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Abstract: Species distribution models (SDMs) are commonly used with climate only to predict ani-
mal distribution changes. This approach however neglects the evolution of other components of the 
niche, like food resource availability. SDMs are also commonly used with plants. This also suffers 
limitations, notably an inability to capture the fertilizing effect of the rising CO2 concentration 
strengthening resilience to water stress. Alternatively, process-based dynamic vegetation models 
(DVMs) respond to CO2 concentration. To test the impact of the plant modelling method to model 
plant resources of animals, we studied the distribution of a Bolivian macaw, assuming that, under 
future climate, DVMs produce more conservative results than SDMs. We modelled the bird with an 
SDM driven by climate. For the plant, we used SDMs or a DVM. Under future climates, the macaw 
SDM showed increased probabilities of presence over the area of distribution and connected range 
extensions. For plants, SDMs did not forecast overall response. By contrast, the DVM produced 
increases of productivity, occupancy and diversity, also towards higher altitudes. The results of-
fered positive perspectives for the macaw, more optimistic with the DVM than with the SDMs, than 
initially assumed. Nevertheless, major common threats remain, challenging the short-term survival 
of the macaw. 

Keywords: red-fronted macaw; Andes; dynamic vegetation model; biotic interactions; climate 
change; RCP2.6; RCP8.5 
 

1. Introduction 
The problems of habitat destruction and climate change are the main threat to tropi-

cal mountain birds. Mountain bird species in the tropics are particularly at risk because 
they are isolated by hotter lowland zones which often makes them sedentary. In addition, 
when shifting their distribution up to higher altitudes, the new area of occupancy narrows 
[1]. The structure of the mountains itself also appears to be a constraining factor limiting 
the distribution shift with possible decline of habitat quality, for instance, the absence of 
suitable nesting sites or even vertical gaps between actual and potential future areas of 
distribution [2]. 

The slopes of the Andes are recognized as supporting the highest avian diversity in 
the world combined with high endemism rate but also more than 20% of threatened spe-
cies [3]. In Bolivia, the red-fronted macaw (Ara rubrogenys Lafresnaye, 1847) is one of the 
15 endemic species of this country [4]. Less than 30 years ago, A. rubrogenys was a little-
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known species [5]. It lives on the east Andean slopes of south-central Bolivia from 553 m 
up to 3094 m a.s.l. (Figure 1) and breeds between 1188 and 2696 m [6]. Its natural habitat 
is mainly semi-deciduous dry forest but this is most often severely degraded by pastoral-
ism and by timber extraction into thorny scrubs with scattered trees [7]. While it was esti-
mated that the threats were of limited extent in the early nineties [8], the status of the 
species worsens over the course of time with land conversion for agriculture, with poach-
ing for illegal trade, with killing by farmers who consider them a pest and with poisoning 
with pesticides when they feed on the crops [6,9–11]. The small breeding population (only 
67 to 136 pairs) in eight close areas was also pointed out as major risk which increases 
their extinction risk due to correlated environmental fluctuations [6]. It was found that the 
birds use agriculture-scrub ecotones more than the forests for foraging, probably because 
the forests do not offer enough resources. A. rubrogenys is now ranked as “Critically En-
dangered” in Bolivia [11] and on the International Union for Conservation of Nature Red 
list [12]. In addition, it could be particularly threatened by climate change. In its area of 
distribution, A. rubrogenys uses only terrains along river valleys for roosting, feeding, rest-
ing and nesting [9]. Most of the nesting sites are located in steep river cliffs but such envi-
ronments are not necessarily available at higher altitudes given the magnitude of warm-
ing predictions. Climate change is supposed to particularly affect the tropical Andes and 
notably Bolivia [13]; while warming already averaged 0.1 °C/decade between 1939 and 
1998, it accelerated to 0.33 °C/decade between 1980 and 2005. Climate change scenarios 
suggest warming as high as 7.5 °C by 2080 and important modifications of the precipita-
tion regime with respect to pre-industrial times. 

 
Figure 1. Distribution area (alpha hull) in Bolivia of Ara rubrogenys at altitudes with occurrences. 
96% of the pixels over the area have an altitude between 1100 and 3000 m. 

