Ultimate periodicity problem for linear numeration systems

Adeline Massuir
Joint work with Émilie Charlier, Michel Rigo and Eric Rowland

Discrete Mathematics Seminar
March 24th 2021

Positional numeration system

A (positional) numeration system is a sequence $U=\left(U_{i}\right)_{i \in \mathbb{N}}$ of positive integers s. t .

- U is increasing,
- $U_{0}=1$,
- $C_{U}=\sup _{i \geq 0}\left\lceil\frac{U_{i+1}}{U_{i}}\right\rceil$ is finite.

The alphabet of the numeration is the set $\Sigma_{U}=\llbracket 0, C_{U}-1 \rrbracket$.
The greedy U-representation of a positive integer n is the unique word $\operatorname{rep}_{U}(n)=w_{\ell-1} \cdots w_{0}$ over Σ_{U} s. t.

$$
n=\sum_{i=0}^{\ell-1} w_{i} U_{i}, w_{\ell-1} \neq 0 \text { and } \forall j \in \llbracket 0, \ell \rrbracket, \sum_{i=0}^{j-1} w_{i} U_{i}<U_{j} .
$$

We set $\operatorname{rep}_{U}(0)=\varepsilon$.
The language $\operatorname{rep}_{U}(\mathbb{N})$ is the numeration language. A set X is U-recognizable if rep ${ }_{U}(X)$ is regular.

The alphabet of the numeration is the set $\Sigma_{U}=\llbracket 0, C_{U}-1 \rrbracket$.
The greedy U-representation of a positive integer n is the unique word $\operatorname{rep}_{U}(n)=w_{\ell-1} \cdots w_{0}$ over Σ_{U} s. t.

$$
n=\sum_{i=0}^{\ell-1} w_{i} U_{i}, w_{\ell-1} \neq 0 \text { and } \forall j \in \llbracket 0, \ell \rrbracket, \sum_{i=0}^{j-1} w_{i} U_{i}<U_{j} .
$$

We set $\operatorname{rep}_{U}(0)=\varepsilon$.
The language $\operatorname{rep}_{U}(\mathbb{N})$ is the numeration language.
A set X is U-recognizable if $\operatorname{rep}_{U}(X)$ is regular.
The U-numerical valuation val ${ }_{U}: \mathbb{Z}^{*} \rightarrow \mathbb{N}$ maps a word $w_{\ell-1} \cdots w_{0}$ to the number $\sum_{i=0}^{\ell-1} w_{i} U_{i}$.
If $\operatorname{val}_{U}(w)=n$, then w is a U-representation of n.

Examples

Integer base- $b: 1, b, b^{2}, b^{3}, \cdots$

- $U_{i}=b^{i} \forall i \in \mathbb{N}$
- $\Sigma_{b}=\llbracket 0, b-1 \rrbracket$
- $\operatorname{rep}_{b}(\mathbb{N})=\{\varepsilon\} \cup\left(\Sigma_{b} \backslash\{0\}\right) \Sigma_{b}^{*}$

Examples

Integer base- $b: 1, b, b^{2}, b^{3}, \cdots$

- $U_{i}=b^{i} \forall i \in \mathbb{N}$
- $\Sigma_{b}=\llbracket 0, b-1 \rrbracket$
- $\operatorname{rep}_{b}(\mathbb{N})=\{\varepsilon\} \cup\left(\Sigma_{b} \backslash\{0\}\right) \Sigma_{b}^{*}$

Fibonacci numeration system : $1,2,3,5,8,13, \cdots$

- $F_{0}=1, F_{1}=2$ and $F_{i+2}=F_{i+1}+F_{i} \forall i \in \mathbb{N}$
- $\Sigma_{F}=\llbracket 0,1 \rrbracket$
- $\operatorname{rep}_{F}(\mathbb{N})=1\{0,01\}^{*} \cup\{\varepsilon\}$
$\operatorname{rep}_{F}(11)=(10100)_{F} \quad$ and $\quad \operatorname{val}_{F}(1001)=6=\operatorname{val}_{F}(111)$

Advantages of regular numeration languages

(1) We are able to check with an automaton whether a representation is greedy,

- the numeration system is linear,
(3) ultimately periodic sets are recognizable.

