[en] The use of conventional pesticides is debated because of their multiple potential adverse effects on non-target organisms, human health, pest resistance development and environmental contaminations. In this setting, this study focused on developing alternatives, such as trunk-injected essential oil (EO)-based biopesticides. We analysed the ecophysiology of apple trees (Malus domestica) following the injection of Cinnamomum cassia and Mentha spicata nanoemulsions in the tree’s vascular system. Targeted and untargeted volatile organic compounds (VOCs) analyses were performed on leaf-contained and leaf-emitted VOCs and analysed through DHS-GC-MS and TDU-GC-MS. Our results showed that carvone, as a major constituent of the Mentha spicata EO, was contained in the leaves (mean concentrations ranging from 3.39 to 19.7 ng gDW–1) and emitted at a constant rate of approximately 0.2 ng gDW–1 h–1. Trans-cinnamaldehyde, Cinnamomum cassia’s major component, accumulated in the leaves (mean concentrations of 83.46 and 350.54 ng gDW–1) without being emitted. Furthermore, our results highlighted the increase in various VOCs following EO injection, both in terms of leaf-contained VOCs, such as methyl salicylate, and in terms of leaf-emitted VOCs, such as caryophyllene. Principal component analysis (PCA) highlighted differences in terms of VOC profiles. In addition, an analysis of similarity (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) revealed that the VOC profiles were significantly impacted by the treatment. Maximum yields of photosystem II (Fv/Fm) were within the range of 0.80-0.85, indicating that the trees remained healthy throughout the experiment. Our targeted analysis demonstrated the systemic translocation of EOs through the plant’s vascular system. The untargeted analysis, on the other hand, highlighted the potential systemic acquired resistance (SAR) induction by these EOs. Lastly, Cinnamomum cassia and Mentha spicata EOs did not appear phytotoxic to the treated trees, as demonstrated through chlorophyll fluorescence measurements. Hence, this work can be seen as a proof of concept for the use of trunk-injected EOs given systemic translocation, increased production and release of biogenic VOCs (BVOCs) and absence of phytotoxicity. Further works should focus on the ecological impact of such treatments in orchards, as well as apple quality and production yields.
Disciplines :
Chemistry Entomology & pest control Agriculture & agronomy
Author, co-author :
Werrie, Pierre-Yves ✱; Université de Liège - ULiège > Département GxABT > Chimie des agro-biosystèmes
TREE-INJECTION project R. RWAL-3157 and EOHUB project 600873-EPP-1-2018-1ES-EPPKA2-KA.
Funders :
SPW DG03-DGARNE - Service Public de Wallonie. Direction Générale Opérationnelle Agriculture, Ressources naturelles et Environnement EACEA - European Education and Culture Executive Agency
Aćimović, S. G. (2014). Disease Management in Apples Using Trunk Injection Delivery of Plant Protective Compounds. doi: 10.13140/2.1.2252.3841 PhD Thesis, Michigan State University, Michigan.
