Favier, D.; Liu, Y.; Orgeas, L.; Sandel, A.; Debove, L.; Comte-Gaz, P. Influence of Thermomechanical Processing on the Superelastic Properties of a Ni-Rich Nitinol Shape Memory Alloy. Mater. Sci. Eng., A 2006, 429, 130-136, 10.1016/j.msea.2006.05.018
Gallardo Fuentes, J. M.; Gümpel, P.; Strittmatter, J. Phase Change Behavior of Nitinol Shape Memory Alloys. Adv. Eng. Mater. 2002, 4, 437-452, 10.1002/1527-2648(20020717)4:7<437::AID-ADEM437>3.0.CO;2-8
McKelvey, A.; Ritchie, R. Fatigue-Crack Growth Behavior in the Super-Elastic and Shape-Memory Alloy Nitinol. Metall. Mater. Trans. A 2001, 32, 731-743, 10.1007/s11661-001-1008-7
Ferreira, M. d. A.; Luersen, M. A. A.; Borges, P. C. A. Nickel-titanium Alloys: A Systematic Review. Dental Press J. Orthod. 2012, 17, 71-82, 10.1590/S2176-94512012000300016
Huang, X.; Bungaro, C.; Godlevsky, V.; Rabe, K. M. Lattice Instabilities of Cubic NiTi from First Principles. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 65, 014108 10.1103/PhysRevB.65.014108
Marcinkowski, M. J.; Sastri, A. S.; Koskimaki, D. Martensitic Behaviour in the Equi-Atomic Ni-Ti Alloy. Philos. Mag. 1968, 18, 945-958, 10.1080/14786436808227517
Golestaneh, A.; Carpenter, J. Study of the Martensitic Transformation in Shape-Memory Nitinol Alloy by Time-of-Flight Neutron Diffraction Techniques. Acta Metall. Mater. 1990, 38, 1291-1305, 10.1016/0956-7151(90)90201-Q
Zeng, Z.-Y.; Hu, C.-E.; Cai, L.-C.; Chen, X.-R.; Jing, F.-Q. Lattice Dynamics and Phase Transition of NiTi Alloy. Solid State Commun. 2009, 149, 2164-2168, 10.1016/j.ssc.2009.09.020
Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 47, 558-561, 10.1103/PhysRevB.47.558
Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 49, 14251-14269, 10.1103/PhysRevB.49.14251
Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953-17979, 10.1103/PhysRevB.50.17953
Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15-50, 10.1016/0927-0256(96)00008-0
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 46, 6671-6687, 10.1103/PhysRevB.46.6671
Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188, 10.1103/PhysRevB.13.5188
Wu, X.; Vanderbilt, D.; Hamann, D. R. Systematic Treatment of Displacements, Strains, and Electric Fields in Density-Functional Perturbation Theory. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 035105 10.1103/PhysRevB.72.035105
Gaillac, R.; Pullumbi, P.; Coudert, F.-X. ELATE: An Open-Source Online Application for Analysis and Visualization of Elastic Tensors. J. Phys.: Condens. Matter 2016, 28, 275201, 10.1088/0953-8984/28/27/275201
Herath, U.; Tavadze, P.; He, X.; Bousquet, E.; Singh, S.; Muñoz, F.; Romero, A. H. PyProcar: A Python Library for Electronic Structure Pre/Post-Processing. Comput. Phys. Commun. 2020, 251, 107080, 10.1016/j.cpc.2019.107080
Togo, A.; Tanaka, I. First principles Phonon Calculations in Materials Science. Scr. Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021
Woodley, S. M.; Battle, P. D.; Gale, J. D.; Richard A. Catlow, C The Prediction of Inorganic Crystal Structures using a Genetic Algorithm and Energy Minimisation. Phys. Chem. Chem. Phys. 1999, 1, 2535-2542, 10.1039/a901227c