Advantages of regular numeration languages

(1) We are able to check with an automaton whether a representation is greedy,

- the numeration system is linear,
(0) ultimately periodic sets are recognizable.

Integer base $b: U_{i+1}=b U_{i}$
$\underline{\text { Fibonacci numeration system }: F_{i+2}=F_{i+1}+F_{i}, ~}$

Advantages of regular numeration languages

(1) We are able to check with an automaton whether a representation is greedy,
() the numeration system is linear,
(3) ultimately periodic sets are recognizable.

Proposition

Let m, r be non-negative integers and let $U=\left(U_{i}\right)_{i \in \mathbb{N}}$ be a linear numeration system. The language

$$
\operatorname{val}_{U}^{-1}(m \mathbb{N}+r)=\left\{w \in \Sigma_{U}^{*}: \operatorname{val}_{U}(w) \in m \mathbb{N}+r\right\}
$$

is accepted by a DFA that can be effectively constructed. In particular, if \mathbb{N} is U-recognizable, then any ultimately periodic set is U recognizable.

Decision problem

Problem

Given a linear numeration system U and a deterministic finite automaton \mathscr{A} whose accepted language is contained in the numeration language $\operatorname{rep}_{U}(\mathbb{N})$, decide whether the subset X of \mathbb{N} that is recognized by \mathscr{A} is ultimately periodic, i.e. whether or not X is a finite union of arithmetic progressions (along a finite set).

What is known

Integer base

- J. Honkala
- A. Lacroix, N. Rampersad, M. Rigo, E. Vandomme
- B. Boigelot, I. Mainz, V. Marsault, M. Rigo, J. Sakarovitch

What is known

Integer base

- J. Honkala
- A. Lacroix, N. Rampersad, M. Rigo, E. Vandomme
- B. Boigelot, I. Mainz, V. Marsault, M. Rigo, J. Sakarovitch

Pisot numeration systems

- First-order logic $\left\langle\mathbb{N},+, V_{U}\right\rangle$
- X a U-recognizable set, φ a formula describing it

$$
(\exists N)(\exists p)(\forall n \geq N)(\varphi(n) \Leftrightarrow \varphi(n+p))
$$

- J. Leroux, A. Muchnik

When addition is not recognizable
J. Bell, É. Charlier, A. Fraenkel, M. Rigo
(1) \mathbb{N} is U-recognizable,

- $\lim _{i \rightarrow+\infty}\left(U_{i+1}-U_{i}\right)=+\infty$,
(-) $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$.

$$
U_{i+3}=3 U_{i+2}+2 U_{i+1}+3 U_{i}
$$

Our settings

(H1) \mathbb{N} is U-recognizable,
(H2) $\lim \sup _{i \rightarrow+\infty}\left(U_{i+1}-U_{i}\right)=+\infty$,
(H3) $\exists N \geq 0, \forall i \geq 0, U_{i+1}-U_{i} \leq U_{i+2}-U_{i+1}$.

Lemma

Let U be a numeration system satisfying $(\mathrm{H} 1),(\mathrm{H} 2)$ and (H 3). There exists a constant Z such that if w is a greedy U-representation, then for all $z \geq Z, 10^{z} w$ is also a greedy U-representation.

Lemma

Let U be a numeration system satisfying $(\mathrm{H} 1),(\mathrm{H} 2)$ and (H3). There exists a constant Z such that if w is a greedy U-representation, then for all $z \geq Z, 10^{z} w$ is also a greedy U-representation.

$$
\begin{gathered}
1,2,4,5,16,17,64,65, \cdots \quad U_{i+4}=5 U_{i+2}-4 U_{i} \\
\operatorname{val}_{U}(1001)=6 \quad 1(00)^{t} 1001 \\
\cdots, 65,64,17,16,5,4,2,1
\end{gathered}
$$

Toy examples

Example 1

Consider the numeration system $U_{i+4}=2 U_{i+3}+2 U_{i+2}+2 U_{i}$ with initial conditions $U_{0}=1, U_{1}=3, U_{2}=9, U_{3}=25$.
The largest root is $\beta \approx 2.804$ and it has also a root $\gamma \approx-1.134$.