Aćimović, S. G., Cregg, B. M., Sundin, G. W., andWise, J. C. (2016a). Comparison of drill- and needle-based tree injection technologies in healing of trunk injection ports on apple trees. Urban For. Urban Green. 19, 151-157. doi: 10.1016/j.ufug.2016.07.003
Aćimović, S. G., Martin, D. K. H., Turcotte, R. M., Meredith, C. L., and Munck, I. A. (2020). “Choosing an adequate pesticide delivery system for managing pathogens with difficult biologies: Case studies on Diplodia corticola, Venturia inaequalis and Erwinia amylovora” in Plant Diseases-Current Threats and Management Trends, ed. S. Topolovec-Pintaric (London: IntechOpen), doi: 10.5772/intechopen.87956
Aćimović, S. G., VanWoerkom, A. H., Garavaglia, T., Vandervoort, C., Sundin, G. W., and Wise, J. C. (2016b). Seasonal and cross-seasonal timing of fungicide trunk injections in apple trees to optimize management of apple scab. Plant Dis. 100, 1606-1616. doi: 10.1094/PDIS-09-15-1061-RE
Aćimović, S. G., VanWoerkom, A. H., Reeb, P. D., Vandervoort, C., Garavaglia, T., Cregg, B. M., et al. (2014). Spatial and temporal distribution of trunkinjected imidacloprid in apple tree canopies. Pest Manag. Sci. 70, 1751-1760. doi: 10.1002/ps.3747
Aćimović, S. G., Zeng, Q., McGhee, G. C., Sundin, G. W., and Wise, J. C. (2015). Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Front. Plant Sci. 6:16. doi: 10.3389/fpls.2015.00016
Alins, G., Alegre, S., and Avilla, J. (2017). Alternative to azadirachtin to control Dysaphis plantaginea Passerini (Hemiptera: Aphidae) in organic apple production. Biol. Agric. Hortic. 33, 235-246. doi: 10.1080/01448765.2017.1333454
Anderson, M. J. (2017). “Permutational multivariate analysis of variance (PERMANOVA),” in Wiley StatsRef: Statistics Reference Online, ed. cf. Wiley (Hoboken, NJ: John Wiley & Sons, Ltd), 1-15. doi: 10.1002/9781118445112.stat07841
Asakawa, Y., Sekita, M., and Hashimoto, T. (2018). Biotransformation of bicyclic sesqui- and diterpene 1,2-dials and their derivatives by the fungus, Aspergillus Niger. Nat. Prod. Commun. 13, 923-932. doi: 10.1177/1934578x1801300802
Bakkali, F., Averbeck, S., Averbeck, D., and Idaomar, M. (2008). Biological effects of essential oils-A review. Food Chem. Toxicol. 46, 446-475. doi: 10.1016/j.fct.2007.09.106
Bicchi, C., Cordero, C., Liberto, E., Sgorbini, B., and Rubiolo, P. (2008). Headspace sampling of the volatile fraction of vegetable matrices. J. Chromatogr. A 1184, 220-233. doi: 10.1016/j.chroma.2007.06.019
Bresson, J., Bieker, S., Riester, L., Doll, J., and Zentgraf, U. (2018). A guideline for leaf senescence analyses: From quantification to physiological and molecular investigations. J. Exp. Bot. 69, 769-786. doi: 10.1093/jxb/erx246
Brilli, F., Loreto, F., and Baccelli, I. (2019). Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front. Plant Sci. 10:264. doi: 10.3389/fpls.2019.00264
Calfapietra, C., Pallozzi, E., Lusini, I., Velikova, V., Monson, R. K., and Niinemets, Ü (2013). Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Dordrecht: Springer Netherlands, doi: 10.1007/978-94-007-6606-8
Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., Bakshi, M., Abhilash, P. C., and Fraceto, L. F. (2019). Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 105, 483-495. doi: 10.1016/j.ecolind.2018.04.038
Casado, D., Gemeno, C., Avilla, J., and Riba, M. (2006). Day-Night and phenological variation of apple tree volatiles and electroantennogram responses in Cydia pomonella (Lepidoptera: Tortricidae). Environ. Entomol. 35, 258-267. doi: 10.1603/0046-225X-35.2.258
Chizzali, C., and Beerhues, L. (2012). Phytoalexins of the pyrinae: Biphenyls and dibenzofurans. Beilstein J. Org. Chem. 8, 613-620. doi: 10.3762/bjoc.8.68
Coslor, C. C., Vandervoort, C., andWise, J. C. (2019). Insecticide dose and seasonal timing of trunk injection in apples influence efficacy and residues in nectar and plant parts. Pest Manag. Sci. 75, 1453-1463. doi: 10.1002/ps.5268
Dahiya, S., Batish, D. R., and Singh, H. P. (2020). Pogostemon benghalensis essential oil inhibited the weed growth via causing oxidative damage. Rev. Bras. Bot. 43, 447-457. doi: 10.1007/s40415-020-00613-8
Damalas, C. A., and Eleftherohorinos, I. G. (2011). Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 8, 1402-1419. doi: 10.3390/ijerph8051402
Damos, P., Colomar, L. A. E., and Ioriatti, C. (2015). Integrated fruit production and pest management in europe: The apple case study and how far we are from the original concept? Insects 6, 626-657. doi: 10.3390/insects6030626
De Clerck, C., Maso, S. D., Parisi, O., Dresen, F., Zhiri, A., and Haissam Jijakli, M. (2020). Screening of antifungal and antibacterial activity of 90 commercial essential oils against 10 pathogens of agronomical importance. Foods 9:1418. doi: 10.3390/foods9101418
Delory, B. M., Delaplace, P., du Jardin, P., and Fauconnier, M. L. (2016). Barley (Hordeum distichon L.) roots synthesise volatile aldehydes with a strong agedependent pattern and release (E)-non-2-enal and (E,Z)-nona-2,6-dienal after mechanical injury. Plant Physiol. Biochem. 104, 134-145. doi: 10.1016/j.plaphy.2016.03.028
Doccola, J., and Wild, P. (2012). Tree Injection as an Alternative Method of Insecticide Application. Woburn, MA: Arborjet, Inc, doi: 10.5772/29560
Doccola, J. J. (2012). Treatment strategies using imidacloprid in Hemlock Woolly Adelgid (Adelges tsugae Annand) infested eastern Hemlock (Tsuga Canadensis Carrière) trees. Arboricul. Urban For. 38, 41-49.
