[en] Species distribution models (SDMs) are commonly used with climate only to predict animal distribution changes. This approach however neglects the evolution of other components of the niche, like food resource availability. SDMs are also commonly used with plants. This also suffers limitations, notably an inability to capture the fertilizing effect of the rising CO2 concentration strengthening resilience to water stress. Alternatively, process-based dynamic vegetation models (DVMs) respond to CO2 concentration. To test the impact of the plant modelling method to model plant resources of animals, we studied the distribution of a Bolivian macaw, assuming that, under future climate, DVMs produce more conservative results than SDMs. We modelled the bird with an SDM driven by climate. For the plant, we used SDMs or a DVM. Under future climates, the macaw SDM showed increased probabilities of presence over the area of distribution and connected range extensions. For plants, SDMs did not forecast overall response. By contrast, the DVM produced increases of productivity, occupancy and diversity, also towards higher altitudes. The results offered positive perspectives for the macaw, more optimistic with the DVM than with the SDMs, than initially assumed. Nevertheless, major common threats remain, challenging the short-term survival of the macaw.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Hambuckers, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
de Harenne, Simon ; Université de Liège > Biologie du comportement - Ethologie et psychologie animale
Rocha Ledezma, Eberth
Zuniga Zeballos, Lilian ; Université de Liège > Biologie du comportement - Ethologie et Psychologie animale
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Language :
English
Title :
Predicting the Future Distribution of Ara rubrogenys, an Endemic Endangered Bird Species of the Andes, Taking Into Account Trophic Interactions
Publication date :
2021
Journal title :
Diversity
Publisher :
MDPI, Basel, Switzerland
Special issue title :
Ecology and Conservation of Parrots in Their Native and Non-Native Ranges
Şekercioğlu, Çağan H.; Primack, R.B.; Wormworth, J. The effects of climate change on tropical birds. Biol. Conserv. 2012, 148, 1–18, doi:10.1016/j.biocon.2011.10.019.
La Sorte, F.A.; Jetz, W. Tracking of climatic niche boundaries under recent climate change. J. Anim. Ecol. 2012, 81, 914–925, doi:10.1111/j.1365-2656.2012.01958.x.
Orme, C.D.L.; Davies, R.G.; Burgess, M.; Eigenbrod, F.; Pickup, N.; Olson, V.A.; Webster, A.J.; Ding, T.-S.; Rasmussen, P.C.; Ridgely, R.S.; et al. Global hotspots of species richness are not congruent with endemism or threat. Nat. Cell Biol. 2005, 436, 1016–1019, doi:10.1038/nature03850.
Herzog, S.K.; Maillard, O.; Embert, D.; Caballero, P.; Quiroga, D. Range size estimates of Bolivian endemic bird species revisited: the importance of environmental data and national expert knowledge. J. Ornithol. 2012, 153, 1189–1202, doi:10.1007/s10336-012-0850-2.
Lanning, D.V. Distribution and breeding biology of the Red-fronted Macaw. Wilson Bull. 1991, 103, 357–365.
Tella, J.; Rojas, A.; Carrete, M.; Hiraldo, F. Simple assessments of age and spatial population structure can aid conservation of poorly known species. Biol. Conserv. 2013, 167, 425–434, doi:10.1016/j.biocon.2013.08.035.
Herzog, S.K.; Kessler, M.; Maijer, S.; Hohnwald, S. Distributional notes on birds of Andean dry forests in Bolivia. Bull. B.O.C. 1997, 117, 223–235.
Boussekey, M.; Saint-Pie, J.; Morvan, O. Observations on a population of Red-fronted Macaws Ara rubrogenys in the Río Caine valley, central Bolivia. Bird Conserv. Int. 1991, 1, 335–350, doi:10.1017/s0959270900000691.
Pitter, E.; Christiansen, M.B. Ecology, status and conservation of the Red-fronted Macaw Ara rubrogenys. Bird Conserv. Int. 1995, 5, 61–78, doi:10.1017/s0959270900002951.
Herrera, M.; Hennessey, B. Quantifying the illegal parrot trade in Santa Cruz de la Sierra, Bolivia, with emphasis on threatened species. Bird Conserv. Int. 2007, 17, 295–300, doi:10.1017/s0959270907000858.
Rojas, A.; Zeballos, A.; Rocha, E.; Balderrama, J.A. Ara Rubrogenys Lafrenaye 1847; Ministerio de Medio Ambiente y Agua: La Paz, Bolivia, 2009; pp. 332–334.