Example 2

Consider the numeration system $U_{i+3}=12 U_{i+2}+6 U_{i+1}+12 U_{i}$ with initial conditions $U_{0}=1, U_{1}=13, U_{2}=163$.

Strategy

- Input: DFA \mathscr{A}
- Upper bound on the admissible preperiods and periods
- For each pair (N, p) of possible preperiods and periods, there are at most $2^{N} 2^{p}$ corresponding ultimately periodic sets X
- Equality test : \mathscr{A}_{X} and \mathscr{A}

Preperiod

Proposition

Let U be a numeration system satisfying $(\mathrm{H} 1)$, let X be an ultimately periodic set of non-negative integers and let \mathscr{A}_{X} be a DFA with $\# Q_{X}$ states accepting $\operatorname{rep}_{U}(X)$. Then the preperiod α_{X} of X is bounded by a computable constant J depending only on the number of states of \mathscr{A}_{X} and the period π_{X} of X.

Period

$$
\begin{aligned}
& \text { Let } U=\left(U_{i}\right)_{i \in \mathbb{N}} \text { satisfying }(\mathrm{H} 1) \text {, (H2) and (H3). } \\
& \qquad U_{i+k}=a_{k-1} U_{i+k-1}+\cdots+a_{0} U_{i}
\end{aligned}
$$

Suppose that the minimal automaton \mathscr{A}_{X} of $\operatorname{rep}_{U}(X)$ is given. Let π_{X} be a potential period for X and consider its prime decomposition.
(2) Factors that do not divide a_{0},
(- factors that divide a_{0} but not all the a_{j},
(0) factors that divide all the a_{j}.

Factors that do not divide a_{0}

Proposition

Let $X \subseteq \mathbb{N}$ an ultimately periodic U-recognizable set and let q be a divisor of π_{X} such that $\left(q, a_{0}\right)=1$. Then the minimal automaton of $\operatorname{rep}_{U}(X)$ has at least q states.

Prime factors that divide a_{0} but not all the a_{j}

Take the sequence $U_{0}=1, U_{1}=4, U_{2}=8$ and $U_{i+2}=U_{i+1}+U_{i}$ for $i \in \mathbb{N}_{0}$.

$$
1,4,8,12,20,32,52, \cdots
$$

The sequence $\left(U_{i} \bmod 2^{\mu}\right)_{i \geq 0}$ has a zero period for $\mu=1,2$ because of the particular initial conditions. But the sequence $\left(U_{i} \bmod 8\right)_{i \in \mathbb{N}}$ is given by $1(404)^{\omega}$.

Theorem

Let p be a prime. The sequence $\left(U_{i} \bmod p^{\mu}\right)_{i \in \mathbb{N}}$ has a zero period for all $\mu \geq 1$ if and only if all the coefficients a_{0}, \ldots, a_{k-1} of the linear relation are divisible by p.

Proposition

Let p be a prime not dividing all the coefficients of the recurrence relation and let $\lambda \geq 1$ be the least integer such that $\left(U_{i} \bmod p^{\lambda}\right)_{i \in \mathbb{N}}$ has a period containing a non-zero element. If $X \subseteq \mathbb{N}$ is an ultimately periodic U-recognizable set with period $\pi_{X}=p^{\mu} \cdot r$ where $\mu \geq \lambda$ and r is not divisible by p, then the minimal automaton of $\operatorname{rep}_{U}(X)$ has at least $p^{\mu-\lambda+1}$ states.

