Assessing Nickel Titanium Binary Systems Using Structural Search Methods and Ab Initio Calculations

Logan Lang,^{*,†} Adam Payne,^{*,†} Irais Valencia-Jaime,^{*,†} Matthieu J. Verstraete,^{*,‡,¶} Alejandro Bautista-Hernández,^{*,§} and Aldo H. Romero^{*,†,§}

[†]Department of Physics, West Virginia University, Morgantown, WV 26506.

‡NanoMat/Q-Mat/CESAM and European Theoretical Spectroscopy Facility, Université de Liège (B5), B-4000 Liège, Belgium

¶Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, 08193 Barcelona, Spain

§Facultad de Ingeniería, Benemérita Universidad Autónoma de Puebla, Edificio ING2, Ciudad Universitaria, CP. 72570 Puebla, México

E-mail: Illang@mix.wvu.edu; apayne9@mix.wvu.edu; iraisvj@gmail.com;

Matthieu.Verstraete@uliege.be; alejandro.bautista@correo.buap.mx;

Aldo.Romero@mail.wvu.edu

Crystallographic, Elastic, and Thermal data

Table S 1: Crystallographic information for structures found on the convex hull with MHM.
In addition, low-energy structures from OQMD, ² Materials Project, ¹ and experiment are
listed in the table. Experimental values are in bold.

Composition	Atoms per unit cell	Space Group	a (Å)	b (Å)	c (Å)	α	β	γ
NiTi ₂	6	I4/mmm	5.30	5.30	5.30	147.0	147.0	47.3
NiTi ₂ ¹	24	Fd-3m	7.97	7.97	7.97	60.0	60.0	60.0
NiTi ₂ ^{1*}	24	Fd-3m	7.97	7.97	7.97	60.0	60.0	60.0
NiTi ₂ ²	24	Fd-3m	7.95	7.95	7.95	60.0	60.0	60.0
NiTi ₂ ³	24	Fd-3m	7.95	7.95	7.95	60.0	60.0	60.0
NiTi ₂ ⁴	24	Fd-3m	7.97	7.97	7.97	60.0	60.0	60.0
NiTi	4	P2 ₁ /m	2.92	4.01	4.89	90.0	106.3	90.0
NiTi	4	$P2_1/m$	2.93	4.06	4.75	90.0	100.9	90.0
NiTi ²	4	$P2_1/m$	2.91	4.03	4.70	90.0	98.4	90.0
NiTi ²	4	P2 ₁ / m	2.84	4.13	4.61	90.0	95.5	90.0
NiTi ²	4	P2 ₁ /m	2.75	4.22	4.63	90.0	92.1	90.0
NiTi ⁵	4	P2 ₁ / m	2.90	4.11	4.65	90.0	97.8	90.0
NiTi	4	Cmcm	4.91	4.91	4.01	90.0	90.0	145.2
NiTi ¹	4	Cmcm	4.92	4.92	4.02	90.0	90.0	145.5
NiTi	8	Pnma	5.20	5.20	4.20	90.0	90.0	90.0
Ni ₃ Ti	8	P6 ₃ /mmc	5.11	5.11	4.17	90.0	90.0	120.0
Ni ₃ Ti ¹	16	P6 ₃ /mmc	5.10	5.10	8.31	90.0	90.0	120
Ni ₃ Ti ²	8	P6 ₃ /mmc	5.10	5.10	4.15	90.0	90.0	120.0
Ni ₃ Ti ²	16	P6 ₃ /mmc	5.08	5.08	8.29	90.0	90.0	120.0
Ni ₃ Ti	4	Pm-3m	3.61	3.61	3.61	90.0	90.0	90.0
Ni ₃ Ti ¹	4	Pm-3m	3.94	3.94	3.94	90.0	90.0	90.0
Ni ₃ Ti ²	4	Pm-3m	3.60	3.60	3.60	90.0	90.0	90.0
Ni ₅ Ti	6	Cmmm	3.57	3.60	5.63	90.0	90.0	90.0

Table S 2: Elastic properties for convex hull structures found with MHM. B, E, and S stand for the bulk, Young's, and shear moduli, respectively. ν is the Poisson Ratio. v_l , v_t , and v_{avg} are the longiudal, transverse, and the average velocity. The elastic constant values are the averages of the Voigt and Reuss methods for determining the values of each elastic property from the elastic constants. Other strong materials are included for comparison. Two metastable structures with unique properties are included at the end of the table for comparison.