BirdLife International. Ara rubrogenys. The IUCN Red List of Threatened Species 2018. Available online: https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22685572A131382876.en (accessed on 21 September 2020).
Rangecroft, S.; Harrison, S.; Anderson, K.; Magrath, J.; Castel, A.P.; Pacheco, P. Climate Change and Water Resources in Arid Mountains: An Example from the Bolivian Andes. Ambio 2013, 42, 852–863, doi:10.1007/s13280-013-0430-6.
Botero-Delgadillo, E.; Páez, C.A.; Bayly, N. Biogeography and conservation of Andean and Trans-Andean populations of Pyrrhura parakeets in Colombia: Modelling geographic distributions to identify independent conservation units. Bird Conserv. Int. 2012, 22, 445–461, doi:10.1017/s0959270912000196.
Ferrer-Paris, J.R.; Sánchez-Mercado, A.; Rodríguez-Clark, K.M.; Rodríguez, J.P.; Rodríguez, G.A. Using limited data to detect changes in species distributions: Insights from Amazon parrots in Venezuela. Biol. Conserv. 2014, 173, 133–143, doi:10.1016/j.biocon.2013.07.032.
Marini, M. Ângelo; Barbet-Massin, M.; Martinez, J.; Prestes, N.P.; Jiguet, F. Applying ecological niche modelling to plan conservation actions for the Red-spectacled Amazon (Amazona pretrei). Biol. Conserv. 2010, 143, 102–112, doi:10.1016/j.biocon.2009.09.009.
Cardador, L.; Lattuada, M.; Strubbe, D.; Tella, J.L.; Reino, L.; Figueira, R.; Carrete, M. Regional Bans on Wild-Bird Trade Modify Invasion Risks at a Global Scale. Conserv. Lett. 2017, 10, 717–725, doi:10.1111/conl.12361.
López-López, P.; García-Ripollés, C.; Aguilar, J.M.; Garcia-López, F.; Verdejo, J. Modelling breeding habitat preferences of Bonelli’s eagle (Hieraaetus fasciatus) in relation to topography, disturbance, climate and land use at different spatial scales. J. Ornithol. 2005, 147, 97–106, doi:10.1007/s10336-005-0019-3.
Preston, K.L.; Rotenberry, J.T.; Redak, R.A.; Allen, M.F. Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions. Glob. Chang. Biol. 2008, 14, 2501–2515, doi:10.1111/j.1365-2486.2008.01671.x.
Pidgeon, A.M.; Rivera, L.; Martinuzzi, S.; Politi, N.; Bateman, B.L. Will representation targets based on area protect critical resources for the conservation of the Tucuman Parrot? Condor 2015, 117, 503–517, doi:10.1650/condor-14-214.1.
Fitter, A.; Hay, R. Environmental Physiology of Plants; Elsevier: Amsterdam, The Netherlands, 2002; p. 367.
Smith, N.G.; Dukes, J.S. Plant respiration and photosynthesis in global-scale models: Incorporating acclimation to temperature and COGlob. Chang. Biol. 2012, 19, 45–63, doi:10.1111/j.1365-2486.2012.02797.x.
Dury, M.; Hambuckers, A.; Warnant, P.; Henrot, A.; Favre, E.; Ouberdous, M.; François, L. Responses of European forest ecosystems to 21st century climate: assessing changes in interannual variability and fire intensity. iForest-Biogeosciences For. 2011, 4, 82–99, doi:10.3832/ifor0572-004.
Raghunathan, N.; François, L.; Huynen, M.-C.; Oliveira, L.C.; Hambuckers, A. Modelling the distribution of key tree species used by lion tamarins in the Brazilian Atlantic forest under a scenario of future climate change. Reg. Environ. Chang. 2014, 15, 683–693, doi:10.1007/s10113-014-0625-9.
Blanco, G.; Hiraldo, F.; Rojas, A.; Dénes, F.V.; Tella, J.L. Parrots as key multilinkers in ecosystem structure and functioning. Ecol. Evol. 2015, 5, 4141–4160, doi:10.1002/ece3.1663.
Burgman, M.A.; Fox, J.C. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim. Conserv. 2003, 6, 19–28, doi:10.1017/s1367943003003044.
Pateiro-López, B.; Rodríguez-Casal, A. Generalizing the Convex Hull of a Sample: TheRPackagealphahull. J. Stat. Softw. 2010, 34, 1–28, doi:10.18637/jss.v034.i05.
Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315, doi:10.1002/joc.5086.
The HadGEM2 Development Team: G.M.Martin; Bellouin, N.; Collins, W.J.; Culverwell, I.D.; Halloran, P.R.; Hardiman, S.C.; Hinton, T.J.; Jones, C.D.; McDonald, R.E.; McLaren, A.J.; et al. The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev. 2011, 4, 723–757, doi:10.5194/gmd-4-723-2011.
Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756, doi:10.1038/nature08823.
Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013, doi:10.1017/CBO9781107415324.
Warnant, P.; François, L.; Strivay, D.; Gérard, J.-C. CARAIB: A global model of terrestrial biological productivity. Glob. Biogeochem. Cycles 1994, 8, 255–270, doi:10.1029/94gb00850.
Gérard, J.C.; Nemry, B.; François, L.M.; Warnant, P. The interannual change of atmospheric CO2: Contribution of subtropical ecosystems? Geophys. Res. Lett. 1999, 26, 243–246, doi:10.1029/1998gl900269.
Otto, D.; Rasse, D.; Kaplan, J.; Warnant, P.; François, L. Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures. Glob. Planet. Chang. 2002, 33, 117–138, doi:10.1016/s0921-8181(02)00066-8.
François, L.; Goddéris, Y.; Munhoven, G. Modelling the interactions between biospheric and weathering processes: towards a mechanistic description of the land environment. Mineral. Mag. 1998, 62A, 468–469.
François, L.M.; Goddéris, Y.; Warnant, P.; Ramstein, G.; De Noblet, N.; Lorenz, S. Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times. Chem. Geol. 1999, 159, 163–189, doi:10.1016/s00092541(99)00039-x.
François, L.; Ghislain, M.; Otto, D.; Micheels, A. Late Miocene vegetation reconstruction with the CARAIB model. Palaeogeogr. Palaeoclim. Palaeoecol. 2006, 238, 302–320, doi:10.1016/j.palaeo.2006.03.034.
François, L.; Utescher, T.; Favre, E.; Henrot, A.-J.; Warnant, P.; Micheels, A.; Erdei, B.; Suc, J.-P.; Cheddadi, R.; Mosbrugger, V. Modelling Late Miocene vegetation in Europe: Results of the CARAIB model and comparison with palaeovegetation data. Palaeogeogr. Palaeoclim. Palaeoecol. 2011, 304, 359–378, doi:10.1016/j.palaeo.2011.01.012.
Henrot, A.-J.; François, L.; Favre, E.; Butzin, M.; Ouberdous, M.; Munhoven, G. Effects of CO2, continental distribution, topography and vegetation changes on the climate at the Middle Miocene: a model study. Clim. Past 2010, 6, 675–694, doi:10.5194/cp-6-675-2010.
Henrot, A.-J.; Utescher, T.; Erdei, B.; Dury, M.; Hamon, N.; Ramstein, G.; Krapp, M.; Herold, N.; Goldner, A.; Favre, E.; et al. Middle Miocene climate and vegetation models and their validation with proxy data. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 467, 95–119, doi:10.1016/j.palaeo.2016.05.026.
Chang, J.; Ciais, P.; Wang, X.; Piao, S.; Asrar, G.; Betts, R.; Chevallier, F.; Dury, M.; François, L.; Frieler, K.; et al. Benchmarking carbon fluxes of the ISIMIP2a biome models. Environ. Res. Lett. 2017, 12, 045002, doi:10.1088/1748-9326/aa63fa.
Fontaine, C.M.; Dendoncker, N.; De Vreese, R.; Jacquemin, I.; Marek, A.; Van Herzeleg, A.; Devillet, G.; Mortelmans, D.; François, L. Towards participatory integrated valuation and modelling of ecosystem services under land-use change. J. Land Use Sci. 2014, 9, 278–303, doi:10.1080/1747423x.2013.786150.
Minet, J.; Laloy, E.; Tychon, B.; Francois, L. Bayesian inversions of a dynamic vegetation model at four European grassland sites. Biogeosciences 2015, 12, 2809–2829, doi:10.5194/bg-12-2809-2015.
Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; et al. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agric. Syst. 2018, 159, 209–224, doi:10.1016/j.agsy.2017.08.004.
