbation ε, we
ect the O(ε) terms and the function ∂ttu in (40) reduces to ∂ttũ. This leads to
wing approximate equation for small amplitude boundary movements

∂ttṽ − c2∇r̃ · JJT∇r̃ṽ = 0,

ch generalizes (12). In addition, we keep the previous homogeneous boundary cond
, the non-homogeneous boundary condition on Γ̃s, i.e. ṽ(r̃, t)|Γ̃s

= A sin(ωft), and
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al conditions ṽ(r̃, 0) = 0 and ∂tṽ(r̃, 0) = 0. In practice, after discretization, we
se a piecewise linear change of variable r̃, defined on the same mesh as the fi
ent solution, which makes J only time dependent on each finite element.
he Fourier transform in time of (43) gives

4π2ξ2v̂ + c2∇r̃ · (F(JJT ) ∗ ∇r̃v̂) = 0.

owing (37), we consider the truncated Fourier series expansion of JJT (t)

F(JJT )(ξ) =
N∑

n=−N
Cnδnν` ,

re Cn are some 3×3 complex-valued symmetric matrices. Proceeding as in Section
btain from (44) the following system of coupled Helmholtz-type equations in term
complex Fourier coefficients ã+

j , for j ∈ I+,

κ2
j ã

+
j +∇r̃ ·

N∑

n=−N
Cn∇r̃ã

+
j−n = 0,

κj = (ωf + jω`)/c. The boundary condition on Γ̃s can be written as ã+
0 (r̃T ) = A

2i
T ) = 0 for j 6= 0. We apply the homogeneous Dirichlet boundary condition ã+

j (r̃T )
for j ∈ I+.
e now introduce a fictitious boundary Σ̃ that delimits a finite computational doma
boundaries Σ̃, Γ̃s and Γ̃, and with exterior unit normal vector ñ. On Σ̃, we impos
wing absorbing boundary condition associated with each single Helmholtz equati

iκj ã
+
j + ñ ·

N∑

n=−N
Cn∇r̃ã

+
j−n = 0,

∈ I+. The derivation of this boundary condition is given in Appendix B.
e derive the following weak formulation of (46): find a∗j ∈ H1

Γ̃s
(Ω̃) := {a∗j ∈ H1(Ω̃)

nd a∗j(r̃) = 0, j 6= 0, on Γ̃s, and a∗j(r̃) = 0 on Γ̃} such that

κ2
j

∫

Ω̃
a∗jφdΩ̃−

∫

Ω̃




N∑

n=−N
Cn∇r̃a

∗
j−n


 · ∇r̃φ dΩ̃− iκj

∫

Σ̃
a∗jφ dΣ̃ = 0,

all φ ∈ H1
0,Γ̃s∪Γ̃

(Ω̃) := {φ ∈ H1(Ω̃) | φ = 0 on Γ̃s ∪ Γ̃}. We consider Ω̃h as a cov
consisting of nΩ̃ triangular finite elements. For j ∈ I+, we denote by a∗h,j the l
e element approximation of a∗j .
e numerically illustrate the approach in the following two-dimensional (d = 2) m
lem, where the initial domain is the rectangle ] − 1/3, `(t)[×] − 1/2, 1/2[ where
t side of the rectangle Γ(t) moves according to the sine motion `(t) = 1 + ε sin(2π
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10. Four components |a∗j (r̃)| for j = 0, 1, 2, 3 of ŵI+(r̃), for the physical parameters νf =
1, c = 300 and ε = 0. This case corresponds to the standard wave propagation in a
ain, without frequency modulation.

consider absorbing boundary conditions on the three remaining sides and a p
ce Ωs located at (0, 0)T . The change of variable constitutes an extension of the
ensional case (see Section 2.3), i.e. r̃(r, t) = (x1/`(t), x2)T . The discretized domai
triangular mesh that consists of nΩ̃ = 640 elements. In the Figures 10, 11 and 12
rt the amplitude of the four modes |a∗h,0(r̃)|, |a∗h,1(r̃)|, |a∗h,2(r̃)| and |a∗h,3(r̃)| of ŵIh
he configurations (νf , ν`, c, ε) = (360, 1, 300, 0), (360, 1, 300, 0.2) and (3600, 1, 300, 0
ectively. As previously, we keep A = 1. As expected, in the case without perturba
ε = 0 (see Figure 10), only the mode |a∗h,0(r̃)| does not vanish, since there i
uency modulation of the scattered wave. Contrary to the one-dimensional case,
e we compute the propagation of circular waves on a plane around the source s̃
litudes |a∗h,j(r̃)| of the modes of the field decay like 1/|r̃ − Ω̃s| as |r̃ − Ω̃s| →
eover, in Figures 11 and 12, |a∗h,j(r̃)| decreases as |j| increases, which is in line with
decay of the coefficients studied in Section 3.1. We also observe that, in accord
the one-dimensional case, the spatial frequency of the solution |a∗h,j(r̃)| increases

