Effects of nutrient Management Scenarios on Marine Eutrophication Indicators: A pan european, Multi-model assessment in support of the Marine Strategy Framework Directive
Effects of nutrient Management Scenarios on Marine Eutrophication Indicators: A pan european, Multi-model assessment in support of the Marine Strategy Framework Directive
Almroth E., Skogen M. D., (2010). A North Sea and Baltic Sea Model Ensemble Eutrophication Assessment. AMBIO 39 59–69. 10.1007/s13280-009-0006-7 20496653
Behrendt H., Zessner M., (2005). Point and diffuse nutrient emissions and loads in the transboundary Danube River Basin-II. Long-term changes. Large Riv. 2005 221–247. 10.1127/lr/16/2005/221
Beierle T. C., (2010). Democracy in practice: Public participation in environmental decisions. New York: Routledge.
Bianchi C. N., Morri C., (2000). Marine Biodiversity of the Mediterranean Sea: Situation, Problems and Prospects for Future Research. Mar. Pollut. Bull. 40 367–376. 10.1016/S0025-326X(00)00027-8
Bianchi C. N., Morri C., Chiantore M., Montefalcone M., Parravicini V., Rovere A., (2012). “Mediterranean Sea biodiversity between the legacy from the past and a future of change,” in Life in the Mediterranean Sea: a look at habitat changes 1, ed. Stambler N., (New York: Nova Science Publishers, Inc), 55.
Borja A., Andersen J. H., Arvanitidis C. D., Basset A., Buhl-Mortensen L., Carvalho S., et al. (2020). Past and Future Grand Challenges in Marine Ecosystem Ecology. Front. Mar. Sci. 7:362.
Bouwman A. F., Bierkens M. F. P., Griffioen J., Hefting M. M., Middelburg J. J., Middelkoop H., et al. (2012). Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models.
BSC (2008). “State of the environment of the Black Sea (2001–2006/7)”, in: Publications of the Commission on the Protection of the Black Sea against Pollution (BSC). Islands: Black Sea.
BSC (2019). “State of the Environment of the Black Sea (2009-2014/5),” in: Publications of the Commission on the Protection of the Black Sea Against Pollution (BSC), (Turkey: Istanbul).
BSSAP (2009). Strategic Action Plan for the Environmental Protection and Rehabilitation of the Black Sea. Islands: Black Sea.
Capet A., Beckers J. M., Grégoire M., (2013). Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf &ndash is there any recovery after eutrophication? Biogeosciences 10 3943–3962. 10.5194/bg-10-3943-2013
Capet A., Meysman F. J. R., Akoumianaki I., Soetaert K., Grégoire M., (2016). Integrating sediment biogeochemistry into 3D oceanic models: A study of benthic-pelagic coupling in the Black Sea. Ocean Model. 101 83–100. 10.1016/j.ocemod.2016.03.006
Cociasu A., Diaconu V., Popa L., Buga L., Nae I., Dorogan L., et al. (1997). “The Nutrient Stock of the Romanian Shelf of the Black Sea During the Last Three Decades,” in Sensitivity to Change: Black Sea, Baltic Sea and North Sea, eds Özsoy E., Mikaelyan A., (Dordrecht: Springer), 49–63. 10.1007/978-94-011-5758-2_5
Coll M., Piroddi C., Steenbeek J., Kaschner K., Ben Rais, Lasram F., et al. (2010). The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS One 5:e11842. 10.1371/journal.pone.0011842 20689844
Commission of the European Communities (2000). Commission of the European Communities. Directive 2000/60/ec of the European Parliament and of the Council of 23 October 2000. Establishing a Framework for Community Action in the Field of Water Policy. Europ: Commission of the European Communities.
Commission of the European Communities (2008). Commission of the European Communities Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008. Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). Official Journal of the European Union L 164). Europ: Commission of the European Communities.
Cozzi S., Giani M., (2011). River water and nutrient discharges in the Northern Adriatic Sea: Current importance and long term changes. Continent. Shelf Res. 31 1881–1893. 10.1016/j.csr.2011.08.010
Daewel U., Schrum C., (2017). Low-frequency variability in North Sea and Baltic Sea identified through simulations with the 3-D coupled physical–biogeochemical model ECOSMO. Earth System Dynam. 8:801. 10.5194/esd-8-801-2017
Dagg M. J., Breed G. A., (2003). Biological effects of Mississippi River nitrogen on the northern gulf of Mexico—a review and synthesis. J. Mar. Systems 43 133–152. 10.1016/j.jmarsys.2003.09.002
De Roo A., Bisselink B., Guenther S., Gelati E., Adamovic M., (2020). Assessing the effects of water saving measures on Europe’s water resources; BLUE2 project – Freshwater quantity. JTReport. Belgium: European Commission.