Species distribution models (SDMs) are based on the computation of an empirical 
relationship between the presence of a species (a sample of its distribution) and the actual 
values of the selected explaining factors. Range projections are obtained by computing a 
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probability of presence over the study area using the relationship. The methodology has 
been applied to parrots several times with different objectives. For instance, comparing 
the projection of models fitted to historical data with actual ranges allowed to study the 
conservation status of Andean Pyrrhura in Colombia [14] or of Amazona in Venezuela [15]. 
Thanks to climate driven SDMs, the substitution of the actual climate with future climate 
allows projection of decreasing and shifting ranges in Amazona pretrei [16]. Climate driven 
SDMs also permitted computing of habitat suitability of 13 parrot species in invaded 
countries and to test the consequences of two successive trade bans in the US and the EU 
on the invasion success [17]. In some situations, however, climate factors are not sufficient 
explaining variables, they only improve the fit of models describing the niches in combi-
nation with other factors reflecting species requirements like habitat characteristics. Au-
thors reached this conclusion for modelling Bonelli’s eagle nesting sites with topography, 
disturbance, land-use or climate variable at several geographic scales [18]. Bad results 
were obtained with climate variables only, but climate significantly improves the quality 
of the prediction offered by the other sets of variables. In light of their results, the authors 
suggest that snow and low winter temperature may cause physiological stress hampering 
breeding success; however, they underlined that with more complex models, the interpre-
tation of the effect of each explaining climate factor could become hard to find. Another 
interesting approach to model bird distribution consists of including biotic interactions as 
well as abiotic factors. For instance, in [19] SDMs driven by climate were used to simulate 
several shrub species making up the habitat of a bird species and the outputs of these 
models were set up as input variables to model animal presence with climate and topog-
raphy. The authors found that this approach outperforms climate only models, which 
stressed the importance of taking into account, as far as possible, the different types of 
niche components to produce consistent simulations. This SDM approach was applied to 
refine the mapping of the suitability area of Amazona tucumana in Argentina and Bolivia. 
Here, the niche was defined with climate, land-use and the output of another SDM fore-
casting the distribution of a key plant resource for nestlings, Podocarpus parlatorei, provid-
ing niche cavities and food [20]. 

However, while SDMs driven by climate variables are now considered as a standard 
method to predict plant species distribution under future climate, this approach fails to 
consider the effect of the increasing CO2 concentration in air on plant physiology. Indeed, 
it is well established that increased air CO2 concentration improves the capacity of plants 
to resist water stress because the plants can minimize transpiration while still satisfying 
their CO2 requirements [21]. Contrary to SDMs, dynamic vegetation models (DVMs) are 
commonly able to reproduce this effect. Although, questions remain about the acclimation 
(organism trait responses occurring in days to weeks) and adaptation processes of plants 
(response occurring through evolutionary processes) to new climates which could lower 
future changes [22]. Forecasting under future climates with these types of models, forcing, 
or not, the increasing air CO2 concentration, gives contrasting results and the projected 
distributions of plant species or habitats under future climate with increased CO2 concen-
trations appear better conserved than with SDMs (e.g., [23,24]). 

The objectives of this study are to evaluate the potential impact of climate change on 
the distribution of A. rubrogenys. We compare the results produced by SDMs driven by 
climate variables for A. rubrogenys and for 17 resource plant species over the area of A. 
rubrogenys and the results produced by a DVM for the same plant species, under present 
conditions and future climates (2070–2100) under RCP2.6 and RCP8.5 forcing. We predict 
that for the future, approaches with SDMs should conserve less of the original distribution 
area of A. rubrogenys than obtained with DVM. 

2. Materials and Methods 
2.1. Species Occurrences 
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Censuses of A. rubrogenys were conducted between 2008 and 2010 by two of us (E. 
Rocha Ledezma and L. Zúñiga Zeballos). The birds were observed between 5 and 11 a.m., 
in the course of linear surveys and near known nesting, feeding and roosting sites, while 
prospections were also realized in fields, forests and scrubs. Observations of A. rubrogenys 
in its area of distribution indicated that it mainly feeds on the fruits and seeds of the fol-
lowing wild species [25,26]: Anadenanthera colubrina (Vell.) Brenan, Anisocapparis speciosa 
(Griseb.) Cornejo and Iltis, Aspidosperma quebracho-blanco Schltdl., Celtis ehrenbergiana 
(Klotzsch) Liebm., Cenchrus (i.e., the species occurring in Bolivia in GBIF: C. alopecuroides 
J. Presl., C. bambusiformis (E. Fourn.) Morrone, C. brevisetus E. Fourn., C. brownii Roem. and 
Schult., C. chilensis (É. Desv.) Morrone, C. ciliaris L., C. echinatus L., C. insularis Scribn., C. 
latifolius (Spreng.) Morrone, C. longisetus M.C. Johnst, C. myosuroides Kunth, C. nervosus 
(Nees) Kuntze, C. polystachios (L.) Morrone, C. purpureus (Schumach.) Morrone, C. setosus 
Sw., C. viridis Spreng.), Cnidoscolus tubulosus I.M. Johnst., Jatropha hieronymi Kuntze, 
Lithraea molleoides Engl. (only occurrences in South America), Loxopterygium grisebachii Hi-
ern ex Griseb., Neoraimondia herzogiana (Backeb.) Buxb. and Krainz, Parasenegalia visco (Lo-
rentz ex Griseb.) Seigler and Ebinger, Parkinsonia praecox (Ruiz and Pav.) Hawkins, 
Prosopis chilensis Stuntz, Prosopis kuntzei Harms ex Kuntze, Sarcomphalus mistol (Griseb.) 
Hauenschild, Schinopsis marginata Engl. and Selaginella sellowii Hieron. We obtained the 
plant species coordinates of occurrences by querying the Global Diversity Information 
Facility site database (GBIF) in January 2017 and in August 2020, further checking for du-
plicates (Table 1). A second check for duplicates was conducted after combining with cli-
mate factors for coordinates belonging to the same pixels. This had limited consequences 
on plant sample size but not for A. rubrogenys sample size which dropped to 63. A. ru-
brogenys’ area of distribution was defined with the alpha-hull polygon method [27] using 
the ashape function of the R package “alphahull” [28]. 