The gcd of the coefficients of the recurrence is 1

Theorem

Let U be a numeration system satisfying (H 1), (H 2) and (H 3) and such that the gcd of the coefficients of the recurrence relation of U is 1. Given a DFA \mathscr{A} accepting a language contained in the numeration language $\operatorname{rep}_{U}(\mathbb{N})$, it is decidable whether this DFA recognizes an ultimately periodic set.

$$
U_{i+5}=6 U_{i+4}+3 U_{i+3}-U_{i+2}+6 U_{i+1}+3 U_{i}, \forall i \geq 0
$$

- $N_{U}\left(3^{i}\right) \nrightarrow+\infty$
- $\beta=3+2 \sqrt{3}$, three roots of modulus 1
- Initial conditions:

$$
U_{0}=1, U_{1}=7, U_{2}=45, U_{3}=291, U_{5}=1881
$$

- Numeration language : set of words over $\{0, \ldots, 6\}$ avoiding 63, 64, 65, 66
- For all $i \geq 0, U_{i+1}-U_{i} \geq 5 U_{i}$

Prime factors that divide all the coefficients

$$
\pi_{x}=m_{X} \cdot p_{1}^{\mu_{1}} \cdots p_{t}^{\mu_{t}}
$$

Prime factors that divide all the coefficients

$$
\pi_{x}=m_{X} \cdot p_{1}^{\mu_{1}} \cdots p_{t}^{\mu_{t}}
$$

Let $j \in \llbracket 1, t \rrbracket, \mu \geq 1$. The sequence $\left(U_{i} \bmod p_{j}^{\mu}\right)_{i \in \mathbb{N}}$ has a zero period. We let $f_{p_{j}}(\mu)$ be the integer such that

$$
U_{\mathrm{f}_{p_{j}}(\mu)-1} \not \equiv 0 \quad\left(\bmod p_{j}^{\mu}\right) \quad \text { and } \quad U_{i} \equiv 0 \quad\left(\bmod p_{j}^{\mu}\right) \forall i \geq \mathrm{f}_{p_{j}}(\mu)
$$

Example :
$\overline{U_{i+4}}=2 U_{i+3}+2 U_{i+2}+2 U_{i}, U_{0}=1, U_{1}=3, U_{2}=9, U_{3}=25$

- $\left(U_{i} \bmod 2\right)_{i \in \mathbb{N}}=1,1,1,1,0^{\omega}$ hence $f_{2}(1)=4$
- $\left(U_{i} \bmod 4\right)_{i \in \mathbb{N}}=1,3,1,3,2,0,2,2,0^{\omega}$ hence $f_{2}(2)=8$
- $\mathrm{f}_{2}(3)=12, \mathrm{f}_{2}(4)=16$

We set

$$
F_{X}=\max _{1 \leq j \leq t} f_{p_{j}}\left(\mu_{j}\right)
$$

We set

$$
F_{X}=\max _{1 \leq j \leq t} f_{p_{j}}\left(\mu_{j}\right)
$$

Example :

$$
\begin{aligned}
& \hline U_{i+3}=12 U_{i+2}+6 U_{i+1}+12 U_{i}, U_{0}=1, U_{1}=13, U_{2}=163 \\
& \text { - } \mathrm{f}_{2}(1)=3, \mathrm{f}_{2}(2)=5, \mathrm{f}_{2}(3)=7 \\
& \text { - } \mathrm{f}_{3}(1)=3, \mathrm{f}_{3}(2)=6, \mathrm{f}_{3}(3)=9 \\
& \text { - } \pi_{X}=72=2^{3} \cdot 3^{2}, F_{X}=\max \left(\mathrm{f}_{2}(3), \mathrm{f}_{3}(2)\right)=7
\end{aligned}
$$

$\left(U_{i} \bmod 72\right)_{i \in \mathbb{N}}=1,13,19,30,54,48,36,0^{\omega}$

Proposition

Let m, r be non-negative integers and let $U=\left(U_{i}\right)_{i \in \mathbb{N}}$ be a linear numeration system. The language

$$
\operatorname{val}_{U}^{-1}(m \mathbb{N}+r)=\left\{w \in \Sigma_{U}^{*}: \operatorname{val}_{U}(w) \in m \mathbb{N}+r\right\}
$$

is accepted by a DFA that can be effectively constructed. In particular, if \mathbb{N} is U-recognizable, then any ultimately periodic set is U-recognizable.

We let γ_{m} denote the maximum of the number of states of these DFAs for $r \in \llbracket 0, m-1 \rrbracket$.