Cheddadi, R.; Henrot, A.-J.; François, L.; Boyer, F.; Bush, M.; Carré, M.; Coissac, E.; De Oliveira, P.E.; Ficetola, F.; Hambuckers, A.; et al. Microrefugia, Climate Change, and Conservation of Cedrus atlantica in the Rif Mountains, Morocco. Front. Ecol. Evol. 2017, 5, doi:10.3389/fevo.2017.00114.
Dury, M.; Mertens, L.; Fayolle, A.; Verbeeck, H.; Hambuckers, A.; François, L. Refining Species Traits in a Dynamic Vegetation Model to Project the Impacts of Climate Change on Tropical Trees in Central Africa. Forests 2018, 9, 722, doi:10.3390/f9110722.
Raghunathan, N.; François, L.; Dury, M.; Hambuckers, A. Contrasting climate risks predicted by dynamic vegetation and ecological niche-based models applied to tree species in the Brazilian Atlantic Forest. Reg. Environ. Chang. 2018, 19, 219–232, doi:10.1007/s10113-018-1405-8.
Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232, doi:10.1111/j.1365-2664.2006.01214.x.
Segurado, P.; Araújo, M.B. An evaluation of methods for modelling species distributions. J. Biogeogr. 2004, 31, 1555–1568, doi:10.1111/j.1365-2699.2004.01076.x.
Meynard, C.N.; Quinn, J.F. Predicting species distributions: a critical comparison of the most common statistical models using artificial species. J. Biogeogr. 2007, 34, 1455–1469, doi:10.1111/j.1365-2699.2007.01720.x.
Bedia, J.; Busqué, J.; Gutiérrez, J.M. Predicting plant species distribution across an alpine rangeland in northern Spain. A comparison of probabilistic methods. Appl. Veg. Sci. 2011, 14, 415–432, doi:10.1111/j.1654-109x.2011.01128.x.
King, G.; Zeng, L.; Tomz, M. Logistic Regression in Rare Events Data. J. Stat. Softw. 2003, 8, 1–27, doi:10.18637/jss.v008.i02.
Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151, doi:10.1111/j.2006.0906-7590.04596.x.
Calcagno, V.; De Mazancourt, C. glmulti: AnRPackage for Easy Automated Model Selection with (Generalized) Linear Models. J. Stat. Softw. 2010, 34, 1–29, doi:10.18637/jss.v034.i12.
Vanderwal, J.; Shoo, L.P.; Graham, C.; Williams, S.E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecol. Model. 2009, 220, 589–594, doi:10.1016/j.ecolmodel.2008.11.010.
VanDerWal, J.; Lorena Falconi, L.; Januchowski, S.; Shoo, L.; Storlie, C. Species Distribution Modelling Tools: Tools for Pro Cessing Data Associated With Species Distribution Modelling Exercises. 2014. Available online: https://www.rforge.net/SDMTools/(accessed on 26 November 2020).
Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 2012, 36, 27–46, doi:10.1111/j.1600-0587.2012.07348.x.
Bolliger, J.; Kienast, F.; Bugmann, H. Comparing models for tree distributions: concept, structures, and behavior. Ecol. Model. 2000, 134, 89–102, doi:10.1016/s0304-3800(00)00338-0.
Morin, X.; Thuiller, W. Comparing niche-and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecolology 2009, 90, 1301–1313, doi:10.1890/08-0134.1.
Cheaib, A.; Badeau, V.; Boe, J.; Chuine, I.; Delire, C.; Dufrêne, E.; François, C.; Gritti, E.S.; Legay, M.; Pagé, C.; et al. Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol. Lett. 2012, 15, 533–544, doi:10.1111/j.1461-0248.2012.01764.x.
Takolander, A.; Hickler, T.; Meller, L.; Cabeza, M. Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models. Reg. Environ. Chang. 2018, 19, 251–266, doi:10.1007/s10113-018-1403 x.
Ramirez-Villegas, J.; Cuesta, F.; Devenish, C.; Peralvo, M.; Jarvis, A.; Arnillas, C.A. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J. Nat. Conserv. 2014, 22, 391–404, doi:10.1016/j.jnc.2014.03.007.
Fadrique, B.; Báez, S.; Duque, Álvaro; Malizia, A.; Blundo, C.; Carilla, J.; Osinaga-Acosta, O.; Malizia, L.; Silman, M.; Farfán Ríos, W.; et al. Widespread but heterogeneous responses of Andean forests to climate change. Nat. Cell Biol. 2018, 564, 207– 212, doi:10.1038/s41586-018-0715-9.