Delhez E. J., Heemink A., Deleersnijder E., (2004). Residence time in a semi-enclosed domain from the solution of an adjoint problem. Estuar. Coast. Shelf Sci. 61 691–702. 10.1016/j.ecss.2004.07.013
Desmit X., Thieu V., Billen G., Campuzano F., Dulière V., Garnier J., et al. (2018). Reducing marine eutrophication may require a paradigmatic change. Sci. Tot. Environ. 635 1444–1466. 10.1016/j.scitotenv.2018.04.181 29710669
Diaz R. J., (2001). Overview of Hypoxia around the World. J. Environ. Q. 30 275–281. 10.2134/jeq2001.302275x 11285887
Diaz R. J., Rosenberg R., (1995). Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. 33 245–303.
Duarte C. M., Agusti S., Barbier E., Britten G. L., Castilla J. C., Gattuso J.-P., et al. (2020). Rebuilding marine life. Nature 580 39–51. 10.1038/s41586-020-2146-7 32238939
EC (2012). “Communication from the Commission: “Blue Growth,” Opportunities for Marine and Maritime Sustainable Growth”, in: COM/2012/0494/Final. Belgium: European Commission.
EC (2013). “No. 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC”, in: Official Journal of the European Union. L. Belgium: European Commission.
EC (2014). Innovation in the Blue Economy: Realising the Potential of Our Seas and Oceans for Jobs and Growth. EC Brussels). Belgium: European Commission.
EEA (2018). Marine Regions and Subregions [Online]. Available online at: https://www.eea.europa.eu/data-and-maps/data/europe-seas (accessed May 13, 2020).
European Commission (2019). “Communication from the commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, The European Green Deal”, in: COM(2019) 640 final Belgium: European Commission.
Fennel K., Testa J. M., (2019). Biogeochemical Controls on Coastal Hypoxia. Annu. Rev. Mar. Sci. 11 105–130. 10.1146/annurev-marine-010318-095138 29889612
Ferreira J. G., Andersen J. H., Borja A., Bricker S. B., Camp J., Cardosoet al. (2011). Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar. Coast. Shelf Sci. 93 117–131. 10.1016/j.ecss.2011.03.014
Fiori E., Zavatarelli M., Pinardi N., Mazziotti C., Ferrari C. R., (2016). Observed and simulated trophic index (TRIX) values for the Adriatic Sea basin. Nat. Hazards Earth Syst. Sci. 16 2043–2054. 10.5194/nhess-16-2043-2016
Friedland R., Neumann T., Schernewski G., (2012). Climate change and the Baltic Sea action plan: Model simulations on the future of the western Baltic Sea. J. Mar. Syst. 10 175–186. 10.1016/j.jmarsys.2012.08.002
Friedland R., Schernewski G., Gräwe U., Greipsland I., Palazzo D., Pastuszak M., (2019). Managing Eutrophication in the Szczecin (Oder) Lagoon-Development, Present State and Future Perspectives. Front. Mar. Sci. 5:521. 10.3389/fmars.2018.00521
Geneletti D., Adem Esmail B., Cortinovis C., Arany I., Balzan M., van Beukering P., et al. (2020). Ecosystem services mapping and assessment for policy- and decision-making: Lessons learned from a comparative analysis of European case studies. One Ecosyst. 5:e53111.