Table 1. Species occurrences and data sources (Global Diversity Information Facility site database: GBIF). 

Species Occurrences Sources 

Anadenanthera colubrina 3272 
GBIF.org (12 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.xccvu7 

Anisocapparis speciosa 218 
GBIF.org (12 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.xxw4c9 
Ara rubrogenys 159 This study 

Aspidosperma quebracho-blanco 394 
GBIF.org (12 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.xccvu7 

Celtis ehrenbergiana 2528 
GBIF.org (11 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.ph4g3s 

Cenchrus 8069 
GBIF.org (12 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.3s3af9 

Cnidoscolus tubulosus. 159 
GBIF.org (6th January 2017) GBIF Occurrence Download 

http://doi.org/10.15468/dl.wwofy0 

Jatropha hieronymi 96 
GBIF.org (6th January 2017) GBIF Occurrence Download 

http://doi.org/10.15468/dl.2ziu73,  

Lithraea molleoides 13,271 
GBIF.org (12 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.m45p2c 

Loxopterygium grisebachii 86 
GBIF.org (11 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.3zkvc4 

Neoraimondia herzogiana 29 
GBIF.org (12 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.xag67z 

Parasenegalia visco 34 
GBIF.org (12 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.mnw4qm 

Parkinsonia praecox 1123 
GBIF.org (12 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.fk3as9 

Prosopis chilensis  81 
GBIF.org (6th January 2017) GBIF Occurrence Download 

http://doi.org/10.15468/dl.dh9ski 
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Prosopis kuntzei Kuntze 68 
GBIF.org (6th January 2017) GBIF Occurrence Download 

http://doi.org/10.15468/dl.dh9ski 

Sarcomphalus mistol 217 
GBIF.org (11 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.mk3r74 

Schinopsis marginata Engl.  41 
GBIF.org (6th January 2017) GBIF Occurrence Down-

loadhttp://doi.org/10.15468/dl.ngmuf4 

Selaginella sellowii 924 
GBIF.org (21 August 2020) GBIF Occurrence Download 

https://doi.org/10.15468/dl.5d5hwt 

2.2. Climate Data 
For the current climate (monthly values for temperature, difference between maxi-

mum and minimum daily temperatures, precipitation, relative humidity, sunshine hours, 
wind speed), we used Worldclim version 2 for the time period between 1970 and 2000 at 
2.5 arc-minutes [29]. For the future climate, we used the CMIP5 projections of the 
HadGEM2-AO global circulation model [30] under the representative concentration path-
ways of greenhouse gases corresponding to end of 21st century radiative forcings of 2.6 
and 8.5 W/m2 (RCP2.6 and RCP8.5, [31]). RCP2.6 would require a decline of greenhouse 
gas to reach no emission after 2072. With respect to the pre-industrial period, this scenario 
would keep global temperature rise below 2 °C in 2100. RCP8.5 is the worst hypothesis 
with emission of greenhouse gases continuing to increase throughout the 21st century 
producing global temperature increase between 2.6 and 4.8 °C for the period 2081–2100 
[32]. 

2.3. Dynamic Vegetation Modelling 
The DVM CARAIB (CARbon Assimilation In the Biosphere) was mainly described 

in [23,33–36]. This model was initially conceived to simulate vegetation at global or conti-
nental scale and its response to climate change in the future or in the past [37–43]. The 
model was also applied to agricultural systems [44–46] or to tree species [24,47–49]. It is a 
grid point model composed of 5 main interacting modules (hydrology budget, photosyn-
thesis and stomatal regulation, carbon allocation and growth, heterotrophic respiration 
and carbon dynamics in the soil, competition between ecosystem strata and biogeogra-
phy) and it is also possible to activate natural fire and migration modules. Input data are 
spatial monthly climates (minimal and maximal temperature, precipitation, relative hu-
midity, sunshine hours and wind speed), CO2 air concentration, soil texture and color, 
elevation and a set of information describing the morpho-physiological characteristics of 
the plant species (traits), like the specific leaf area, leaf and sapwood C:N, plant height, 
deciduousness nature, et cetera, and climatic thresholds extracted from the distribution 
samples. Since trait information for the species was lacking, it was replaced by the values 
of the plant functional type to which the species belongs (Table 4 of Electronic Supple-
mentary Material of [49]). Threshold values controlling germination and mortality under 
stress conditions are extracted from prescribed percentiles in their actual climate distribu-
tion extracted from the occurrence samples [36,40]. For computing the fitness statistics, 
we also ran the simulation for the present on the coordinates of the sets of pseudo-ab-
sences drawn for SDM modelling (see below). As output of the model, we used the net 
primary productivities of the species fractions (fNPP, gC/m2/y) and we selected thresholds 
of presence maximizing the true skill statistic (TSS, [50]). The threshold of presence allows 
us to compute the sensitivity (proportion of presences correctly predicted) and specificity 
(proportion of absences correctly predicted). We also computed the receiver operating 
characteristic curve (AUC). Positive TSS values and AUC larger than 0.7 indicate better 
agreement than random. 