Dudareva, N., Klempien, A., Muhlemann, J. K., and Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16-32. doi: 10.1111/nph.12145
Dugé De Bernonville, T., Marolleau, B., Staub, J., Gaucher, M., and Brisset, M. N. (2014). Using molecular tools to decipher the complex world of plant resistance inducers: An apple case study. J. Agric. Food Chem. 62, 11403-11411. doi: 10.1021/jf504221x
Durenne, B., Blondel, A., Druart, P., and Fauconnier, M. L. (2018). A laboratory high-throughput glass chamber using dynamic headspace TD-GC/MS method for the analysis of whole Brassica napus L. plantlet volatiles under cadmiumrelated abiotic stress. Phytochem. Anal. 29, 463-471. doi: 10.1002/pca.2750
European Chemical Agency (2020). Homepage-ECHA. Available online at: Https://echa.europa.eu/home (accessed December 10, 2020).
Geiger, F., Bengtsson, J., Berendse, F., Weisser, W. W., Emmerson, M., Morales, M. B., et al. (2010). Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97-105. doi: 10.1016/j.baae.2009.12.001
Gershenzon, J., and Dudareva, N. (2007). The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408-414. doi: 10.1038/nchembio.2007.5
Giacomuzzi, V., Cappellin, L., Nones, S., Khomenko, I., Biasioli, F., Knight, A. L., et al. (2017). Diel rhythms in the volatile emission of apple and grape foliage. Phytochemistry 138, 104-115. doi: 10.1016/j.phytochem.2017.03.001
Hare, J. D. (2011). Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56, 161-180. doi: 10.1146/annurev-ento-120709-144753
Holopainen, J. K., and Gershenzon, J. (2010). Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15, 176-184. doi: 10.1016/j.tplants.2010.01.006
Hüsnü Can Baser, K., and Buchbauer, G. (2015). Handbook of Essential Oils: Science, Technology, and Applications. Boca Raton, FL: CRC Press.
Ibdah, M., Chen, Y. T., Wilkerson, C. G., and Pichersky, E. (2009). An aldehyde oxidase in developing seeds of arabidopsis converts benzaldehyde to benzoic acid. Plant Physiol. 150, 416-423. doi: 10.1104/pp.109.135848
Ikbal, C., and Pavela, R. (2019). Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 92, 971-986. doi: 10.1007/s10340-019-01089-6
Isman, M. B. (2020). Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 19, 235-241. doi: 10.1007/s11101-019-09653-9
Isman, M. B., Miresmailli, S., and Machial, C. (2011). Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 10, 197-204. doi: 10.1007/s11101-010-9170-4
Jamar, L., Cavelier, M., and Lateur, M. (2010). Primary scab control using a “duringinfection” spray timing and the effect on fruit quality and yield in organic apple production. Biotechnol. Agron. Soc. Environ. 14, 423-439.
Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. et al. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant 38:102. doi: 10.1007/s11738-016-2113-y
Kaur, S., Singh, H. P., Mittal, S., Batish, D. R., and Kohli, R. K. (2010). Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Ind. Crops Prod. 32, 54-61. doi: 10.1016/j.indcrop.2010.03.007
Kellerhals, M., Szalatnay, D., Hunziker, K., Duffy, B., Nybom, H., Ahmadi-Afzadi, M., et al. (2012). European pome fruit genetic resources evaluated for disease resistance. Trees Struct. Funct. 26, 179-189. doi: 10.1007/s00468-011-0660-9
Koul, O., Walia, S., and Dhaliwal, G. (2008). Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 4, 63-84.
Lateur, M. (2002). Perspectives de lutte contre les maladies des arbres fruitiers à pépins au moyen de substances naturelles inductrices d’une résistance systémique. BASE 6, 67-77.
Lee, J. E., Seo, S. M., Huh, M. J., Lee, S. C., and Park, I. K. (2020). Reactive oxygen species mediated-antifungal activity of cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils and their constituents against two phytopathogenic fungi. Pestic. Biochem. Physiol. 168:104644. doi: 10.1016/j.pestbp.2020.104644
Liberto, E., Bicchi, C., Cagliero, C., Cordero, C., Rubiolo, P., and Sgorbini, B. (2020). “Headspace sampling: An ‘evergreen’ method in constant evolution to characterize food flavors through their volatile fraction” in Food Chemistry, Function and Analysis, eds G. Williamson, A. G. Marangoni, G. A. Bonwick, and C. S. Birch (Burlington House: Royal Society of Chemistry), 3-37. doi: 10.1039/9781788015752-00001
Lins, L., Dal Maso, S., Foncoux, B., Kamili, A., Laurin, Y., Genva, M., et al. (2019). Insights into the relationships between herbicide activities, molecular structure and membrane interaction of cinnamon and citronella essential oils components. Int. J. Mol. Sci. 20:4007. doi: 10.3390/ijms20164007
Lopez-Reyes, J. G., Spadaro, D., Gullino, M. L., and Garibaldi, A. (2010). Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo. Flavour Fragr. J. 25, 171-177. doi: 10.1002/ffj.1989
Maes, C., Bouquillon, S., and Fauconnier, M. L. (2019). Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules 24:2539. doi: 10.3390/molecules24142539
Marolleau, B., Gaucher, M., Heintz, C., Degrave, A., Warneys, R., Orain, G., et al. (2017). When a plant resistance inducer leaves the lab for the field: Integrating ASM into routine apple protection practices. Front. Plant Sci. 8:1938. doi: 10.3389/fpls.2017.01938
Matsui, K., Sugimoto, K., Mano, J., Ozawa, R., and Takabayashi, J. (2012). Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements. PLoS One 7:e36433. doi: 10.1371/journal.pone.0036433
Mbili, N. C., Opara, U. L., Lennox, C. L., and Vries, F. A. (2017). Citrus and lemongrass essential oils inhibit Botrytis cinerea on ‘Golden Delicious’, ‘Pink Lady’ and ‘Granny Smith’ apples. J. Plant Dis. Prot. 124, 499-511. doi: 10.1007/s41348-017-0121-9
Miller, S. S., and Tworkoski, T. (2010). Blossom thinning in apple and peach with an essential oil. HortScience 45, 1218-1225. doi: 10.21273/hortsci.45.8.1218
Montecchio, L. (2013). A venturi effect can help cure our trees. J. Vis. Exp. 2013:51199. doi: 10.3791/51199
Moretti, M. D. L., Sanna-Passino, G., Demontis, S., and Bazzoni, E. (2002). Essential oil formulations useful as a new tool for insect pest control. AAPS PharmSci. Tech. 3, 64-74. doi: 10.1208/pt030213
Muchembled, J., Deweer, C., Sahmer, K., and Halama, P. (2018). Antifungal activity of essential oils on two Venturia inaequalis strains with different sensitivities to tebuconazole. Environ. Sci. Pollut. Res. 25, 29921-29928. doi: 10.1007/s11356-017-0507-z
Nea, F., Tanoh, E. A., Wognin, E. L., Kenne Kemene, T., Genva, M., Saive, M., et al. (2019). A new chemotype of Lantana rhodesiensis Moldenke essential oil from Côte d’Ivoire: Chemical composition and biological activities. Ind. Crops Prod. 141:111766. doi: 10.1016/j.indcrop.2019.111766
Pang, Z., Chong, J., Li, S., and Xia, J. (2020). MetaboAnalystR 3.0: Toward an optimized workflow for global metabolomics. Metabolites 10:186. doi: 10.3390/metabo10050186
Paré, P. W., and Tumlinson, J. H. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiol. 121, 325-331. doi: 10.1104/pp.121.2.325
Patil, I. (2018). {ggstatsplot}: “ggplot2” Based Plots with Statistical Details}. Available online at: Https://dmetar.protectlab.org/authors.html (accessed December 9, 2020).