Grégoire M., Soetaert K., (2010). Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: A biogeochemical model of the whole water column coupling the oxic and anoxic parts. Ecol. Model. 221 2287–2301. 10.1016/j.ecolmodel.2010.06.007
Grégoire M., Raick C., Soetaert K., (2008). Numerical modeling of the central Black Sea ecosystem functioning during the eutrophication phase. Progr. Oceanogr. 76 286–333. 10.1016/j.pocean.2008.01.002
Grizzetti B., Bouraoui F., Aloe A., (2012). Changes of nitrogen and phosphorus loads to European seas. Global. Change Biol. 18 769–782. 10.1111/j.1365-2486.2011.02576.x
Grizzetti B., Liquete C., Pistocchi A., Vigiak O., Zulian G., Bouraoui F., et al. (2019). Relationship between ecological condition and ecosystem services in European rivers, lakes and coastal waters. Sci. Tot. Environ. 671 452–465. 10.1016/j.scitotenv.2019.03.155 30933801
Grizzetti B., Vigiak O., Udias A., Aloe A., Zanni M., Bouraoui F., et al., (2021). How EU policies could reduce nutrient pollution in European inland and coastal waters? EarthArXiv. 10.31223/X5CC91
Große F., Fennel K., Laurent A., (2019). Quantifying the relative importance of riverine and open-ocean nitrogen sources for hypoxia formation in the northern Gulf of Mexico. J. Geophys. Res. Oceans 124 5451–5467. 10.1029/2019JC015230
Große F., Kreus M., Lenhart H.-J., Pätsch J., Pohlmann T., (2017). A novel modeling approach to quantify the influence of nitrogen inputs on the oxygen dynamics of the north sea. Front. Mar. Sci. 4:383.
Gustafsson B. G., Schenk F., Blenckner T., Eilola K., Meier H. E. M., Müller-Karulis B., et al. (2012). Reconstructing the development of baltic sea eutrophication 1850–2006. AMBIO 41 534–548. 10.1007/s13280-012-0318-x 22926877
Guterres A., (2018). The sustainable development goals report [Online]. Available online at: https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf (accessed on 6, 2018).
Halpern B. S., Frazier M., Afflerbach J., Lowndes J. S., Micheli F., O’Hara C., et al. (2019). Recent pace of change in human impact on the world’s ocean. Scient. Rep. 9:11609. 10.1038/s41598-019-47201-9 31406130
Halpern B. S., Frazier M., Potapenko J., Casey K. S., Koenig K., Longo C., et al. (2015). Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6:7615. 10.1038/ncomms8615 26172980
Heisler J., Glibert P. M., Burkholder J. M., Anderson D. M., Cochlan W., Dennison W. C., et al. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 8 3–13. 10.1016/j.hal.2008.08.006 28781587
HELCOM (2013a). “Approaches and methods for eutrophication target setting in the Baltic Sea region”, in Balt. Sea Environ. Proc. No. 133 Findland: HELCOM.
HELCOM (2013b). HELCOM Copenhagen Ministerial Declaration: Taking Further Action to Implement the Baltic Sea Action Plan-Reaching a Good Environmental Status for a Healthy Baltic Sea. Findland: HELCOM.
HELCOM (2018). Dissolved inorganic nitrogen (DIN) [Online]. Available online at: http://www.helcom.fi/Core%20Indicators/Dissolved%20inorganic%20nitrogen%20DIN%20HELCOM%20core%20indicator%202018.pdf (accessed on May 12, 2020).
Hjerne O., Hajdu S., Larsson U., Downing A. S., Winder M., (2019). Climate Driven Changes in Timing, Composition and Magnitude of the Baltic Sea Phytoplankton Spring Bloom. Front. Mar. Sci. 6:482. 10.3389/fmars.2019.00482
İzdar E., Murray J. W., (2012). Black Sea Oceanography. New York: Springer.
Kabel K., Moros M., Porsche C., Neumann T., Adolphi F., Andersen T. J., et al. (2012). Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years. Nat. Clim. Change 2 871–874. 10.1038/nclimate1595
Kanter D. R., Brownlie W. J., (2019). Joint nitrogen and phosphorus management for sustainable development and climate goals. Environ. Sci. Pol. 92 1–8. 10.1016/j.envsci.2018.10.020
Karydis M., Kitsiou D., (2019). Marine Eutrophication: A Global Perspective. London: CRC Press.
Kearney K., (2020). boundedline.m [Online]. GitHub. Available online at: https://www.github.com/kakearney/boundedline-pkg (accessed on March 25, 2020).