2.4. A. rubrogenys and Plant Species SDM 
We used multiple logistic regressions, also called logit models. Studies have showed 

that it is difficult to rank the SDM methods according to their performances because they 
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vary with dataset properties [51–53], but logistic regression has the best theoretical back-
ground and it is used here as a reference methodology for SDM. The models were com-
puted in R with the glm function of the R package “stat” (The R Core Team) and we inter-
preted the output as a probability of presence (Px). Since absence data are also needed, we 
generated pseudo-absences for each species (A. rubrogenys and plant species). The pseudo-
absences were sets of points randomly drawn around the occurrences containing twice as 
many points as occurrences. Our strategy is based on the fact that for rare events, rather 
than randomly sampling, it is more efficient to collect positive cases (presences), as much 
as possible, and to complete them with a limited number of random cases as absences [54]. 
There is no common rule to select the ratio of absences to presences and this varied con-
siderably in ecological studies (see [55]). For each plant species, we built 10 datasets con-
taining the occurrence coordinates and pseudo-absence coordinates drawn in radius buff-
ers comprised of between 200 and 2000 km around presences. Furthermore, drawing 
pseudo-absences within the presences is justified by the fact that the species do not occupy 
their entire range. For each dataset, we identified the best combination of climate factor 
effects, in other words, a maximum of 6 (only 4 for N. herzogiana, due to smaller sample 
size) linear or quadratic effects, after exhaustive screening based on the Akaike infor-
mation criterion (AIC), using the glmulti function of the R package “glmulti” [56]. This 
procedure allowed us to select the shortest distance for the pseudo-absences providing 
evident AUC increase, which may give more accuracy and meaningful fit of the models 
[57]. We finally used the datasets giving the highest AUC and the model selected in the 
above procedure with the lowest AIC. Possibly, we chose a model with slightly higher 
AIC so that most of the model coefficients may have Z-test p-values lower than 0.05. For 
validation we tested the selected models against their null models using the likelihood 
ratio test (with critical p-value = 0.05) and the AUC (auc function of “SDMTools” [58]). 
The cutting thresholds were also selected thanks to TSS. A linear effect alone reveals a 
strictly positive or negative ecological response to the considered factor. The combination 
of a linear effect with the quadratic effect of the same factor produces a bell-shaped eco-
logical response curve. Owing to the logit link function, a quadratic effect alone acts as a 
threshold. As climate variables, we first selected annual mean temperature, temperature 
seasonality, maximum temperature of the warmest month, minimum temperature of the 
coldest month, annual precipitation, precipitation seasonality, precipitation of the wettest 
quarter and precipitation of the driest quarter. Then, to minimize collinearity, we com-
puted the matrix of Pearson correlation coefficients in the species datasets and pointed the 
couple of variables with coefficients >0.7 [59]. Thus, we had to drop the maximum tem-
perature of the warmest month, minimum temperature of the coldest month and annual 
precipitation for the plant species, and additionally, precipitation of the driest quarter for 
A. rubrogenys. For projections, we set missing value pixels with at least one of the explan-
atory factors outside the range encountered in the calibration datasets. 

It should be noted that we tested the approach consisting of including outputs of the 
plant models to drive A. rubrogenys SDM using restricted estimation of the linear coeffi-
cients of the plant model output to impose positive coefficients. However, this approach 
failed mainly due to the fact that the productivity (DVM outputs) or the probability of 
presence (SDM outputs) were not uniformly higher over the A. rubrogenys area than out-
side. We understood this negative result as that animals are able to rely on resources made 
by plants growing in sub-optimal conditions, which seemed evident. 

3. Results 
Climate over the A. rubrogenys area varied a lot, exemplified by mean annual temper-

atures which fall between 12.31 and 23.00 °C and precipitation of the driest quarter which 
ranged between 6 and 62 mm (Table S1). Under RCP2.6 forcing, temperature and precip-
itation over the A. rubrogenys area increased while seasonality decreased with neverthe-
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less increases of the ranges between extreme higher and lower values. Under RCP8.5 forc-
ing, temperature and precipitation followed the same direction but more intensively than 
under RCP2.6 forcing. 

