Microchip electrophoresis; Lab-on-a-chip; Pharmaceutical quality control; Miniaturization; Good manufacturing practices
Abstract :
[en] Quality control (QC) is a major concern in the pharmaceutical industry to ensure medicines quality and patient's safety. QC analysis are currently performed using several well-known separative and spectroscopic techniques. However, current trends are focused on the development of high performance techniques for reducing analysis time and cost and decreasing ecological footprint. In this context, analytical scientists developed microfluidic techniques such as microchip electrophoresis (MCE). This paper provides an overview of MCE system development and applications in perspectives with the requirements of QC analysis. The objective of the present review is to evaluate if MCE could be, now or in the future, a suitable alternative for pharmaceutical quality control. The quantitative performances of published MCE methods are deeply discussed using precision criterion (RSD) as a common thread.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Chemistry Pharmacy, pharmacology & toxicology
Author, co-author :
Dispas, Amandine ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
Emonts, Paul ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
Fillet, Marianne ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
Language :
English
Title :
Microchip electrophoresis: A suitable analytical technique for pharmaceuticals quality control ? A critical review
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Masson, P., Quality control techniques for routine analysis with liquid chromatography in laboratories. J. Chromatogr. A 27 (2007), 168–170, 10.1016/j.chroma.2007.03.003.
Deidda, R., Sacré, P.-Y., Clavaud, M., Coic, L., Avohou, H., Hubert, Ph, Ziemons, E., Vibrational spectroscopy in analysis of pharmaceuticals: critical review of innovative portable and handheld NIR and Raman spectrophotometers. TrAC Trends Anal. Chem. (Reference Ed.) 114 (2019), 251–259, 10.1016/j.trac.2019.02.035.
Kecskemeti, A., Gaspar, A., Particle-based liquid chromatographic separations in microfluidic devices – a review. Anal. Chim. Acta 1021 (2018), 1–19, 10.1016/j.aca.2018.01.064.
Nge, P.N., Rogers, C.I., Woolley, A.T., Advances in microfluidic materials, functions, integrations and applications. Chem. Rev. 113 (2013), 2550–2583, 10.1021/cr300337x.
Culberston, C.T., Mickleburgh, T.G., Stewart-James, S.A., Sellesn, K.A., Pressnall, M., Micro Total Analysis Systems: fundamental advances and biological applications. Anal. Chem. 86 (2014), 95–118, 10.1021/ac403688g.
Ai, Y., Zhang, F., Wang, C., Xie, R., Liang, Q., Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. TrAC Trends Anal. Chem. (Reference Ed.) 117 (2019), 215–230, 10.1016/j.trac.2019.06.026.
Vargas Medina, D.A., Soares Maciel, E.V., Mauro Lanças, F., Miniaturization of liquid chromatography coupled to mass spectrometry. A. Achievements on chip-based LC-MS devices. TrAC Trends Anal. Chem. (Reference Ed.), 131, 2020, 116003, 10.1016/j.trac.2020.116003.
Houbart, V., Servais, A.-C., Charlier, T.D., Pawluski, J.L., Abts, F., Fillet, M., A validated microfluidics-based LC-chip-MS/MS method for the quantitation of fluoxetine and norfluoxetine in rat serum. Electrophoresis 33 (2012), 3370–3379, 10.1002/elps.201200168.
Haghighi, F., Talebpour, Z., Sanati Nezhad, A., Towards fully integrated liquid chromatography on a chip: evolution and evaluation. TrAC Trends Anal. Chem. (Reference Ed.) 105 (2018), 302–337, 10.1016/j.trac.2018.05.002.
Felhofer, J.L., Blanes, L., Garcia, C.D., Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis 31 (2010), 2469–2486, 10.1002/elps.201000203.
Lewis, A.P., Cranny, A., Harris, N.R., Green, N.G., Wharton, J.A., Wood, R.J.K., Stokes, K.R., Review on the development of truly portable and in-situ capillary electrophoresis systems. Meas. Sci. Technol., 24, 2013, 042001, 10.1088/0957-0233/24/4/042001.
Karlinsey, J.M., Sample introduction techniques for microchip electrophoresis: a review. Anal. Chim. Acta 725 (2012), 1–13, 10.1016/j.aca.2012.02.052.
Gomez, F.J.V., Silva, M.F., Microchip electrophoresis tools for the analysis of small molecules. Dutta, D., (eds.) Microfluidic Electrophoresis. Methods in Molecular Biology, vol. 1906, 2019, Humana Press, New York, NY https://doi.org/10.1007/978-1-4939-8964-5_13.