Composition	Space	B (GPa)	E (GPa)	S (GPa)	ν (GPa)	B/S	v_i (m/s)	v_t (m/s)	v_{avg} (m/s)	P-wave	Universal	Log-Euclidean
F	Group	- ()	_(=====)	= (===)	. (0.1)		., ()	. (modulus	anisotropy	anisotropy
Ti	P6/mmm	113.5	157.0	61.9	0.2	1.8	6495	3649	4060	196.01	0.232	0.234
NiTi ₂	I4/mmm	145.2	170.2	65.2	0.3	2.2	6307	3343	3736	232.22	0.421	0.416
NiTi ₂	Fd-3m	143.0	98.0	35.9	0.361	3.97	4866	2482	2781	191.00	2.808	2.296
NiTi ₂ ⁶	Fd-3m	146.1	44.4	49.4	0.348	2.96						
NiTi ₂ ¹	Fd-3m	141.7	99.1	35.8	0.383	3.96						
NiTi	Pnma	117.1	128.1	48.6	0.3	2.4	5296	2738	3066	181.92	2.476	2.072
NiTi	$P2_1/m$	158.0	111.1	40.8	0.4	3.9	5751	2521	2846	212.45	8.350	5.057
NiTi	Pm-3m	164.54	92.28	32.85	0.407	5.00	5653	2244	2543	208.3	1.716	1.520
Ni ₃ Ti	P6 ₃ /mmc	196.1	233.2	89.6	0.3	2.2	6323	3369	3764	315.53	0.299	0.299
Ni ₅ Ti	Cmmm	199.2	230.6	88.3	0.3	2.3	6199	3271	3657	316.90	0.886	0.840
Ni	Fm-3m	207.2	211.9	80.0	0.3	2.6	5901	2976	3338	313.67	1.418	1.286
W^7	Im-3m	304.0	380.5	147.5	0.3	2.06						
Stainless Steel ⁸	fcc	152	198	77	0.28	1.98						
Stainless Steel9	fcc	142-186	195-208	75-82	0.27-0.32	1.88-2.45						
NiTi ₂	C2/m	140.9	75.7	27.0	0.4	5.22	5556	2170	2460	176.91	3.993	3.023
NiTi	P2/m	155.1	97.9	35.1	0.4	4.41	5447	2166	2454	193.49	3.876	2.956

Table S 3: Thermodynamic properties of Ni_xTi_{1-x} . C_v is the specific heat with constant volume. The values above above the dividing line are from first principles studies at 300K. The values below the line are experimental reported values for debye temperature.

Composition	Space	C ($I/mol K$)	Debye
Composition	Group	$C_v(J/IIIOI K)$	Temp.(K)
NiTi ₂	I4/mmm	138.78	441.82
NiTi ₂	Fd-3m	562.73 (519.34 ⁶)	217.92 (411.5 ⁶)
NiTi	Pnma	185.69	392.61
NiTi	$P2_1/m$	92.73	620.79
NiTi	Cmcm	92.67	762.65
Ni ₅ Ti	Cmmm	139.66	899.05
Ni ₃ Ti	P6 ₃ /mmc	183.30	510.17

Convex Hull Phonons

The phonon spectra for the convex hull structures are displayed in Figures S1,S2,S3 and S4.

Figure S 1: Phonons for the structure on the convex hull for NiTi₂ with space group I4/mmm

Figure S 2: Phonons for the structure on the convex hull for NiTi with space group Pnma

Figure S 3: Phonons for the structure on the convex hull for Ni₃Ti with space group $P6_3/mmc$

Figure S 4: Phonons for the structure on the convex hull for Ni₅Ti with space group *Cmmm*

Phonons for Metastable Structures

Figure S 5: Phonons for NiTi with space group *P2/m*

Figure S 6: Phonons for $NiTi_2$ with space group C2/m

XRD

Figure S 7: X-ray diffraction plots for structures reported in the paper. These plots were generated using VESTA and a Cu K-alpha X-ray ($\lambda = 1.5406 \text{\AA}$) with relative intensity 1.