Theorem

Let $X \subseteq \mathbb{N}$ be an ultimately periodic U-recognizable set with period $\pi_{x}=m_{X} \cdot p_{1}^{\mu_{1}} \cdots p_{t}^{\mu_{t}}$. Assume that $F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right| \geq Z$. Then there is a positive constant C such that the minimal automaton of $0^{*} \operatorname{rep}_{U}(X)$ has at least $\frac{C}{\gamma_{m_{X}}} \log _{2}\left(\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|+1\right)$ states.

The gcd of the coefficients of the recurrence greater than 1

$\pi_{X}=m_{X} \cdot p_{1}^{\mu_{1}} \cdots p_{t}^{\mu_{t}}, t \geq 1$
$n_{X}=F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right| \geq Z$

Theorem

Let U be a numeration system satisfying $(\mathrm{H} 1),(\mathrm{H} 2)$ and $(\mathrm{H} 3)$, and such that the gcd of the coefficients of the recurrence relation of U is larger than 1. Assume there is a computable positive integer D such that for all ultimately periodic sets X of period $\pi_{X}=m_{X} \cdot p_{1}^{\mu_{1}} \cdots p_{t}^{\mu_{t}}$ with $t \geq 1$, if $\max \left\{\mu_{1}, \cdots, \mu_{t}\right\} \geq D$, then $n_{X} \geq Z$. Then, given a DFA \mathscr{A} accepting a language contained in the numeration language $\operatorname{rep}_{U}(\mathbb{N})$, it is decidable whether this DFA recognizes an ultimately periodic set.

Behaviour of n_{x}

$$
n_{X}=F_{X}-1-\left|\operatorname{rep} U\left(\frac{\pi_{X}}{n_{X}}-1\right)\right|
$$

Behaviour of n_{X}

$$
n_{X}=F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|
$$

$F_{X}=\max _{1 \leq j \leq t} f_{p_{j}}\left(\mu_{j}\right)$
$\mathrm{f}_{p_{j}}(\mu)=M \Leftrightarrow\left(\nu_{p_{j}}\left(U_{M-1}\right)<\mu \wedge \forall i \geq M, \nu_{p_{j}}\left(U_{i}\right) \geq \mu\right)$

Lemma

Let $j \in \llbracket 1, t \rrbracket$. Assume that there are $\alpha, \epsilon \in \mathbb{R}_{>0}$ and a nondecreasing function g such that

$$
\nu_{p_{j}}\left(U_{i}\right)<\lfloor\alpha i\rfloor+g(i)
$$

for all $i \in \mathbb{N}$ and there exists M such that $g(i)<\epsilon i$ for all $i>M$. Then for large enough μ,

$$
\mathrm{f}_{p_{j}}(\mu)>\frac{\mu}{\alpha+\epsilon}
$$

Lemma

Let $j \in \llbracket 1, t \rrbracket$. Assume that there are $\alpha, \epsilon \in \mathbb{R}_{>0}$ and a nondecreasing function g such that

$$
\nu_{p_{j}}\left(U_{i}\right)<\lfloor\alpha i\rfloor+g(i)
$$

for all $i \in \mathbb{N}$ and there exists M such that $g(i)<\epsilon i$ for all $i>M$. Then for large enough μ,

$$
\mathrm{f}_{p_{j}}(\mu)>\frac{\mu}{\alpha+\epsilon} .
$$

$$
F_{X}=\max _{1 \leq j \leq t} f_{p_{j}}\left(\mu_{j}\right)>\max _{1 \leq j \leq t}\left(\frac{\mu_{j}}{\alpha_{j}+\epsilon_{j}}\right) \geq \frac{\max _{1 \leq j \leq t} \mu_{j}}{\max _{1 \leq j \leq t}\left(\alpha_{j}+\epsilon_{j}\right)}
$$

$$
n_{X}=F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|
$$

$\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|$
Soittola : $\exists u \geq 1, \beta_{0}, \ldots, \beta_{u-1} \geq 1$, non-zero polynomials P_{0}, \ldots, P_{u-1} s. t. for $r \in \llbracket 0, u-1 \rrbracket$ and large enough i,

$$
U_{u i+r}=P_{r}(i) \beta_{r}^{i}+Q_{r}(i)
$$

where $\frac{Q_{r}(i)}{\beta_{r}^{i}} \rightarrow+\infty$ when $i \rightarrow+\infty$.