3.1. Dynamic Vegetation Modelling 
Fitness statistics (Table 2) suggested limited to acceptable agreements for plant spe-

cies DVM modelling. It is normal that the mechanistic model had significantly lower AUC 
than those obtained with the SDM. Indeed, first there is no training step in the DVM com-
putation and, second, the AUC of the SDM has been maximized in the generation of 
pseudo-absences by varying the distance to the points of presence. Thus, comparing the 
performances of the two models in terms of AUC, or any other evaluator using pseudo-
absences, cannot be made without bias. In this respect, it should be noted that the perfor-
mance of the DVM in terms of sensitivity (Se) (which do not use pseudo-absences) is gen-
erally quite high, since they are generally larger than 0.8 or even 0.9. Otherwise, owing to 
excessive computing time, it was not possible to compute maps over the entire areas of 
distribution of the plant species. All the species but C. tubulosus were simulated as occur-
ring over the A. rubrogenys presence area (Figures 2 and 3 and Figure S1). The range of 
fNPP also varied considerably between the species and the climate conditions. 

Table 2. Dynamic vegetation modelling (DVM) information: sample size for statistics (N), area under the receiver operat-
ing characteristic curve (AUC), true skill statistic (TSS), threshold for TSS (net primary productivity of the species fraction: 
fNPP, gC/m2/y), maximal net primary productivity of the species fraction over the area (Max fNPP, gC/m2/y), sensitivity 
(Se), specificity (Sp). 

Plant Species N AUC TSS Threshold Max fNPP Se Sp 
Anadenanthera colubrina 1643 0.67569 0.41083 0.0015 318.03 0.9434 0.46744 

Anisocapparis speciosa 147 0.60454 0.40816 4.5738 1131.69 0.95918 0.44898 
Aspidosperma quebracho-blanco 218 0.6508 0.38991 0.0706 1064.81 0.94495 0.44495 

Celtis ehrenbergiana 1444 0.63466 0.47715 0.1982 1253.74 0.96676 0.51039 
Cenchrus 4449 0.66834 0.35042 0.4236 930.89 0.82513 0.52529 

Cnidoscolus tubulosus 145 0.68628 0.4 19.5846 1071.89 0.76552 0.63448 
Jatropha hieronymi 54 0.73131 0.61111 7.0216 1049.12 0.92593 0.68519 
Lithraea molleoides 1870 0.75729 0.61176 0.3059 1184.87 0.94759 0.66417 

Loxopterygium grisebachii 49 0.75052 0.57143 1.6223 1112.63 0.91837 0.65306 
Neoraimondia herzogiana 25 0.4784 0.4 0.0053 1111.65 0.9600 0.4400 

Parasenegalia visco 29 0.6629 0.44828 47.2607 1417.99 0.7931 0.65517 
Parkinsonia praecox 550 0.53771 0.38 12.7344 851.75 0.95818 0.42182 
Prosopis chilensis 76 0.47152 0.17105 0.0238 1067.33 0.89474 0.27632 
Prosopis kuntzei 67 0.62364 0.44776 1.4721 1009.61 0.91045 0.53731 

Sarcomphalus mistol 149 0.63799 0.41611 0.7605 1206.76 0.95973 0.45638 
Schinopsis marginata 38 0.76939 0.57895 10.2059 1246.94 0.81579 0.76316 

Selaginella sellowii 277 0.72557 0.38628 274.332 910.91 0.66065 0.72563 
 

Present Future, RCP2.6 Future, RCPRCP8.5 

 Neoraimondia herzogiana   
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 Parasenegalia visco   

      
Figure 2. Examples of plant species distributions over Bolivia (Ara rubrogenys area delimited by orange lines) predicted by 
the DVM CARAIB (CARbon Assimilation In the Biosphere) for present and future climates under RCP2.6 andRCP8.5 
forcings (+: occurrences of the species, light to dark color variation shows plant net productivity of the species fraction, in 
blue-gray between 0 and threshold of presence, in green between threshold and maximal value; the other plant species 
are shown in Figure S1). 
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Figure 3. Area of Ara rubrogenys occupancy and fraction of the net primary productivity (fNPP) of the resource plant 
species predicted by the DVM CARAIB for present and future climates under the RCP2.6 andRCP8.5 forcings (Cnidoscolus 
tubulosus was not predicted on this area). 

3.2. SDM Modelling 
It was possible to obtain models with acceptable to very good agreement for each of 

the plant species and for A. rubrogenys, with fitness indicators generally higher than those 
obtained for the DVM results (Table 3), except for the sensitivity (Se). For plants, projec-
tion maps revealed large areas of potential presence without any presence point which 
could be due to uneven sampling but also to natural barriers to migration, to competition 
or to speciation (Figures 4 and 5, Figures S2 and S3). Ten of the plant species were largely 
simulated as occurring over the A. rubrogenys’ present area (Figure 6). The simulated dis-
tributions over Bolivia sometimes showed large similarities with those produced by the 
DVM. For A. rubrogenys, the model defined a close region over the alpha hull defining the 
present area (Figure 5). The original range was conserved under the future climates, the 
Px increased (Figure 6), while new suitable areas appeared connected with the former one 
(Figure 5). 

