Unpublished conference/Abstract (Scientific congresses and symposiums)
Ultimate periodicity problem for linear numeration systems
Massuir, Adeline
2021Discrete Mathematics Seminar
 

Files


Full Text
SeminaireMars21.pdf
Author preprint (364.58 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
numeration system; decision; ultimate periodicity
Abstract :
[en] We address the following decision problem. Given a numeration system U and a U-recognizable set of non-negative integers X, i.e. the set of its greedy U-representations is recognized by a finite automaton, decide whether or not X is ultimately periodic. We prove that this problem is decidable for a large class of numeration systems built on linearly recurrent sequences. Based on arithmetical considerations about the recurrence equation and on p-adic methods, the DFA given as input provides a bound on the admissible periods to test.
Disciplines :
Mathematics
Author, co-author :
Massuir, Adeline ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Ultimate periodicity problem for linear numeration systems
Alternative titles :
[en] Problème d'ultime périodicité pour des systèmes de numération linéaires
Publication date :
24 March 2021
Event name :
Discrete Mathematics Seminar
Event place :
Liège, Belgium
Event date :
24 mars 2021
By request :
Yes
Available on ORBi :
since 24 March 2021

Statistics


Number of views
60 (8 by ULiège)
Number of downloads
29 (4 by ULiège)

Bibliography


Similar publications



Contact ORBi