Lv, J.; Wang, Y.; Zhu, L.; Ma, Y. Particle-Swarm Structure Prediction on Clusters. J. Chem. Phys. 2012, 137, 084104 10.1063/1.4746757
Avendaño-Franco, G.; Romero, A. H. Firefly Algorithm for Structural Search. J. Chem. Theory Comput. 2016, 12, 3416-3428, 10.1021/acs.jctc.5b01157
Brunger, A. T. Simulated Annealing in Crystallography. Annu. Rev. Phys. Chem. 1991, 42, 197-223, 10.1146/annurev.pc.42.100191.001213
Wales, D. J.; Doye, J. P. K. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. J. Phys. Chem. A 1997, 101, 5111-5116, 10.1021/jp970984n
Goedecker, S. Minima Hopping: An Efficient Search Method for the Global Minimum of the Potential Energy Surface of Complex Molecular Systems. J. Chem. Phys. 2004, 120, 9911-9917, 10.1063/1.1724816
Amsler, M.; Goedecker, S. Crystal Structure Prediction using the Minima Hopping Method. J. Chem. Phys. 2010, 133, 224104, 10.1063/1.3512900
Singh, S.; Zanolli, Z.; Amsler, M.; Belhadji, B.; Sofo, J. O.; Verstraete, M. J.; Romero, A. H. Low-Energy Phases of Bi Monolayer Predicted by Structure Search in Two Dimensions. J. Phys. Chem. Lett. 2019, 10, 7324-7332, 10.1021/acs.jpclett.9b03043
Valencia-Jaime, I.; Sarmiento-Perez, R.; Botti, S.; Marques, M. A.; Amsler, M.; Goedecker, S.; Romero, A. H. Novel Crystal Structures for Lithium-Silicon Alloy predicted by Minima Hopping Method. J. Alloys Compd. 2016, 655, 147-154, 10.1016/j.jallcom.2015.09.101
Roy, S.; Goedecker, S.; Hellmann, V. Bell-Evans-Polanyi Principle for Molecular Dynamics Trajectories and its Implications for Global Optimization. Phys. Rev. E 2008, 77, 056707 10.1103/PhysRevE.77.056707
Singh, S.; Valencia-Jaime, I.; Pavlic, O.; Romero, A. H. Elastic, Mechanical, and Thermodynamic Properties of Bi-Sb Binaries: Effect of Spin-Orbit Coupling. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 97, 054108 10.1103/PhysRevB.97.054108
Dronskowski, R.; Bloechl, P. E. Crystal Orbital Hamilton Populations (COHP): Energy-Resolved Visualization of Chemical Bonding in Solids based on Density-Functional Calculations. J. Phys. Chem. 1993, 97, 8617-8624, 10.1021/j100135a014
Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets. J. Phys. Chem. A 2011, 115, 5461-5466, 10.1021/jp202489s
Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Analytic Projection from Plane-Wave and PAW Wavefunctions and Application to Chemical-Bonding Analysis in Solids. J. Comput. Chem. 2013, 34, 2557-2567, 10.1002/jcc.23424
Maintz, S.; Esser, M.; Dronskowski, R. Efficient Rotation of Local Basis Functions Using Real Spherical Harmonics. Acta Phys. Pol., B 2016, 47, 1165, 10.5506/APhysPolB.47.1165
Jain, A.; Hautier, G.; Ong, S.; Moore, C.; Fischer, C.; Persson, K.; Ceder, G. Formation Enthalpies by Mixing GGA and GGA + U Calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 045115 10.1103/PhysRevB.84.045115
Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. et al. The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002 10.1063/1.4812323
Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501-1509, 10.1007/s11837-013-0755-4