Table 3. Species distribution models (SDM) information: sample size for model estimation and statistics (N), maximal 
distance from presence for pseudo-absences (D, km), area under the receiver operating characteristic curve (AUC), true 
skill statistic (TSS), selected threshold (Thresh.), sensitivity (Se), specificity (Sp). p-value of likelihood ratio test was lower 
than 10−5 for each model; formula, i.e., polynomial parts of the logistic models are given in Table S2). 

Species N D AUC TSS Thresh. Se Sp 
Ara rubrogenys 367 320 0.9775 0.943 0.2756 0.9623 0.9557 

Anadenanthera colubrina  8173 1800 0.8584 0.6016 0.1685 0.7823 0.7830 
Anisocapparis speciosa  583 1800 0.9445 0.7987 0.2124 0.8776 0.8807 

Aspidosperma quebracho-blanco  1018 1800 0.9195 0.733 0.2113 0.8609 0.8591 
Celtis ehrenbergiana  6495 1800 0.9008 0.6889 0.2363 0.8322 0.8322 

Cenchrus  20,713 2000 0.7794 0.4257 0.2040 0.6982 0.6974 
Cnidoscolus tubulosus  463 1400 0.8143 0.4527 0.3983 0.7172 0.7179 
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Jatropha hieronymi  246 1200 0.9292 0.7876 0.2605 0.8889 0.8802 
Lithraea molleoides 4758 1600 0.9338 0.7401 0.5555 0.8698 0.8696 

Loxopterygium grisebachii 221 1800 0.9762 0.872 0.2044 0.9388 0.9302 
Neoraimondia herzogiana 83 1400 0.9903 0.9483 0.3278 0.9600 0.9655 

Parasenegalia visco 97 800 0.9113 0.6805 0.2914 0.8276 0.8235 
Parkinsonia praecox 2807 1800 0.9203 0.6987 0.1788 0.8419 0.8418 
Prosopis chilensis 238 2000 0.8530 0.694 0.4665 0.8421 0.8395 
Prosopis kuntzei 203 1800 0.9231 0.7857 0.3598 0.8955 0.8897 

Sarcomphalus mistol 583 1600 0.9367 0.7763 0.2489 0.8800 0.8799 
Schinopsis marginata 120 1400 0.9570 0.8723 0.3762 0.9211 0.9268 

Selaginella sellowii 1071 1400 0.7794 0.6669 0.3496 0.8267 0.8262 
 

Celtis ehrenbergiana

 

Lithraea molleoides

 
  

Figure 4. Examples of continental distribution of resource plant species predicted by the SDMs for the present (+: present 
occurrences of the species, light to dark color variation shows the probability of presence, in blue-grey between 0 and 
threshold of presence, in green between threshold and maximal value, pink color masks the area where at least one of the 
climate factors was out of the range of the model computation dataset, Ara rubrogenys area in orange; other plant species 
shown in figure S2). 

Present Future, RCP2.6 Future, RCP8.5 
 Neoraimondia herzogiana  

   
 Parasenegalia visco  
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 Ara rubrogenys  

   
Figure 5. Examples of distributions of plant species and distribution of Ara rubrogenys over Bolivia predicted by SDMs for 
present and future climates under 2.6 and RCP8.5 forcings (+: present occurrences of the species, light to dark color varia-
tion shows the probability of presence, in blue-grey between 0 and threshold of presence, in green between threshold and 
maximal value, pink color masks the area where at least one of the climate factors was out of the range of the model 
computation dataset, Ara rubrogenys area delimited by orange lines; other plant species shown in figure S3). 
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Figure 6. Area of Ara rubrogenys occupancy and mean probability of presence (Px) of A. rubrogenys and of the 18 resource 
plant species predicted with SDM for present and future climates under the RCP2.6 andRCP8.5 forcings. 