Percival, G. C., and Boyle, S. (2005). Evaluation of microcapsule trunk injections for the control of apple scab and powdery mildew. Ann. Appl. Biol. 147, 119-127. doi: 10.1111/j.1744-7348.2005.00019.x
Perina, F. J., de Andrade, C. C. L., Moreira, S. I., Nery, E. M., Ogoshi, C., and Alves, E. (2019). Cinnamomun zeylanicum oil and trans-cinnamaldehyde against Alternaria brown spot in tangerine: Direct effects and induced resistance. Phytoparasitica 47, 575-589. doi: 10.1007/s12600-019-00754-x
Pospíšil, P. (2012). Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta Bioenerg. 1817, 218-231. doi: 10.1016/j.bbabio.2011.05.017
Rehman, R., Hanif, M. A., Mushtaq, Z., and Al-Sadi, A. M. (2016). Biosynthesis of essential oils in aromatic plants: A review. Food Rev. Int. 32, 117-160. doi: 10.1080/87559129.2015.1057841
Riedlmeier, M., Ghirardo, A., Wenig, M., Knappe, C., Koch, K., Georgii, E., et al. (2017). Monoterpenes support systemic acquired resistance within and between plants. Plant Cell 29, 1440-1459. doi: 10.1105/tpc.16.00898
Rivas, F., Parra, A., Martinez, A., and Garcia-Granados, A. (2013). Enzymatic glycosylation of terpenoids. Phytochem. Rev. 12, 327-339. doi: 10.1007/s11101-013-9301-9
Rousselin, A., Bevacqua, D., Sauge, M. H., Lescourret, F., Mody, K., and Jordan, M. O. (2017). Harnessing the aphid life cycle to reduce insecticide reliance in apple and peach orchards. A review. Agron. Sustain. Dev. 37:38. doi: 10.1007/s13593-017-0444-8
Saini, S. S., Teotia, D., Gaid, M., and Sircar, D. (2019). A new enzymatic activity from elicitor-treated pear cell cultures converting trans -cinnamic acid to benzaldehyde. Physiol. Plant. 167, 64-74. doi: 10.1111/ppl.12871
Singh, P., and Pandey, A. K. (2018). Prospective of essential oils of the genus mentha as biopesticides: A review. Front. Plant Sci. 9:1295. doi: 10.3389/fpls.2018.01295
Snoussi, M., Noumi, E., Trabelsi, N., Flamini, G., Papetti, A., and De Feo, V. (2015). Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp Strains. Molecules 20, 14402-14424. doi: 10.3390/molecules200814402
Souleyre, E. J. F., Bowen, J. K., Matich, A. J., Tomes, S., Chen, X., Hunt, M. B., et al. (2019). Genetic control of a-farnesene production in apple fruit and its role in fungal pathogenesis. Plant J. 100, 1148-1162. doi: 10.1111/tpj.14504
Souza, B., Lundgren, J., and Rodriguez-Saona, C. (2017). From laboratory to field: Electro-antennographic and behavioral responsiveness of two insect predators to methyl salicylate. Chemoecology 27, 51-63. doi: 10.1007/s00049-017-0230-8
Stewart-Jones, A., and Poppy, G. M. (2006). Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis. J. Chem. Ecol. 32, 845-864. doi: 10.1007/s10886-006-9039-6
Suckling, D. M., Twidle, A. M., Gibb, A. R., Manning, L. M., Mitchell, V. J., Sullivan, T. E. S., et al. (2012). Volatiles from apple trees infested with light brown apple moth larvae attract the parasitoid Dolichogenidia tasmanica. J. Agric. Food Chem. 60, 9562-9566. doi: 10.1021/jf302874g