Xu, J., Wang, A., Chen, H., Kong, J., Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments. Talanta 80 (2009), 8–18, 10.1016/j.talanta.2009.06.039.
Eudralex – Volume 4 – Good manufacturing practice (GMP) guidelines https://ec.europa.eu/health/documents/eudralex/vol-4_en.
USP 1058 – Analytical instrument qualification.
Analytical Procedures and Methods Validation for Drugs and Biologics – Guidance for Industry, July 2015, U.S. Department of Health and Human Services, Food and Drug Administration http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm386366.pdf.
ICH Q2 R1 – Validation of analytical procedures: text and methodology.
Bouabidi, A., Rozet, E., Fillet, M., Ziemons, E., Chapuzet, E., Mertens, B., Klinkenberg, R., Ceccato, A., Talbi, M., Streel, B., Bouklouze, A., Boulanger, B., Hubert, Ph, Critical analysis of several analytical method validation strategies in the framework of the fit for purpose concept. J. Chromatogr. A 1217 (2010), 3180–3192, 10.1016/j.chroma.2009.08.051.
ICH M10 – Bioanalytical method validation.
Staub, A., Guillarme, D., Schappler, J., Veuthey, J.-L., Rudaz, S., Intact protein review in the biopharmaceutical field. J. Pharmaceut. Biomed. Anal. 55 (2011), 810–822, 10.1016/j.jpba.2011.01.031.
Cai, H., Song, Y., Zhang, J., Shi, T., Fu, Y., Li, R., Mussa, N., Li, Z.J., Optimization of microchip-based electrophoresis for monoclonal antibody product quality analysis revealed needs for extra surfactants during denaturation. J. Pharmaceut. Biomed. Anal. 120 (2016), 46–56, 10.1016/j.jpba.2015.10.041.
Gagi, Y., Kakehi, K., Hayakawa, T., Suzuki, S., Application of microchip electrophoresis sodium dodecyl sulfate for the evaluation of change of degradation species of therapeutic antibodies in stability testing. Anal. Sci. 30 (2014), 483–488, 10.2116/analsci.30.483.
Chen, C.-H.A., Houel, S., Agnew, B.J., Lin, S., Zhou, K., Josephs, J., Paulus, A., Huhmer, A.F.R., Quick screening of intact antibodies and antibody-drug conjugates with integrated microfluidic capillary electrophoresis and mass spectrometry. ThermoFischer Sci Appl Note, 2017, 732358.
Redman, E.A., Mellors, J.S., Starkey, J.A., Ramsey, J.M., Characterization of intact antibody drug conjugate variants using microfluidic capillary electrophoresis-mass spectrometry. Anal. Chem. 88 (2016), 2220–2226, 10.1021/acs.analchem.5b03866.
Matsuno, Y.-K., Kinoshiro, M., Kakehi, K., Fast analysis of glycosaminoglycans by microchip electrophoresis with in situ fluorescent detection using ethidium bromide. J. Pharmaceut. Biomed. Anal. 37 (2005), 428–436, 10.1016/j.jpba.2004.11.024.
Wang, Y., Zhang, P., Yao, S., Zou, W., Zhang, Y., Adams, E., Hu, C., Integrative strategy to determine residual proteins in cefaclor produced by immobilized penicillin G acylase. J. Pharmaceut. Biomed. Anal., 185, 2020, 113229, 10.1016/j.jpba.2020.113229.
Lloyd, A., Russel, M., Blanes, L., Somerville, R., Doble, P., Roux, C., The application of portable microchip electrophoresis for the screening and comparative analysis of synthetic cathinone seizures. Forensic Sci. Int. 242 (2014), 16–23, 10.1016/j.forsciint.2014.06.013.
Lloyd, A., Russell, M., Blanes, L., Doble, P., Roux, C., Lab-on-a-chip screening of methamphetamine and pseudoephedrine in samples from clandestine laboratories. Forensic Sci. Int. 228 (2013), 8–14, 10.1016/j.forsciint.2013.01.036.
Lloyd, A., Blances, L., Beavis, A., Roux, C., Doble, P., A rapid method for the in-field analysis of amphetamines employing the Agilent Bioanalyser. Anal. Meth. 3 (2011), 1535–1539, 10.1039/C1AY05078H.
Troska, P., Pobozy, E., Nemethova, Z., Masar, M., Determination of commonly used excipients in pharmaceutical preparations by microchip electrophoresis with conductivity detection. Chromatographia 82 (2019), 741–748, 10.1007/s10337-019-03691-3.
Guihen, E., Sisk, G.D., Scully, N.M., Glennon, J.D., Rapid analysis of atorvastatin calcium using capillary electrophoresis and microchip electrophoresis. Electrophoresis 27 (2006), 2338–2347, 10.1002/elps.200500899.