$$
n_{X}=F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|
$$

$\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|$
Soittola : $\exists u \geq 1, \beta_{0}, \ldots, \beta_{u-1} \geq 1$, non-zero polynomials P_{0}, \ldots, P_{u-1} s. t. for $r \in \llbracket 0, u-1 \rrbracket$ and large enough i,

$$
U_{u i+r}=P_{r}(i) \beta_{r}^{i}+Q_{r}(i)
$$

where $\frac{Q_{r}(i)}{\beta_{r}^{i}} \rightarrow+\infty$ when $i \rightarrow+\infty$.

$$
\begin{array}{ll}
\beta_{0}=\cdots=\beta_{u-1}=\beta \quad \text { and } \quad \operatorname{deg}\left(P_{0}\right)=\cdots=\operatorname{deg}\left(P_{u-1}\right)=d \\
U_{u i+r} \sim c_{r} i^{d} \beta^{i}
\end{array}
$$

Lemma

If $\beta>1$, there is a non-negative constant K such that

$$
\left|\operatorname{rep}_{u}(n)\right|<u \log _{\beta}(n)+K
$$

for all $n \in \mathbb{N}$.

If $\beta>1$, then

$$
\begin{aligned}
\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right| & \leq u \log _{\beta}\left(\prod_{j=1}^{t} p_{j}^{\mu_{j}}\right)+K \\
& \leq u\left(\max _{1 \leq j \leq t} \mu_{j}\right) \sum_{j=1}^{t} \log _{\beta}\left(p_{j}\right)+K
\end{aligned}
$$

Behaviour of n_{X}

$$
n_{X}=F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|
$$

$-F_{X} \geq \frac{\max _{1 \leq j \leq t} \mu_{j}}{\max _{1 \leq j \leq t}\left(\alpha_{j}+\epsilon_{j}\right)}$

- $\left|\operatorname{rep}_{U}\left(\frac{\pi x}{m x}-1\right)\right| \leq u\left(\max _{1 \leq \leq \leq} \mu_{j}\right) \sum_{j=1}^{t} \log _{\beta}\left(p_{j}\right)+K$

$$
n_{x} \geq \max _{1 \leq \leq \leq t} \mu_{j}\left(\frac{1}{\max _{1 \leq \leq \leq t}\left(\alpha_{j}+\epsilon_{j}\right)}-u \sum_{j=1}^{t} \log _{\beta}\left(p_{j}\right)\right)-K-1
$$

Some intuition for α_{j}

$$
\nu_{p_{j}}\left(U_{i}\right)<\lfloor\alpha i\rfloor+g(i)
$$

Example 1

Consider the numeration system $U_{i+4}=2 U_{i+3}+2 U_{i+2}+2 U_{i}$ with initial conditions $U_{0}=1, U_{1}=3, U_{2}=9, U_{3}=25$.

For $41 \leq i \leq 60, \nu_{2}\left(U_{i}\right)$ is $10,10,10,11,13,11,11,12,12,12,12,13,14,13,13,14,14,14,14,15$.

Conjecture : $\alpha_{1}=\frac{1}{4}$

$$
4=\frac{1}{\alpha_{1}}>\log _{2.804}(2) \approx 0.672
$$

Example 2

Consider the numeration system $U_{i+3}=12 U_{i+2}+6 U_{i+1}+12 U_{i}$ with initial conditions $U_{0}=1, U_{1}=13, U_{2}=163$.