Sunohara, Y., Baba, Y., Matsuyama, S., Fujimura, K., and Matsumoto, H. (2015). Screening and identification of phytotoxic volatile compounds in medicinal plants and characterizations of a selected compound, eucarvone. Protoplasma 252, 1047-1059. doi: 10.1007/s00709-014-0739-4
Synowiec, A., Mozdzen, K., Krajewska, A., Landi, M., and Araniti, F. (2019). Carum carvi L. essential oil: A promising candidate for botanical herbicide against Echinochloa crus-galli (L.) P. Beauv. in maize cultivation. Ind. Crops Prod. 140:111652. doi: 10.1016/j.indcrop.2019.111652
Synowiec, A., Mozdzen, K., and Skoczowski, A. (2015). Early physiological response of broccoli leaf to foliar application of clove oil and its main constituents. Ind. Crops Prod. 74, 523-529. doi: 10.1016/j.indcrop.2015.05.069
Tanoh, E. A., Boué, G. B., Nea, F., Genva, M., Wognin, E. L., Ledoux, A., et al. (2020). Seasonal effect on the chemical composition, insecticidal properties and other biological activities of zanthoxylum leprieurii guill & perr essential oils. Foods 9:550. doi: 10.3390/foods9050550
Teotia, D., Gaid, M., Saini, S. S., Verma, A., Yennamalli, R. M., Khare, S. P., et al. (2019). Cinnamate-CoA ligase is involved in biosynthesis of benzoate-derived biphenyl phytoalexin in Malus _ domestica ‘Golden Delicious’ cell cultures. Plant J. 100, 1176-1192. doi: 10.1111/tpj.14506
Trowbridge, A. M., and Stoy, P. C. (2013). “BVOC-mediated plant-herbivore interactions,” in Biology, Controls and Models of Tree Volatile Organic Compound Emissions, ed. K. M. Russell (Dordrecht: Springer Netherlands), 21-46. doi: 10.1007/978-94-007-6606-8_2
Vallat, A., Gu, H., and Dorn, S. (2005). How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry 66, 1540-1550. doi: 10.1016/j.phytochem.2005.04.038
Warneys, R., Gaucher, M., Robert, P., Aligon, S., Anton, S., Aubourg, S., et al. (2018). Acibenzolar-s-methyl reprograms apple transcriptome toward resistance to rosy apple aphid. Front. Plant Sci. 9:1795. doi: 10.3389/fpls.2018.01795
Wenig, M., Ghirardo, A., Sales, J. H., Pabst, E. S., Breitenbach, H. H., Antritter, F., et al. (2019). Systemic acquired resistance networks amplify airborne defense cues. Nat. Commun. 10:3813. doi: 10.1038/s41467-019-11798-2
Werrie, P.-Y., Durenne, B., Delaplace, P., and Fauconnier, M.-L. (2020). Phytotoxicity of essential oils: Opportunities and constraints for the development of biopesticides. A Review. Foods 9:1291. doi: 10.3390/foods9091291
Wise, J. C., VanWoerkom, A. H., Acimovic, S. G., Sundin, G. W., Cregg, B. M., and Vandervoort, C. (2014). Trunk injection: An alternative technique for pesticide delivery in apples. Crop Prot. 65, 173-185. doi: 10.1016/j.cropro.2014.05.017
Zeng, L., Wang, X., Kang, M., Dong, F., and Yang, Z. (2017). Regulation of the rhythmic emission of plant volatiles by the circadian clock. Int. J. Mol. Sci. 18:2408. doi: 10.3390/ijms18112408
Zhang, C., Fan, L., Fan, S., Wang, J., Luo, T., Tang, Y., et al. (2019). Cinnamomum cassia Presl: A review of its traditional uses, phytochemistry, pharmacology and toxicology. Molecules 24:3473. doi: 10.3390/molecules24193473