wave number κj,

Conclusion
his paper, we presented a new numerical method for solving the scattering proble
ar waves by a moving d-dimensional obstacle with general movement. The meth
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11. Four components |a∗j (r̃)| for j = 0, 1, 2, 3 of ŵI+(r̃), for the physical parameters νf =
1, c = 300 and ε = 0.2.
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12. Four components |a∗j (r̃)| for j = 0, 1, 2, 3 of ŵI+(r̃), for the physical parameters
, ν` = 1, c = 300 and ε = 0.02.
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d on a change of variable which makes the moving domain fixed, and a multi-harm
nsion of an approximate wave field. This results in the numerical solution of cou
ems of Helmholtz-type equations where optimized algorithms can be developed in
uency domain. A preliminary numerical study is presented to confirm that the appr
curate and efficient in the application domain of interest.
ngoing works are now related to the design of optimized numerical algorithm

ing the coupled systems of harmonic equations and the extension to electromag
es in view of industrial applications related to radar applications.

Proof of Proposition 1.
source term of frequency νf that continuously emits into the domain at the left bo
constitutes an initial impulse that excites the eigenmodes of the system at time t =
ch are solutions to the homogeneous wave equation (1) with zero boundary condit
o separate the different contributions in the global wave field , we decompose u a
of the forced stationary wave coming from the source term and the free statio

es related to the eigenmodes of the system. Hence, let us define

u0 = u0,νf + u0,ν ,

re u0,νf (x, t) = E0,νf (x) sin(ωft), and E0,νf is the stationary solution to the Helm
tion with wavenumber κf := ωf/c in the bounded domain ]0, L[

(∂xx + κ2
f )E0,νf = 0,

boundary conditions Eνf (0) = A and Eνf (L) = 0. A simple calculation gives u0,ν

u0,νf (x, t) = A

sin(κfL) sin(κf(L− x)) sin(ωft).

et us now compute u0,ν . As a linear combination of stationary waves, the function
aracterized by independent periodicities either in space and time, leading to the d
putation of the field u0,ν by the separation of variables. More precisely, consid
(x, t) = E0(x)U0(t) into (1), we obtain the following Helmholtz equation

−∂xxE0 = λ2

c2 E0,

0, L[, with homogeneous Dirichlet boundary conditions and for a constant λ ∈
e the spectrum of the Laplace operator in a bounded domain is discrete, the c
ding solutions for each eigenvalue λm such that λm := mπc/L constitute an Hi
s {eνm}m∈N, with eνm(x) = sin(mπ

L
x) =: sin(κmx) and ωm := 2πνm = κmc = mπc

L

N. In addition, we have the ODE

−∂ttU0 = ω2
mU0,
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∈ N, with U(0) = 0. For each frequency νm, the solution is then of the form

u0,νm(t) = φm sin(ωm(t+ ψ)),

re φm ∈ R, for m ∈ N, and ψ must be determined. Since u0,νf (x, 0) = 0, (4) and
ly that u0,νm(x, 0) = 0 and then ψ = 0. Hence, by the superposition principle
ral solution u0,ν for the free modes can then be written as

u0,ν(x, t) =
∑

m∈N
u0,νm(t)eνm(x) =

∑

m∈N
φm sin(ωmt)eνm(x),

ch entails that
∂tu0,ν(x, 0) =

∑

m∈N
φmωmeνm(x).

ince each stationary mode is C∞(Ω(t)×R+
∗ ), the convergence of the sum is guaran

eover, (5) and (49) lead to

∂tu0,νm(x, 0) = −∂tu0,νf (x, 0).

ce, using (50) and (52), one gets by a direct computation

∂tu0,ν(x, 0) = − Aωf

sin(κfL) sin(κf(L− x)).

et us consider the L-periodic odd extension of sin(κf(L− x)) in (53). Expanding
basis {eνm}m∈N for ν0,f 6= νm, we obtain for x ∈]0, L[

sin(κf(L− x)) =
∑

m∈N
ϕmeνm(x) =

∑

m∈N
ϕm sin(κmx),

re it is well-known that the odd Fourier coefficient ϕm satisfies

ϕm = 2
L

∫ L

0
sin(κf(L− x)) sin(κmx)dx

= 1
L

∫ L

0
[cos(x(κm + κf)− κfL)− cos(x(κm − κf) + κfL)] dx

= 2κm sin(κfL)
L(κ2

m − κ2
f ) .