3.3. Comparisons of Plant Model Predictions for the Future 
Under future conditions, changes predicted by the DVM over Bolivia were limited 

but plant presences tended rather to spread (Figures 2, 3 and S1). The trend was more 
pronounced over A. rubrogenys’ area, particularly under RCP8.5 forcings while the fNPP 
of the pixel presence over the A. rubrogenys area behaved more or less similarly but with 
some exceptions (Cenchrus, P. visco, Figure 3). The mean number of plant species per pixel 
(plant diversity, Figure S4) computed for present climate was 10.3. It increased to 12.0 
under RCP2.6 and 14.2 under RCP8.5 forcings. Furthermore, 80% (RCP2.6) to 96% 
(RCP8.5) of the pixels lost no species while a majority of them gained up to 11 new species 
(Figure 7). In addition, the maximal altitude increased for the majority of the species under 
the future climates (Figure 8). 
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With the SDMs, changes predicted over Bolivia were more significant than with the 
DVM (Figures 5, 6 and S3) but generally the presence also tended to spread. Over A. ru-
brogenys’ area, no clear trend emerged for occupancy or Px. Diversity over pixels (Figure 
S4) for the present was higher than with the DVM (mean: 13.2) but decreased to 12.6 under 
RCP2.6 and to 13 under RCP8.5 forcings. Indeed, more pixels lost species while the gains 
were more modest (Figure 7). Furthermore, less species than with the SDM had maximal 
altitude increase under the future climates (Figure 8). 

DVM 

  
SDMs 

  

Figure 7. Proportion of pixels exhibiting a given number (0, 1, 2, etc.) of species lost (a,c) or gained (c,d) over the area of 
Ara rubrogenys under the RCP2.6 andRCP8.5 forcings compared to the present, for studies with the dynamic vegetation 
model (DVM: a,b) and the species distribution model (SDM: c,d). 

DVM 
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SDM 

 
Figure 8. Maximal altitudes of the species over the area of Ara rubrogenys for present and future climates under the RCP2.6 
andRCP8.5 forcings predicted by the dynamic vegetation model (DVM) and the species distribution model (SDM). 

4. Discussion 
The SDM allowed accurately modelling of A. rubrogenys presence with climate. Un-

der future climate, occupancy, probability of presence and maximal altitude increased and 
new areas of occupancy appeared, connected with its present area. For the plants, DVM 
and SDM modelling allowed us to successfully compute the distribution of 17 plant spe-
cies which are feeding resources of A. rubrogenys. Under present conditions, only one spe-
cies, C. tubulosus, was not simulated as present over the area of A. rubrogenys by the DVM. 
SDMs gave better fits than the DVM, except for sensitivity (Se). The DVM mainly pro-
duced fNPP, and occupancy increases over the area of A. rubrogenys, also towards higher 
altitudes, under the RCP2.6 and RCP8.5 forcings. With DVM, we also obtained pixel di-
versity increases resulting from few species loss and more species gains. By contrast, the 
plant SDMs had no overall response under the future climate conditions for occupancy, 
probability of presence, altitude or diversity. 

The lowest agreement of the DVM simulations compared to the plant SDMs were the 
result of lower specificity of the DVM. Here, we added an optimization step in which we 
selected a threshold for each species thanks to TSS. However, these thresholds were low 
compared to commonly fixed values. They probably reflected the fact that we used fNPP 
and thus the competition between species for water and light. Lowering the thresholds 
increases sensitivity at the expense of specificity. It was already noted in previous studies 
that the DVM may tend to simulate the fundamental niche of the species rather than the 
realized niche, in the absence of some critical biotic interactions. This could ultimately 
produce wider distributions compared to those produced by the SDMs as observed else-
where [49,60]. Nevertheless, the results of both approaches, DVM and SDMs, were rather 
congruent for present conditions. For the future, the results were mostly in accordance 
with literature, in other words, the SDMs generally predict more widespread distribution 
shifts than DVM [24,49,61–63] while this is not absolute. Therefore, it is not surprising that 
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in limited parts of their present area, the Px of some species computed with SDM in-
creased under the RCP forcings. In the Andes, SDMs predicted with dramatic reductions 
of the Andean vascular plant diversity for the future without excluding some small areas 
of better climatic stability where species numbers could increase [64]. Otherwise, the DVM 
results showing increases in diversity and the migrations towards higher altitudes seemed 
in accordance with the observations from the recent past. Permanent plots in the Andes 
showed thermophilization, in other words, the increasing number of tropical and sub-
tropical tree species from lower altitudes showing shifts to higher altitudes [65]. This phe-
nomenon, was also observed on European mountain summits. However, it should finally 
threaten the mountains species of the former communities because they are composed of 
slower growing species more adapted to harsher conditions compared to species from 
lower altitudes [66]. 