SQE plots and thermal conductivity

(a) NiTi-62 Spectral phonon bands

Figure S 8: Effect of anharmonicity for NiTi. Spectral Phonon Dispersion plot and Thermal conductivity temperature dependence

CIF files

NiTi - space group 11 - P2₁/m

data_TiNi

_symmetry_space_group_name_H-M 'P 1'

_cell_length_a 4.94670297

_cell_length_b 4.01444417

_cell_length_c 2.92077087 _cell_angle_alpha 90.0000000 _cell_angle_beta 108.23968876 _cell_angle_gamma 90.0000000 _symmetry_Int_Tables_number 1 _chemical_formula_structural TiNi _chemical_formula_sum 'Ti2 Ni2' _cell_volume 55.08718094 _cell_formula_units_Z 2 loop_ _symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz 1 'x, y, z' loop_ _atom_site_type_symbol _atom_site_label _atom_site_symmetry_multiplicity _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy Ni Ni0 1 0.670486 0.250000 0.089163 1 Ni Ni1 1 0.329514 0.750000 0.910837 1 Ti Ti2 1 0.213607 0.250000 0.351748 1 Ti Ti3 1 0.786393 0.750000 0.648252 1

NiTi - space group 62 - Pnma

data_TiNi

_symmetry_space_group_name_H-M 'P 1'

_cell_length_a 5.19632120

_cell_length_b 4.10006127

_cell_length_c 5.12294582

_cell_angle_alpha 90.0000000

_cell_angle_beta 90.0000000

_cell_angle_gamma 90.00000000

_symmetry_Int_Tables_number 1

_chemical_formula_structural TiNi

_chemical_formula_sum 'Ti4 Ni4'

_cell_volume 109.14556637

_cell_formula_units_Z 4

loop_

_symmetry_equiv_pos_site_id

_symmetry_equiv_pos_as_xyz

1 'x, y, z'

loop_

_atom_site_type_symbol

_atom_site_label

_atom_site_symmetry_multiplicity

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_occupancy

Ni Ni0 1 0.438945 0.250000 0.360619 1

Ni Ni1 1 0.061055 0.750000 0.860619 1 Ni Ni2 1 0.561055 0.750000 0.639381 1 Ni Ni3 1 0.938945 0.250000 0.139381 1 Ti Ti4 1 0.842029 0.250000 0.629367 1 Ti Ti5 1 0.657971 0.750000 0.129367 1 Ti Ti6 1 0.157971 0.750000 0.370633 1 Ti Ti7 1 0.342029 0.250000 0.870633 1

NiTi - space group 63 - Cmcm

data_TiNi

_symmetry_space_group_name_H-M 'P 1'

_cell_length_a 2.93374936

_cell_length_b 4.00737810

_cell_length_c 4.91094809

_cell_angle_alpha 90.0000000

_cell_angle_beta 72.62077311

_cell_angle_gamma 90.0000000

_symmetry_Int_Tables_number 1

_chemical_formula_structural TiNi

_chemical_formula_sum 'Ti2 Ni2'

_cell_volume 55.10052682

_cell_formula_units_Z 2

loop_

_symmetry_equiv_pos_site_id

_symmetry_equiv_pos_as_xyz

1 'x, y, z'

loop_

_atom_site_type_symbol

_atom_site_label

_atom_site_symmetry_multiplicity

_atom_site_fract_x

_atom_site_fract_y

_atom_sit_fract_z

_atom_site_occupancy

Ni Ni0 1 0.085337 0.750000 0.829325 1

Ni Ni1 1 0.914663 0.250000 0.170675 1

Ti Ti2 1 0.357021 0.750000 0.285958 1

Ti Ti3 1 0.642979 0.250000 0.714042 1

NiTi₂ - space group 139 - I4/mmm

data_Ti2Ni

_symmetry_space_group_name_H-M 'P 1'

_cell_length_a 3.00809831

_cell_length_b 3.00809831

_cell_length_c 9.70995909

_cell_angle_alpha 90.0000000

_cell_angle_beta 90.0000000

_cell_angle_gamma 90.0000000

_symmetry_Int_Tables_number 1

_chemical_formula_structural Ti2Ni

_chemical_formula_sum 'Ti4 Ni2'