Kemp W. M., Testa J. M., Conley D. J., Gilbert D., Hagy J. D., (2009). Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 6 2985–3008. 10.5194/bg-6-2985-2009
Kerimoglu O., Große F., Kreus M., Lenhart H.-J., van Beusekom J. E. E., (2018). A model-based projection of historical state of a coastal ecosystem: Relevance of phytoplankton stoichiometry. Sci. Tot. Environ. 639 1311–1323. 10.1016/j.scitotenv.2018.05.215 29929297
Kerimoglu O., Voynova Y. G., Chegini F., Brix H., Callies U., Hofmeister R., et al. (2020). Interactive impacts of meteorological and hydrological conditions on the physical and biogeochemical structure of a coastal system. Biogeosciences 17, 5097–5127. 10.5194/bg-17-5097-2020
Kideys A. E., (2002). Fall and Rise of the Black Sea Ecosystem. Science 297:1482. 10.1126/science.1073002 12202806
Kotilainen A. T., Arppe L., Dobosz S., Jansen E., Kabel K., Karhu J., et al. (2014). Echoes from the Past: A Healthy Baltic Sea Requires More Effort. AMBIO 43 60–68. 10.1007/s13280-013-0477-4 24414805
Kroiss H., Zessner M., Lampert C., (2006). daNUbs: Lessons learned for nutrient management in the Danube Basin and its relation to Black Sea euthrophication. Chem. Ecol. 22 347–357. 10.1080/02757540600917518
Lazzari P., Solidoro C., Salon S., Bolzon G., (2016). Spatial variability of phosphate and nitrate in the Mediterranean Sea: A modeling approach. Deep Sea Res. Part 108 39–52. 10.1016/j.dsr.2015.12.006
Lenhart H.-J., Mills D. K., Baretta-Bekker H., van Leeuwen S. M., der Molen J. V., Baretta J. W., et al. (2010). Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea. J. Mar. Syst. 81 148–170. 10.1016/j.jmarsys.2009.12.014
Leppäranta M., Myrberg K., (2009). Physical oceanography of the Baltic Sea. New York: Springer Science & Business Media.
Levin L. A., Ekau W., Gooday A. J., Jorissen F., Middelburg J. J., Naqvi S. W. A., et al. (2009). Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6 2063–2098. 10.5194/bg-6-2063-2009
Liquete C., Piroddi C., Drakou E. G., Gurney L., Katsanevakis S., Charef A., et al. (2013). Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review. PLoS One 8:e67737. 10.1371/journal.pone.0067737 23844080
Liquete C., Piroddi C., Macías D., Druon J.-N., Zulian G., (2016). Ecosystem services sustainability in the Mediterranean Sea: assessment of status and trends using multiple modelling approaches. Scient. Rep. 6:34162. 10.1038/srep34162 27686533
Lohrenz S. E., Fahnenstiel G. L., Redalje D. G., Lang G. A., Chen X., Dagg M. J., (1997). Variations in primary production of northern Gulf of Mexico continental shelf waters linked to nutrient inputs from the Mississippi River. Mar. Ecol. Progr. Ser. 155 45–54. 10.3354/meps155045
Maar M., Markager S., Madsen K. S., Windolf J., Lyngsgaard M. M., Andersen H. E., et al. (2016). The importance of local versus external nutrient loads for Chl a and primary production in the Western Baltic Sea. Ecol. Model. 320 258–272. 10.1016/j.ecolmodel.2015.09.023
Macias D., Garcia-Gorriz E., Stips A., (2018). Major fertilization sources and mechanisms for Mediterranean Sea coastal ecosystems. Limnol. Oceanogr. 63 897–914. 10.1002/lno.10677
Macias D., Garcia-Gorriz E., Piroddi C., Stips A., (2014). Biogeochemical control of marine productivity in the Mediterranean Sea during the last 50?years. Glob. Biogeochem. Cycles 28 897–907. 10.1002/2014GB004846 26180286
Macias D., Huertas I. E., Garcia-Gorriz E., Stips A., (2019). Non-Redfieldian dynamics driven by phytoplankton phosphate frugality explain nutrient and chlorophyll patterns in model simulations for the Mediterranean Sea. Progr. Oceanogr. 173 37–50. 10.1016/j.pocean.2019.02.005 32255863
McCrackin M. L., Muller-Karulis B., Gustafsson B. G., Howarth R. W., Humborg C., Svanbäck A., et al. (2018). A Century of Legacy Phosphorus Dynamics in a Large Drainage Basin. Glob. Biogeochem. Cycles 32 1107–1122. 10.1029/2018GB005914
Mee L. D., (1992). The Black Sea in crisis: a need for concerted international action. AMBIO 21:278.