Guihen, E., Hogan, A.-M., Glennon, J.D., High-speed microchip electrophoresis method for the separation of (R,S)-naproxen. Chirality 21 (2009), 292–298, 10.1002/chir.20575.
Crevillen, A.G., Pumera, M., Gonzalez, M.C., Escarpa, A., Carbon nanotube disposable detectors in microchip capillary electrophoresis for water-soluble vitamin determination: analytical possibilities in pharmaceutical quality control. Electrophoresis 29 (2008), 2997–3004, 10.1002/elps.200700947.
Yang, X., Zhao, J., Chen, S., Huang, Y., Zhaok, S., An ultrasensitive microchip electrophoresis chemiluminescence assay platform for detection of trace biomolecules. J. Chromatogr. A, 1613, 2020, 460693, 10.1016/j.chroma.2019.460693.
Yang, B., Li, X.-C., Yang, F., Feng, J., Lin, M.-Y., Chen, Z.-G., Electrochemiluminescence detection system for microchip capillary electrophoresis and its application to pharmaceutical analysis. Microchim Acta 175 (2011), 193–199, 10.1007/s00604-011-0670-8.
Huang, Y., Zhao, S., Shi, M., Liang, H., A microchip electrophoresis strategy with online labeling and chemiluminescence detection for simultaneous quantification of thiol drugs. J. Pharmaceut. Biomed. Anal. 55 (2011), 889–894, 10.1016/j.jpba.2011.03.007.
Tycova, A., Gerhardt, R.F., Belder, D., Surface enhanced Raman spectroscopy in microchip electrophoresis. J. Chromatogr. A 1542 (2018), 39–46, 10.1016/j.chroma.2018.02.014.
Crevillen, A.G., Barrigas, I., Blasco, A.J., Gonzalez, M.C., Escarpa, A., Microchip-electrochemistry route for rapid screening of hydroquinone and arbutin from miscellaneous samples: investigation of the robustness of a simple cross-injection system. Anal. Chim. Acta 562 (2006), 137–144, 10.1016/j.aca.2006.01.052.
Rudasova, M., Masar, M., Precise determination of N-acetylcysteine in pharmaceuticals by microchip electrophoresis. J. Separ. Sci. 39 (2016), 433–439, 10.1002/jssc.201501025.
Ly, J., Ha, N.S., Cheung, S., van Dam, R.M., Toward miniaturized analysis of chemical identity and purity of radiopharmaceuticals via microchip electrophoresis. Anal. Bioanal. Chem. 410 (2018), 2423–2436, 10.1007/s00216-018-0924-y.
Ha, N.S., Ly, J., Jones, J., Cheung, S., van Dam, R.M., Novel volumetric method for highly repeatable injection in microchip electrophoresis. Anal. Chim. Acta 985 (2017), 129–140, 10.1016/j.aca.2017.05.037.
Dossi, N., Toniolo, R., Susmel, S., Pizzariello, A., Bontempelli, G., A simple approach to the hydrodynamic injection in microchip electrophoresis with electrochemical detection. Electrophoresis 31 (2010), 2541–2547, 10.1002/elps.201000089.
Chong, K.C., Thang, L.Y., Quirino, J.P., H, H., See, Monitoring of vancomycin in human plasma via portable microchip electrophoresis with contactless conductivity detector and multi-stacking strategy. J. Chromatogr. A 1485 (2017), 142–146, 10.1016/j.chroma.2017.01.012.
Xiao, M.-W., Bai, X.-L., Liu, Y.-M., Yang, L., Hu, Y.-D., Liao, X., Rapid quantification of aloin A and B in aloe plants and aloe-containing beverages, and pharmaceutical preparations by microchip capillary electrophoresis with laser induced fluorescence detection. J. Separ. Sci. 42 (2018), 3772–3781, 10.1002/jssc.201800338.
Belder, D., Tolba, K., Nagl, S., Rapid quantitative determination of ephedra alkaloids in tablet formulations and human urine by microchip electrophoresis. Electrophoresis 32 (2011), 440–447, 10.1002/elps.201000476.
Tolba, K., Belder, D., Fast quantitative determination of diuretic drugs in tablets and human urine by microchip electrophoresis with native fluorescence detection. Electrophoresis 28 (2007), 2934–2941, 10.1002/elps.200600520.
Zhang, B., Chen, Z., Yu, Y., Yang, J., Pan, J., Determination of sulfonamides in pharmaceuticals and rabbit plasma by microchip electrophoresis with LED-IF detection. Chromatographia 76 (2013), 821–829, 10.1007/s10337-013-2479-6.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.