Singh, S.; Valencia-Jaime, I.; Pavlic, O.; Romero, A. H. Elastic, Mechanical, and Thermodynamic Properties of Bi-Sb Binaries: Effect of Spin-Orbit Coupling. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 97, 054108 10.1103/PhysRevB.97.054108
Pugh, S. XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. London, Edinburgh, and Dublin Philos. Mag. (1798-1977) 1954, 45, 823-843, 10.1080/14786440808520496
Ranganathan, S. I.; Ostoja-Starzewski, M. Universal Elastic Anisotropy Index. Phys. Rev. Lett. 2008, 101, 055504 10.1103/PhysRevLett.101.055504
Kube, C. M. Elastic Anisotropy of Crystals. AIP Adv. 2016, 6, 095209 10.1063/1.4962996
Serrano, J.; Kremer, R.; Cardona, M.; Siegle, G.; Romero, A.; Lauck, R. Heat Capacity of ZnO: Isotope Effects. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 094303 10.1103/PhysRevB.73.094303
Chkhartishvili, L. Isotopic Effects of Boron. Trends Inorg. Chem. 2009, 11, 105-167
Auerbach, N. Nuclear Structure of the Nickel Isotopes. Phys. Rev. 1967, 163, 1203, 10.1103/PhysRev.163.1203
Yntema, J.; Satchler, G. (d, He 3) Reaction on Ca 40 and the Titanium Isotopes. Phys. Rev. 1964, 134, B976, 10.1103/PhysRev.134.B976
Sanati, M.; Estreicher, S.; Cardona, M. Isotopic Dependence of the Heat Capacity of c-C, Si, and Ge: an ab Initio Calculation. Solid State Commun. 2004, 131, 229-233, 10.1016/j.ssc.2004.04.043
Yurko, G. A.; Barton, J. W.; Parr, J. G. The Crystal Structure of Ti2Ni. Acta Crystallogr. 1959, 12, 909-911, 10.1107/S0365110X59002559
Toprek, D.; Belosevic-Cavor, J.; Koteski, V. Ab Initio Studies of the Structural, Elastic, Electronic and Thermal Properties of NiTi2Intermetallic. J. Phys. Chem. Solids 2015, 85, 197-205, 10.1016/j.jpcs.2015.05.019
Momma, K.; Izumi, F. VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Crystallogr. 2008, 41, 653-658, 10.1107/S0021889808012016
Dagdelen, J.; Montoya, J.; de Jong, M.; Persson, K. Computational Prediction of New Auxetic Materials. Nat. Commun. 2017, 8, 323, 10.1038/s41467-017-00399-6
Gaillac, R.; Pullumbi, P.; Coudert, F.-X. ELATE: An Open-Source Online Application for Analysis and Visualization of Elastic Tensors. J. Phys.: Condens. Matter 2016, 28, 275201, 10.1088/0953-8984/28/27/275201
Cairns, A. B.; Catafesta, J.; Levelut, C.; Rouquette, J.; van der Lee, A.; Peters, L.; Thompson, A. L.; Dmitriev, V.; Haines, J.; Goodwin, A. L. Giant Negative Linear Compressibility in Zinc-di-cyanoaurate. Nat. Mater. 2013, 12, 212-216, 10.1038/nmat3551
Cairns, A. B.; Goodwin, A. L. Negative Linear Compressibility. Phys. Chem. Chem. Phys. 2015, 17, 20449-20465, 10.1039/C5CP00442J
Guo, Y.; Goddard, W. A. Is Carbon Nitride Harder than Diamond? No, but its Girth Increases when Stretched (Negative Poisson Ratio). Chem. Phys. Lett. 1995, 237, 72-76, 10.1016/0009-2614(95)00267-8
Kimizuka, H.; Kaburaki, H.; Kogure, Y. Mechanism for Negative Poisson Ratios over the α-β Transition of Cristobalite, SiO2: A Molecular-Dynamics Study. Phys. Rev. Lett. 2000, 84, 5548-5551, 10.1103/PhysRevLett.84.5548
Baughman, R. H.; Stafström, S.; Cui, C.; Dantas, S. O. Materials with Negative Compressibilities in One or More Dimensions. Science 1998, 279, 1522-1524, 10.1126/science.279.5356.1522