_cell_volume 87.86207419

_cell_formula_units_Z 2 loop_ _symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz 1 'x, y, z' loop_ _atom_site_type_symbol _atom_site_label _atom_site_symmetry_multiplicity _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy Ni Ni0 1 0.500000 0.500000 -0.000000 1 Ni Ni1 1 0.000000 0.000000 0.500000 1 Ti Ti2 1 -0.000000 -0.000000 0.842433 1 Ti Ti3 1 0.000000 0.000000 0.157567 1 Ti Ti4 1 0.500000 0.500000 0.342433 1 Ti Ti5 1 0.500000 0.500000 0.657567 1

$NiTi_2$ - space group 227 - Fd-3m

data_Ti2Ni

_symmetry_space_group_name_H-M 'P 1'

_cell_length_a 7.94684219

_cell_length_b 7.94684219

_cell_length_c 7.94684219

_cell_angle_alpha 60.0000000 _cell_angle_beta 60.0000000 _cell_angle_gamma 60.00000000 _symmetry_Int_Tables_number 1 _chemical_formula_structural Ti2Ni _chemical_formula_sum 'Ti16 Ni8' _cell_volume 354.86957647 _cell_formula_units_Z 8 loop_ _symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz 1 'x, y, z' loop_ _atom_site_type_symbol _atom_site_label _atom_site_symmetry_multiplicity _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy Ni Ni0 1 0.410518 0.410518 0.410518 1 Ni Ni1 1 0.768447 0.410518 0.410518 1 Ni Ni2 1 0.410518 0.768447 0.410518 1 Ni Ni3 1 0.839482 0.839482 0.481553 1 Ni Ni4 1 0.410518 0.410518 0.768447 1 Ni Ni5 1 0.839482 0.481553 0.839482 1 Ni Ni6 1 0.481553 0.839482 0.839482 1 Ni Ni7 1 0.839482 0.839482 0.839482 1

Ti Ti8 1 0.436747 0.063253 0.063253 1 Ti Ti9 1 0.063253 0.436747 0.063253 1 Ti Ti10 1 0.436747 0.436747 0.063253 1 Ti Ti11 1 0.625000 0.625000 0.125000 1 Ti Ti12 1 0.813253 0.186747 0.186747 1 Ti Ti13 1 0.186747 0.813253 0.186747 1 Ti Ti14 1 0.813253 0.813253 0.186747 1 Ti Ti15 1 0.063253 0.063253 0.436747 1 Ti Ti16 1 0.436747 0.063253 0.436747 1 Ti Ti17 1 0.063253 0.436747 0.436747 1 Ti Ti18 1 0.625000 0.125000 0.625000 1 Ti Ti19 1 0.125000 0.625000 0.625000 1 Ti Ti20 1 0.625000 0.625000 0.625000 1 Ti Ti21 1 0.186747 0.186747 0.813253 1 Ti Ti22 1 0.813253 0.186747 0.813253 1 Ti Ti23 1 0.186747 0.813253 0.813253 1

Ni₃Ti - space group 194 - P6₃/mmc

data_TiNi3

_symmetry_space_group_name_H-M 'P 1'

_cell_length_a 5.10693217

_cell_length_b 4.17202846

_cell_length_c 5.10693217

_cell_angle_alpha 90.0000000

_cell_angle_beta 120.0000000

_cell_angle_gamma 90.0000000

_symmetry_Int_Tables_number 1 _chemical_formula_structural TiNi3 _chemical_formula_sum 'Ti2 Ni6' _cell_volume 94.23192731 _cell_formula_units_Z 2 loop_ _symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz 1 'x, y, z' loop_ _atom_site_type_symbol _atom_site_label _atom_site_symmetry_multiplicity _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy Ni Ni0 1 0.675659 0.500000 0.837833 1 Ni Ni1 1 0.162168 0.500000 0.324343 1 Ni Ni2 1 0.837832 0.000000 0.675658 1 Ni Ni3 1 0.837828 0.000000 0.162171 1 Ni Ni4 1 0.324341 0.000000 0.162173 1 Ni Ni5 1 0.162172 0.500000 0.837832 1 Ti Ti6 1 0.666667 0.500000 0.333335 1 Ti Ti7 1 0.333333 0.000000 0.666666 1