Meier H. E. M., Edman M. K., Eilola K. J., Placke M., Neumann T., Andersson H. C., et al. (2018). Assessment of Eutrophication Abatement Scenarios for the Baltic Sea by Multi-Model Ensemble Simulations. Front. Mar. Sci. 5:440.
Miladinova S., Stips A., Garcia-Gorriz E., Macias Moy D., (2018). Formation and changes of the Black Sea cold intermediate layer. Progr. Oceanogr. 167 11–23. 10.1016/j.pocean.2018.07.002
Miladinova S., Stips A., Gorriz G. E., Moy M. D., (2016). “Modelling Toolbox 2: The Black Sea ecosystem model”, in EUR 28372 EN. Belgium: EU.
Miladinova S., Stips A., Moy M. D., Gorriz G. E., (2017). Revised Black Sea ecosystem model. Belgium: EU.
Mohrholz V., Naumann M., Nausch G., Krüger S., Gräwe U., (2015). Fresh oxygen for the Baltic Sea — An exceptional saline inflow after a decade of stagnation. J. Mar. Syst. 148 152–166. 10.1016/j.jmarsys.2015.03.005
Mozetič P., Solidoro C., Cossarini G., Socal G., Precali R., Francé J., et al. (2010). Recent Trends Towards Oligotrophication of the Northern Adriatic: Evidence from Chlorophyll a Time Series. Estuar. Coasts 33 362–375. 10.1007/s12237-009-9191-7
Neumann T., (2000). Towards a 3D-ecosystem model of the Baltic Sea. J. Mar. Syst. 25 405–419. 10.1016/S0924-7963(00)00030-0
Neumann T., Eilola K., Gustafsson B., Müller-Karulis B., Kuznetsov I., Meier H. E. M., et al. (2012). Extremes of Temperature, Oxygen and Blooms in the Baltic Sea in a Changing Climate. AMBIO 41 574–585. 10.1007/s13280-012-0321-2 22926880
Neumann T., Fennel W., Kremp C., (2002). Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment. Glob. Biogeochem. Cycles 16 7–1. 10.1029/2001GB001450
Neumann T., Radtke H., Seifert T., (2017). On the importance of Major Baltic Inflows for oxygenation of the central Baltic Sea. J. Geophys. Res. Oceans 122 1090–1101. 10.1002/2016JC012525
Nixon S. W., (1995). Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41 199–219. 10.1080/00785236.1995.10422044
Oguz T., Merico A., (2006). Factors controlling the summer Emiliania huxleyi bloom in the Black Sea: A modeling study. J. Mar. Syst. 59 173–188. 10.1016/j.jmarsys.2005.08.002
Oguz T., Velikova V., (2010). Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. Mar. Ecol. Progr. Ser. 405 231–242. 10.3354/meps08538
Olofsson M., Egardt J., Singh A., Ploug H., (2016). Inorganic phosphorus enrichments in Baltic Sea water have large effects on growth, carbon fixation, and N2 fixation by Nodularia spumigena. Aquatic Microbial. Ecol. 77 111–123. 10.3354/ame01795
Orr J. C., Najjar R. G., Aumont O., Bopp L., Bullister J. L., Danabasoglu G., et al. (2017). Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geosci. Model Dev. 10 2169–2199. 10.5194/gmd-10-2169-2017
OSPAR (2017). Third OSPAR integrated report on the eutrophication status of the OSPAR Maritime Area. Europe: OSPAR.
Pachauri R. K., Allen M. R., Barros V. R., Broome J., Cramer W., Christ R., et al. (2014). “Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change”. Ipcc. Europe: OSPAR.
PARCOM (1988). “PARCOM Recommendation 88/2: On the Reduction in Nutrients to the Paris Convention Area, Publication number 88/2, Paris Commission.” Europe: OSPAR.
Peñuelas J., Poulter B., Sardans J., Ciais P., van der Velde M., Bopp L., et al. (2013). Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4:2934. 10.1038/ncomms3934 24343268
Peterson C. H., Lubchenco J., (1997). Marine ecosystem services. Washington, DC: Island Press.
Piroddi C., Akoglu E., Andonegi E., Bentley J. W., Celic I., Coll M., et al., (in press). Effects of nutrient management scenarios on marine food webs: a Pan-European Assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. Mar. Ecosyst. Ecol.