Steinbauer, M.J.; Grytnes, J.-A.; Jurasinski, G.; Kulonen, A.; Lenoir, J.; Pauli, H.; Rixen, C.; Winkler, M.; Bardy-Durchhalter, M.; Barni, E.; et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nat. Cell Biol. 2018, 556, 231–234, doi:10.1038/s41586-018-0005-6.
Heinrich, B. Why Have Some Animals Evolved to Regulate a High Body Temperature? Am. Nat. 1977, 111, 623–640, doi:10.1086/283196.
McKechnie, A.E.; Wolf, B.O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 2009, 6, 253–256, doi:10.1098/rsbl.2009.0702.
Tingley, M.W.; Monahan, W.B.; Beissinger, S.R.; Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl. Acad. Sci. 2009, 106, 19637–19643, doi:10.1073/pnas.0901562106.
Avalos, V.D.R.; Hernández, J. Projected distribution shifts and protected area coverage of range-restricted Andean birds under climate change. Glob. Ecol. Conserv. 2015, 4, 459–469, doi:10.1016/j.gecco.2015.08.004.
Williams, S.; Williams, Y.M.; Vanderwal, J.; Isaac, J.L.; Shoo, L.P.; Johnson, C.N. Ecological specialization and population size in a biodiversity hotspot: How rare species avoid extinction. Proc. Natl. Acad. Sci. USA. 2009, 106, 19737–19741, doi:10.1073/pnas.0901640106.
Early, R.; Sax, D.F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 2014, 23, 1356–1365, doi:10.1111/geb.12208.
Bocsi, T.; Allen, J.M.; Bellemare, J.; Kartesz, J.; Nishino, M.; Bradley, B.A. Plants’ native distributions do not reflect climatic tolerance. Divers. Distrib. 2016, 22, 615–624, doi:10.1111/ddi.12432.
Abellán, P.; Tella, J.L.; Carrete, M.; Cardador, L.; Anadón, J.D. Climate matching drives spread rate but not establishment success in recent unintentional bird introductions. Proc. Natl. Acad. Sci. USA. 2017, 114, 9385–9390, doi:10.1073/pnas.1704815114.
Hartig, F.; Dyke, J.G.; Hickler, T.; Higgins, S.I.; O’Hara, R.B.; Scheiter, S.; Huth, A. Connecting dynamic vegetation models to data-an inverse perspective. J. Biogeogr. 2012, 39, 2240–2252, doi:10.1111/j.1365-2699.2012.02745.x.
Bloomfield, K.J.; Cernusak, L.A.; Eamus, D.; Ellsworth, D.S.; Prentice, I.C.; Wright, I.J.; Boer, M.M.; Bradford, M.G.; Cale, P.; Cleverly, J.; et al. A continental-scale assessment of variability in leaf traits: Within species, across sites and between seasons. Funct. Ecol. 2018, 32, 1492–1506, doi:10.1111/1365-2435.13097.
Gillison, A.N. Plant functional indicators of vegetation response to climate change, past present and future: I. Trends, emerging hypotheses and plant functional modality. Flora-Morphol. Distrib. Funct. Ecol. Plants 2019, 254, 12–30, doi:10.1016/j.flora.2019.03.013.
Modeling past plant species’ distributions in mountainous areas: A way to improve our knowledge of future climate change impacts? Past Glob. Chang. Mag. 2020, 28, 16–17, doi:10.22498/pages.28.1.16.
Kattge, J.; Bönisch, G.; Díaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Tautenhahn, S.; Werner, G.D.A.; Aakala, T.; Abedi, M.; et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 2019, 26, 119–188, doi:10.1111/gcb.14904.
Rojas, A.; Yucra, E.; Vera, I.; Requejo, A.; Tella, J. A new population of the globally Endangered Red-fronted Macaw Ara rubrogenys unusually breeding in palms. Bird Conserv. Int. 2012, 24, 389–392, doi:10.1017/s095927091200038x.
Blanco, G.; Morinha, F.; Roques, S.; Hiraldo, F.; Rojas, A.; Tella, J.L. Fine-scale genetic structure in the critically endangered red-fronted macaw in the absence of geographic and ecological barriers. Sci. Rep. 2021, 11, 1–17, doi:10.1038/s41598-02079575-6.
Spooner, F.E.B.; Pearson, R.G.; Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Chang. Biol. 2018, 24, 4521–4531, doi:10.1111/gcb.14361.