inally, by identification with (51), we conclude that

φm = 2Aκf

L(κ2
f − κ2

m) .

lly, for νf 6= νm, we obtain the result by replacing u0,νf and u0,kν in (49).
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Derivation of the absorbing boundary condition (
us consider the lower-order absorbing boundary condition applied to the outer bo
of Ωext(t)

1
c
∂tu+ n · ∇ru = 0,

outwardly directed unit normal vector n. The deformation field r̃ implies tha
esponding unit normal vector ñ to Σ̃ satisfies: JT ñ = n. Hence, considering
mptions that lead to derive (43), we have the following equivalent absorbing boun
ition on Σ̃

1
c
∂tṽ + ñ · JJT∇r̃ṽ = 0.

time Fourier transform of (57) leads to

2iπξ
c
v̂ + ñ · F(JJT ) ∗ ∇r̃v̂ = 0.

ging the Fourier series expansion (45) of JJT (t) into (58), we obtain the follo
em of absorbing boundary conditions in terms of the complex Fourier coefficient
∈ I:

iκj ãj + ñ ·
N∑

n=−N
Cn∇r̃ãj−n = 0,

κj = (ωf + jω`)/c.

nowledgements.
he authors thank the support of the Luxembourg National Research Fund (F
7-1 PPP 11608832). This research was funded in part through the ARC gran
certed Research Actions (ARC WAVES 15/19-03), financed by the Wallonia-Bru
eration of Belgium.

ferences
M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions, with Form
Graphs, and Mathematical Tables. Dover Publications, 1964.

V. Agnihotri, M. Sabharwal, and V. Goyal. Effect of frequency on micro-Dop
signatures of a helicopter. In 2019 International Conference on Advances in Big D
Computing and Data Communication Systems (icABCD), pages 1–5, 08 2019.

H. Bohr. Almost Periodic Functions. American Mathematical Society, 1947.

Y. Boubendir, X. Antoine, and C. Geuzaine. A quasi-optimal non-overlapping
main decomposition algorithm for the Helmholtz equation. Journal of Computat
Physics, 231(2):262–280, 2012.

Jo
ur

na
l P

re
-p

ro
of
29



[5] tism.

[6] te of
ional

[7] plex-
nter-

[8] oral
19th

[9] rget

[10] pler
itor,
61 of

[11] non-
ring,

[12] axis.

[13] rnal

[14] mag-

[15] tion,

[16] phe-
Elec-

[17] mag-
ols 1

Journal Pre-proof
D. Bouche, D. Molinet, and R. Mittra. Asymptotic Methods in Electromagne
Springer, 1997.

H.G. Brachtendorf, G. Welsch, and R. Laur. Fast simulation of the steady-sta
circuits by the harmonic balance technique. In Proceedings of ISCAS’95 - Internat
Symposium on Circuits and Systems, volume 2, pages 1388–1391, 1995.

D. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and M. Cord. Com
valued neural networks for fully-temporal micro-Doppler classification. In 20th I
national Radar Symposium (IRS), pages 1–10, 2019.

D.A. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and M. Cord. Temp
deep learning for drone micro-Doppler classification. In Rohling, H, editor, 2018
International Radar Symposium (IRS), 2018.

Z. A. Cammenga, C. J. Baker, G. E. Smith, and R. Ewing. Micro-Doppler ta
scattering. In IEEE Radar Conference, pages 1451–1455, 2014.

Z.A. Cammenga, G.E. Smith, and C.J. Baker. High range resolution micro-Dop
analysis. In Ranney, KI and Doerry, A and Gilbreath, GC and Hawley, CT, ed
Radar Sensor Technology XIX; and Active and Passive Signatures VI, volume 94
Proceedings of SPIE, 2015.

A. Cardona, T. Coune, A. Lerusse, and M. Geradin. A multiharmonic method for
linear vibration analysis. International Journal for Numerical Methods in Enginee
37(9):1593–1608, 1994.

D. Censor. Scattering of electromagnetic waves by a cylinder moving along its
IEEE Transactions on Microwave Theory and Techniques, 17(3):154–158, 1969.

D. Censor. Scattering of electromagnetic waves in uniformly moving media. Jou
of Mathematical Physics, 11(6):1968–1976, 1970.