It is established that birds are directly sensitive to climate factors. While one of the 
main advantages of body temperature regulation in homeotherms is to allow an optimal 
functioning of the organisms under a wide temperature range, the limit of the mechanism 
is clearly the dissipation of heat in excess during exercise [67]. Thus, air temperature has 
to be considered as an effective component of the bird’s niche. Homeotherms could also 
be directly sensitive to other climate factors than temperature, for instance, evaporation 
can limit the survival of birds in deserts during heat waves [68]. Furthermore, it was 
showed that birds have following their realized climate niche during the course of the last 
century [69]. For these reasons, the use of species distribution models (SDMs) with climate 
factors only to predict their future distribution has to be considered as a useful tool. The 
common response of birds in the Andes to climate change would be a decline [64,70]. 
Species with restricted distribution, like endemic species, are generally characterized by 
narrow climate niche and they seem to resist extinction by relatively high local abundance 
and good demographic resilience resulting from the accumulation of local adaptions [71]. 
The study of species, including parrots, naturalized outside their original area of distribu-
tion indicates however that the climate tolerance could be higher than estimated in the 
natural area, particularly for the species occupying narrow ranges of climate conditions 
or marginal climates in their native region [72–74]. With the climate factor, we obtained a 
very well-defined geographic range (Figure 5). We supposed that the climate niche of A. 
rubrogenys would be broad compared to the other endemic species on the basis of the 
range of the climate factors over its present area provoked by the steepness of the climate 
gradient in the mountains (Table S1). Therefore, it would not be surprising that the SDM 
is driven by climate predicted occupancy increase of the present area under the RCP forc-
ings and also on areas directly connected, at higher altitudes. However, this kind of situ-
ation would be rare. Another possibility would be that the area of A. rubrogenys is climat-
ically stable enough to guarantee no species loss or even species gain even if those situa-
tions are rare [64]. If so, it would also explain the limited changes found for the plant 
species under the RCP forcings with both modelling approaches. Thus, as long as the non-
climate components of the niche of A. rubrogenys remain available, we could venture to 
forecast limited risk of extinction due to climate change provided that the diversity of the 
plant resources could increase and that species turnover could satisfy animal needs. 

While the DVM approach is more promising than the SDM one for evaluating plant 
future, DVMs are nevertheless perfectible. DVMs need to elaborate an optimal strategy 
for parametrization [45,48,75]. It is indeed limited by the knowledge of the species-specific 
traits but also by the response of those traits to environmental factors and results could be 
improved by determining those responses and integrating them into the DVM [76–78]. 
The collection of plant traits with biogeographic information is a fast-growing field of 
knowledge [79]. Since the DVM simulates competition for light and water resources, an-
other interesting point could be to integrate the species of the former communities with 
the potential newcomers to compute the emerging communities. The newcomers, in ad-
dition, could also constitute potential resources. 
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5. Conclusions 
Under the milder RCP2.6 and the harsher RCP8.5 forcings, the SDM for A. rubrogenys 

and SDMs and the DVM for plant feeding resources of A. rubrogenys showed that the cur-
rent area of suitability would be mostly preserved or even broadened. The actual feeding 
resources could be more precisely evaluated by taking into account the land-use and the 
productivity of the agricultural species which constitute important feeding resources for 
A. rubrogenys [6,25,26]. Nevertheless, predictions of the evolution of those resources in the 
course of time would require additional effort since uncertainties increase with the char-
acteristics of the cultivated varieties and the decisions of the landowners or the farmers. 
The use of the DVM for predicting the future of plant species distribution and productiv-
ity is thus improvable. Our result boded well because A. rubrogenys would not be sub-
jected to unprecedented climate conditions in the present area and the feeding resources 
so far would be preserved. 

From topology, it could be possible to examine whether new suitable areas include 
cliffs appropriate for nesting. However, is it possible that the new suitable areas could be 
colonized even without appropriate cliffs thanks to behavioral flexibility? For instance, A. 
rubrogenys have been observed nesting in the palm Parajubaea torallyi [80] but, this tree 
species has an extremely small range distribution, and there are no other tree species that 
could offer large cavities for nesting within the range of the red-fronted macaw. Moreover, 
recent population genetic analyses show a low capacity for the species to colonize distant 
areas. Despite its restricted range, the population is structured in genetic clusters with low 
or null gene flow among them, despite that some colonies are separated by few tens of 
kilometers, that there are no ecological barriers and that macaws make larger daily and 
seasonal movements for feeding. Therefore, it is highly improbable that the species could 
colonize very distant areas in its future niche suitability [81]. 

Thus, while bird decline at global scale seems mainly provoked by increasing tem-
perature [82], the main concerns about A. rubrogenys’ future remained the direct human 
threats, in other words, habitat conversion, poaching and killing, which need to be ur-
gently solved before the species rapidly goes extinct in nature [6,11,12]. 

Supplementary Materials: The following are available online at www.mdpi.com/1424-
2818/13/2/94/s1, Table S1: Bioclimate variables over Ara rubrogenys area and changes under the 
RCP2.6 and RCP8.5 forcings, Table S2: Coefficients of the climate logistic models for Ara rubrogenys 
and the 17 plant species, Figure S1: Plant species distribution over Bolivia predicted by the DVM 
CARAIB for present and future under RCP2.6 andRCP8.5 forcings, Figure S2: Plant species conti-
nental distribution predicted by the SDMs for the present, Figure S3: Plant species distribution over 
predicted by the SDM for present and future under RCP2.6 andRCP8.5 forcings, Figure S4: Number 
of plant species over the area of Ara rubrogenys computed with the DVM or the SDMs for present 
and future climate under RCP2.6 and RCP8.5 forcings. 
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