Popovici M., (2015). “Nutrient Management in the Danube River Basin,” in The Danube River Basin, ed. Liska I., (Berlin: Springer), 23–38. 10.1007/698_2014_311
Rabalais N. N., Turner R. E., Wiseman W. J., (2002). Gulf of Mexico Hypoxia, A.K.A. “The Dead Zone”. Annu. Rev. Ecol. Systemat. 33 235–263. 10.1146/annurev.ecolsys.33.010802.150513
Rabouille C., Conley D. J., Dai M. H., Cai W. J., Chen C. T. A., Lansard B., et al. (2008). Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers. Cont. Shelf Res. 28 1527–1537. 10.1016/j.csr.2008.01.020
Radtke H., Neumann T., Voss M., Fennel W., (2012). Modeling pathways of riverine nitrogen and phosphorus in the Baltic Sea. J. Geophys. Res. Oceans 117:C9. 10.1029/2012JC008119
Savchuk O. P., (2018). Large-Scale Nutrient Dynamics in the Baltic Sea, 1970–2016. Front. Mar. Sci. 5:95.
Schernewski G., Friedland R., Carstens M., Hirt U., Leujak W., Nausch G., et al. (2015). Implementation of European marine policy: New water quality targets for German Baltic waters. Mar. Policy 51 305–321. 10.1016/j.marpol.2014.09.002
Siokou-Frangou I., Christaki U., Mazzocchi M. G., Montresor M., Ribera, d’Alcalà M., et al. (2010). Plankton in the open mediterranean Sea: A review. Biogeosciences 1586 1543–1586. 10.5194/bg-7-1543-2010
Skogen M. D., Svendsen E., Berntsen J., Aksnes D., Ulvestad K. B., (1995). Modelling the primary production in the North Sea using a coupled three-dimensional physical-chemical-biological ocean model. Estuar. Coast. Shelf Sci. 41 545–565. 10.1016/0272-7714(95)90026-8
Tanaka T., Thingstad T. F., Christaki U., Colombet J., Cornet-Barthaux V., Courties C., et al. (2011). Lack of P-limitation of phytoplankton and heterotrophic prokaryotes in surface waters of three anticyclonic eddies in the stratified Mediterranean Sea. Biogeosciences 8 525–538. 10.5194/bg-8-525-2011
Tong Y., Wang M., Peñuelas J., Liu X., Paerl H. W., Elser J. J., et al. (2020). Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proc. Natl. Acad. Sci. 2020:201920759. 10.1073/pnas.1920759117 32385161
Tugrul S., Basturk O., Saydam C., Yilmaz A., (1992). Changes in the hydrochemistry of the Black Sea inferred from water density profiles. Nature 359 137–139. 10.1038/359137a0
Tuğrul S., Murray J. W., Friederich G. E., Salihoğlu I., (2014). Spatial and temporal variability in the chemical properties of the oxic and suboxic layers of the Black Sea. J. Mar. Syst. 135 29–43. 10.1016/j.jmarsys.2013.09.008
Vahtera E., Conley D. J., Gustafsson B. G., Kuosa H., Pitkänen H., Oleg P. S., et al. (2007). Internal Ecosystem Feedbacks Enhance Nitrogen-Fixing Cyanobacteria Blooms and Complicate Management in the Baltic Sea. AMBIO 36 186–194. 10.2307/4315813
Vollenweider R. A., Giovanardi F., Montanari G., Rinaldi A., (1998). Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics 9 329–357. 10.1002/(SICI)1099-095X(199805/06)9:3
Voss M., Deutsch B., Liskow I., Pastuszak M., Schulte U., Sitek S., (2010). Nitrogen retention in the Szczecin Lagoon. Baltic Sea. Isotopes Environ. Health Stud. 46 355–369. 10.1080/10256016.2010.503895 20672205
Wakelin S. L., Artioli Y., Butenschön M., Allen J. I., Holt J. T., (2015). Modelling the combined impacts of climate change and direct anthropogenic drivers on the ecosystem of the northwest European continental shelf. J. Mar. Syst. 152 51–63. 10.1016/j.jmarsys.2015.07.006
Wakelin S. L., Artioli Y., Holt J. T., Butenschön M., Blackford J., (2020). Controls on near-bed oxygen concentration on the Northwest European Continental Shelf under a potential future climate scenario. Progr. Oceanogr. 187:102400. 10.1016/j.pocean.2020.102400