For $41 \leq i \leq 60, \nu_{2}\left(U_{i}\right)$ is
$24,20,21,21,24,22,23,23,27,24,25,25,28,26,27,27,33,28,29,29$
and $\nu_{3}\left(U_{i}\right)$ is
$13,14,14,14,15,15,15,16,17,16,17,17,17,18,18,18,19,20,19,20$.
Conjecture : $\alpha_{1}=\frac{1}{2}, \alpha_{2}=\frac{1}{3}$

$$
2=\frac{1}{\max \left\{\frac{1}{2}, \frac{1}{3}\right\}}>\log _{12.554}(2)+\log _{12.554}(3) \approx 0.708
$$

Problem to solve

$$
\nu_{p_{j}}\left(U_{i}\right)<\lfloor\alpha i\rfloor+g(i)
$$

Example 2

Consider the numeration system $U_{i+3}=12 U_{i+2}+6 U_{i+1}+12 U_{i}$ with initial conditions $U_{0}=1, U_{1}=13, U_{2}=163$.

$$
\nu_{2}\left(U_{i}\right) \quad \text { and } \quad \nu_{3}\left(U_{i}\right)
$$

Theorem

For all $i \in \mathbb{N}$, we have

$$
\nu_{3}\left(U_{i}\right)=\left\lfloor\frac{i}{3}\right\rfloor+\left\{\begin{array}{lll}
0 & \text { if } i \not \equiv 4 & (\bmod 9) \\
1 & \text { if } i \equiv 4 & (\bmod 9)
\end{array}\right.
$$

$T_{i}=U_{i} / 3^{\frac{i-2}{3}}$ for all $i \in \mathbb{N}$
Modulo $9 \mathbb{Z}\left[3^{1 / 3}\right]$,

$$
\begin{array}{rrrrrrrrr}
3^{2 / 3} & 4 \cdot 3^{1 / 3} & 1 & 7 \cdot 3^{2 / 3} & 3 \cdot 3^{1 / 3} & 1 & 2 \cdot 3^{2 / 3} & 2 \cdot 3^{1 / 3} & 4 \\
3^{2 / 3} & 3^{1 / 3} & 7 & 7 \cdot 3^{2 / 3} & 3 \cdot 3^{1 / 3} & 7 & 8 \cdot 3^{2 / 3} & 5 \cdot 3^{1 / 3} & 1 \\
3^{2 / 3} & 7 \cdot 3^{1 / 3} & 4 & 7 \cdot 3^{2 / 3} & 3 \cdot 3^{1 / 3} & 4 & 5 \cdot 3^{2 / 3} & 8 \cdot 3^{1 / 3} & 7 .
\end{array}
$$

and thus the sequence $\left(\nu_{3}\left(T_{i}\right)\right)_{i \in \mathbb{N}}$ of 3-adic valuations is

$$
\frac{2}{3}, \frac{1}{3}, 0, \frac{2}{3}, \frac{4}{3}, 0, \frac{2}{3}, \frac{1}{3}, 0, \cdots
$$

with period 9 .

The previous theorem implies $\frac{i-2}{3} \leq \nu_{3}\left(U_{i}\right) \leq \frac{i+2}{3}$ for all $i \in \mathbb{N}$. In particular, $\nu_{3}\left(U_{i}\right)<\left\lfloor\frac{i}{3}\right\rfloor+2$.

What about $\nu_{2}\left(U_{i}\right)$?
$T_{i}=U_{i} / 2^{\frac{i}{2}-1}$ for all $i \in \mathbb{N}$
Modulo $2 \mathbb{Z}[\sqrt{2}]$,

$$
\star, \star, 1, \sqrt{2}, 1,0,1, \sqrt{2}, 1,0, \cdots=\star, \star(1, \sqrt{2}, 1,0)^{\omega} .
$$

The previous theorem implies $\frac{i-2}{3} \leq \nu_{3}\left(U_{i}\right) \leq \frac{i+2}{3}$ for all $i \in \mathbb{N}$. In particular, $\nu_{3}\left(U_{i}\right)<\left\lfloor\frac{i}{3}\right\rfloor+2$.