Ni₅Ti - space group 65 - Cmmm

data_TiNi5

_symmetry_space_group_name_H-M 'P 1'

_cell_length_a 3.57183551

_cell_length_b 3.60406536

_cell_length_c 5.62900185

_cell_angle_alpha 90.0000000

_cell_angle_beta 108.49795271

_cell_angle_gamma 90.00000000

_symmetry_Int_Tables_number 1

_chemical_formula_structural TiNi5

_chemical_formula_sum 'Ti1 Ni5'

_cell_volume 68.71907056

_cell_formula_units_Z 1

loop_

_symmetry_equiv_pos_site_id

_symmetry_equiv_pos_as_xyz

1 'x, y, z'

loop_

_atom_site_type_symbol

_atom_site_label

_atom_site_symmetry_multiplicity

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_occupancy

Ni Ni0 1 0.169850 0.500000 0.339701 1

Ni Ni1 1 0.830150 0.500000 0.660299 1 Ni Ni2 1 0.500000 0.500000 0.000000 1 Ni Ni3 1 0.666738 0.000000 0.333475 1 Ni Ni4 1 0.333262 0.000000 0.666525 1 Ti Ti5 1 0.000000 0.000000 1

$NiTi_2$ - space group 12 - C2/m

data_Ti2Ni

_symmetry_space_group_name_H-M "P1"

_cell_length_a 4.619834

_cell_length_b 4.893469

_cell_length_c 5.117731

_cell_angle_alpha 61.439286

_cell_angle_beta 102.756527

_cell_angle_gamma 117.506927

loop_

_symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz 1 x,y,z

loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z

_atom_site_occupancy

Ni1 Ni 0.50000 0.25119 0.50762 1.0000

Ni2 Ni 0.50000 0.74881 0.49238 1.0000

Ti1 Ti 0.30987 0.17306 0.03000 1.0000

Ti2 Ti 0.69013 0.82694 0.03000 1.0000

Ti3 Ti 0.00000 0.33778 0.30444 1.0000

Ti4 Ti 0.00000 0.66222 0.69556 1.0000

References

- Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. et al. The Materials Project: A materials genome approach to accelerating materials innovation. *APL Materials* 2013, *1*, 011002.
- (2) Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). *JOM* **2013**, *65*, 1501–1509.
- (3) Mueller, M. H.; Knott, H. W. The Crystal Structures of Ti2Cu, Ti2Ni, Ti4Ni2O, and Ti4Cu2O.
 Trans. Am. Inst. Metall. Eng. 1963, 227.
- (4) Yurko, G. A.; Barton, J. W.; Parr, J. G. The Crystal Structure of Ti₂Ni. *Acta Crystallogr.* 1959, *12*, 909–911.
- (5) Kudoh, Y.; Tokonami, M.; Miyazaki, S.; Otsuka, K. Crystal Structure of the Martensite in Ti-49.2 at.%Ni Alloy Analyzed by the Single Crystal X-ray Diffraction Method. *Acta Metall.* 1985, *33*, 2049 2056.
- (6) Toprek, D.; Belosevic-Cavor, J.; Koteski, V. Ab Initio Studies of the Structural, Elastic, Electronic and Thermal Properties of NiTi2 Intermetallic. J. Phys. Chem. Solids 2015, 85, 197 – 205.
- (7) Jain, A.; Hautier, G.; Ong, S.; Moore, C.; Fischer, C.; Persson, K.; Ceder, G. Formation Enthalpies by Mixing GGA and GGA + U Calculations. *Phys. Rev. B* **2011**, *84*, 045115.
- (8) Benyelloul, K.; Aourag, H. Elastic Constants of Austenitic Stainless Steel: Investigation by the First-Principles Calculations and the Artificial Neural Network Approach. *Comput. Mater. Sci.* 2013, 67, 353 – 358.
- (9) Teklu, A.; Ledbetter, H.; Kim, S.; Boatner, L. A.; McGuire, M.; Keppens, V. Single-Crystal Elastic Constants of Fe-15Ni-15Cr Alloy. *Metall. Mater. Trans. A* 2004, *35*, 3149–3154.