D. Censor. Non-relativistic scattering: pulsating interfaces. Progress In Electro
netics Research, 54:263–281, 2005.

V.C. Chen. The Micro-Doppler Effect in Radar, 2nd Ed. Artech House, 2 edi
2019.

V.C. Chen, F.Y. Li, S.S. Ho, and H. Wechsler. Micro-Doppler effect in radar:
nomenon, model, and simulation study. IEEE Transactions on Aerospace and
tronic Systems, 42(1):2–21, 2006.

V.C. Chen, C.-T. Lin, and W.P. Pala. Time-varying Doppler analysis of electro
netic backscattering from rotating object. In 2006 IEEE Radar Conference, V
and 2, IEEE Radar Conference, pages 807+, 2006.

Jo
ur

na
l P

re
-p

ro
of
30



[18] icro-
nsti-
ring,

[19] thms

[20] ving
017.

[21] ross-

[22] ance
tion,

[23] ves-
ased
374–

[24] eth-

[25] r the
EEE

[26] inear
939–

[27] main
om-

[28] s for

[29] ving
etics

[30] ogos

Journal Pre-proof
X. Chen, X. Yu, J. Guan, and Y. He. High-resolution sparse representation of m
Doppler signal in sparse fractional domain, volume 227 of Lecture Notes of the I
tute for Computer Sciences, Social Informatics and Telecommunications Enginee
pages 225–232. 2018.

W.C. Chew, E. Michielssen, J.M. Song, and J.M Jin. Fast and Efficient Algori
in Computational Electromagnetics. Artech House, Inc., 2001.

I.C. Christov and C.I. Christov. On mechanical waves and Doppler shifts from mo
boundaries. Mathematical Methods in the Applied Sciences, 40(12):4481–4492, 2

C.W. Chuang. Backscatter of a large rotating conducting cylinder of arbitrary c
section. IEEE Transactions on Antennas and Propagation, 27(1):92–95, 1979.

B. Cochelin and C. Vergez. A high order purely frequency-based harmonic bal
formulation for continuation of periodic solutions. Journal of Sound and Vibra
324(1-2):243–262, 2009.

S. Dias Da Cruz, H-P. Beise, U. Schröder, and U. Karahasanovic. A theoretical in
tigation of the detection of vital signs in presence of car vibrations and radar-b
passenger classification. IEEE Transactions on Vehicular Technology, 68(4):3
3385, 2019.

V. Dolean, P. Jolivet, and F. Nataf. An Introduction to Domain Decomposition M
ods: Theory and Parallel Implementation. SIAM, Philadelphia, 2015.

P. Dular, C. Geuzaine, F. Henrotte, and N. Legros. A general environment fo
treatment of discrete problems and its application to the finite element method. I
Transactions on Magnetics, 34(5, 1):3395–3398, 1998.

J.F. Dunne and P. Hayward. A split-frequency harmonic balance method for nonl
oscillators with multi-harmonic forcing. Journal of Sound and Vibration, 295(3-5):
963, 2006.

M. El Bouajaji, B. Thierry, X. Antoine, and C. Geuzaine. A quasi-optimal do
decomposition algorithm for the time-harmonic Maxwell’s equations. Journal of C
putational Physics, 294:38–57, 2015.

A.S. Fokas and B. Pelloni. Method for solving moving boundary value problem
linear evolution equations. Physical Review Letters, 84(21):4785–4789, 2000.

J. Garcia-Rubia, O. Kilic, V. Dang, Q. Nguyen, and T. Nghia. Analysis of mo
human micro-Doppler signature in forest environments. Progress In Electromagn
Research, 148:1–14, 06 2014.

T.P. Gill. The Doppler Effect: An Introduction to the Theory of the Effect. L
Press, 1965.

Jo
ur

na
l P

re
-p

ro
of
31



[31] sys-
pler
ques,

[32] g of
dis-
234,

[33] elec-
ters,

[34] zing
ions.

[35] ator.

[36] inal
11th

[37] rlag,

[38] g of

[39] ture
CT

[40] ture
190,

[41] ound

[42] ican

Journal Pre-proof
C. Gu, G. Wang, Y. Li, T. Inoue, and C. Li. A hybrid radar-camera sensing
tem with phase compensation for random body movement cancellation in Dop
vital sign detection. IEEE Transactions on Microwave Theory and Techni
61(12):4678–4688, 2013.