What about $\nu_{2}\left(U_{i}\right)$?

$$
T_{i}=U_{i} / 2^{\frac{i}{2}-1} \text { for all } i \in \mathbb{N}
$$

Modulo $2 \mathbb{Z}[\sqrt{2}]$,

$$
\star, \star, 1, \sqrt{2}, 1,0,1, \sqrt{2}, 1,0, \cdots=\star, \star(1, \sqrt{2}, 1,0)^{\omega} .
$$

Theorem

For i large enough such that $i \not \equiv 1(\bmod 4)$, we have

$$
\nu_{2}\left(U_{i}\right)=\left\lfloor\frac{i-1}{2}\right\rfloor .
$$

p-adic analysis

p-adic valuation $\nu_{p}(n)$: exponent of the highest power of p dividing n p-adic absolute value $|n|_{p}: p^{-\nu_{p}(n)}$

Non-archimedean : $|m+n|_{p} \leq \max \left\{|m|_{p},|n|_{p}\right\}$
\mathbb{Q}_{p} : completion of \mathbb{Q} with respect to the p-adic absolute value

p-adic analysis

p-adic valuation $\nu_{p}(n)$: exponent of the highest power of p dividing n p-adic absolute value $|n|_{p}: p^{-\nu_{p}(n)}$

Non-archimedean : $|m+n|_{p} \leq \max \left\{|m|_{p},|n|_{p}\right\}$
\mathbb{Q}_{p} : completion of \mathbb{Q} with respect to the p-adic absolute value
Every $\zeta \in \mathbb{Q}_{p}$ can be written in the form

$$
\begin{aligned}
\zeta & =d_{-N} p^{-N}+\cdots+d_{-1} p^{-1}+d_{0}+d_{1} p+d_{2} p^{2}+\cdots \\
& =\sum_{i \geq-N} d_{i} p^{i}
\end{aligned}
$$

with $N \in \mathbb{Z}$ and $d_{i} \in \llbracket 0, p-1 \rrbracket$ for all $i \geq-N$. This representation is unique.

Back to $\nu_{2}\left(U_{i}\right)$

Construct a piecewise interpolation of U_{i} to \mathbb{Z}_{2}.

$$
\begin{aligned}
P(x) & =x^{3}-12 x^{2}-6 x-12 \\
& =\left(x-\beta_{1}\right)\left(x^{2}+\left(\beta_{1}-12\right) x+\left(\beta_{1}^{2}-12 \beta_{1}-6\right)\right)
\end{aligned}
$$

$\mathbb{Q}_{2}\left(\beta_{2}\right)$

$$
\begin{aligned}
U_{i} & =c_{1} \beta_{1}^{i}+c_{2} \beta_{2}^{i}+c_{3} \beta_{3}^{i} \\
& =\beta_{2}^{i}\left(c_{1}\left(\frac{\beta_{1}}{\beta_{2}}\right)^{i}+c_{2}+c_{3}\left(\frac{\beta_{3}}{\beta_{2}}\right)^{i}\right) \\
& =\beta_{2}^{i}\left(c_{1}\left(\frac{\beta_{1}}{\beta_{2}}\right)^{i}+f_{1}(i)\right)
\end{aligned}
$$

Conjecture (\star)

Theorem

Under conjecture (\star), for all $i \geq 13$ such that $i \equiv 1(\bmod 4)$, we have

$$
\nu_{2}\left(U_{i}\right)=\left\lfloor\frac{i-1}{2}\right\rfloor+\nu_{2}(i-\zeta)
$$

Corollary
Conjecture (\star) implies

$$
\nu_{2}\left(U_{i}\right) \leq \frac{i}{2}+\frac{536}{95} \log _{2}(i)
$$

for all $i \geq 10$.

Conclusion

$$
U_{i+u}=b U_{i}
$$

Conclusion

$$
U_{i+u}=b U_{i}
$$

Proposition

Let $b \geq 2, u \geq 1, N \geq 0$. Let U be a numeration system $U=\left(U_{i}\right)_{i \in \mathbb{N}}$ such that $U_{i+u}=b U_{i}$ for all $i \geq N$. If a set is U-recognizable then it is b-recognizable. Moreover, given a DFA accepting $\operatorname{rep}_{U}(X)$ for some set X, we can compute a DFA accepting $\operatorname{rep}_{b}(X)$.