J. Gyselinck, C. Geuzaine, P. Dular, and W. Legros. Multi-harmonic modellin
motional magnetic field problems using a hybrid finite element-boundary element
cretisation. Journal of Computational and Applied Mathematics, 168(1-2):225–
2004.

A. Halbach and C. Geuzaine. Steady-state nonlinear analysis of large arrays of
trically actuated micromembranes vibrating in a fluid. Engineering with Compu
155(3):591–602, 2017.

F. Harfoush, A. Taflove, and G.A. Kriegsmann. A numerical technique for analy
electromagnetic wave scattering from moving surfaces in one and two dimens
IEEE Transactions on Antennas and Propagation, 37(1):55–63, 1989.

P. Ju. Global residue harmonic balance method for Helmholtz-Duffing oscill
Applied Mathematical Modelling, 39(8):2172–2179, 2015.

U. Karahasanovic and D. Tatarinov. Radar-based detection of thoracoabdom
asynchrony during breathing using autocorrelation function analysis. In 2018
German Microwave Conference (GEMIC 2018), pages 403–406, 2018.

P. Kuchment. Floquet Theory For Partial Differential Equations. Birkhauser Ve
Basel, 1993.

C. Li, J. Cummings, J. Lam, E. Graves, and W. Wu. Radar remote monitorin
vital signs. Microwave Magazine, IEEE, 10:47–56, 2009.

Z. Liu, B. Peng, and X. Li. Analysis of phase noise influence on micro-Doppler fea
extraction of vibrating target. Journal of Engineering-JOE, 2019(20):6834–6839, O
2019.

Z. Liu, B. Peng, and Li X. Analysis of phase noise influence on micro-Doppler fea
extraction on vibrating target. Progress in Electromagnetics Research C, 85:177–
2018.

R. Mickens. A generalization of the method of harmonic balance. Journal of S
and Vibration, 111(3):515–518, 1986.

D.J. Newman. A simple proof of Wiener 1/f theorem. Proceedings of the Amer
Mathematical Society, 48(1):264–265, 1975.Jo

ur
na

l P
re

-p
ro

of
32



[43] ency
EEE

[44] oine,
eth-
309–

[45] ings

[46] rical
ound

[47] nite
tics,

[48] is of
tions

[49] cter-
EEE

[50] ving
aves

Journal Pre-proof
B. Peng, X. Wei, B. Deng, H. Chen, Z. Liu, and X. Li. A sinusoidal frequ
modulation Fourier transform for radar-based vehicle vibration estimation. I
Transactions on Instrumentation and Measurement, 63(9):2188–2199, 2014.

B. Thierry, A. Vion, S. Tournier, M. El Bouajaji, D. Colignon, N. Marsic, X. Ant
and C. Geuzaine. GetDDM: An open framework for testing optimized Schwarz m
ods for time-harmonic wave problems. Computer Physics Communications, 203:
330, 2016.

J. Van Bladel. Electromagnetic fields in the presence of rotating bodies. Proceed
of the IEEE, 64(3):301–318, 1976.

C.W. Wong, W.S. Zhang, and S.L. Lau. Periodic forced vibration of unsymmet
piecewise-linear systems by incremental harmonic-balance method. Journal of S
and Vibration, 149(1):91–105, 1991.

S. Yamada and K. Bessho. Harmonic field calculation by the combination of fi
element analysis and harmonic-balance method. IEEE Transactions on Magne
24(6):2588–2590, 1988.

H. L. Zhang, Y. X. Sha, X. Y. Guo, M. Y. Xia, and C. H. Chan. Efficient analys
scattering by multiple moving objects using a tailored MLFMA. IEEE Transac
on Antennas and Propagation, 67(3):2023–2027, 2019.

K. Zheng, Y. Li, S. Qin, K. An, and G. Wei. Analysis of micromotion chara
istics from moving conical-shaped targets using the Lorentz-FDTD method. I
Transactions on Antennas and Propagation, 67(11):7174–7179, 2019.

K.-S. Zheng, J. Z. Li, G. Wei, and J.-D. Xu. Analysis of Doppler effect of mo
conducting surfaces with Lorentz-FDTD method. Journal of Electromagnetic W
and Applications, 27(2):149–159, 2013.

Jo
ur

na
l P

re
-p

ro
of
33



All the authors worked on the paper 
 
Xavi

 

Journal Pre-proof
er ANTOINE 

 

Jo
ur

na
l P

re
-p

ro
of



We have no conflict of interest 
 
Xavi

 

Journal Pre-proof
er ANTOINE 

 

Jo
ur

na
l P

re
-p

ro
of


