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Positional numeration system

A (positional) numeration system is a sequence U = (U;)jen of
positive integers s. t.

e U is increasing,
o Up=1,
o Cy=supjso | %] is finite,
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The alphabet of the numeration is the set ¥y = [0, Cy—1].
The greedy U-representation of a positive integer n is the unique
word rep;(n) = wy_1---wp over Xy s. t.

-1 j—1
n="> wUj w1 #0and Vj € [0,£],> wiUj < U;.
i=0 i=0

We set rep;(0) = ¢.
The language rep(N) is the numeration language.
A set X is U-recognizable if rep(X) is regular.
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The alphabet of the numeration is the set ¥y = [0, Cy—1].
The greedy U-representation of a positive integer n is the unique
word rep;(n) = wy_1---wp over Xy s. t.

-1 j—1
n="> wUj w1 #0and Vj € [0,£],> wiUj < U;.
i=0 i=0

We set rep;(0) = ¢.
The language rep(N) is the numeration language.
A set X is U-recognizable if rep(X) is regular.

The U-numerical valuation valy : Z* — N maps a word wy_1 - - - wy
to the number Zf;é w; U;.

If valy(w) = n, then w is a U-representation of n.
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Integer base-b : 1, b, b2, b3, - --
o Ui=bVieN
e Y, =[0,b-1]
o repy(N) = {e} U (X5 \ {0})X}
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Integer base-b : 1, b, b2, b3, - --
o Ui=bVieN
e Y, =[0,b-1]
o repy(N) = {e} U (X5 \ {0})X}

Fibonacci numeration system : 1,2,3,5,8,13,---
e F[p=1F=2and Fiip=F1+FVieN
e Xr=1]0,1]
e repe(N) =1{0,01}* U {e}
repe(11) = (10100)F and valF(1001) = 6 = valg(111)
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Advantages of regular numeration languages

@ We are able to check with an automaton whether a
representation is greedy,

@ the numeration system is linear,

@ ultimately periodic sets are recognizable.
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Advantages of regular numeration languages

@ We are able to check with an automaton whether a
representation is greedy,

@ the numeration system is linear,

@ ultimately periodic sets are recognizable.

Integer base b : Uj11 = bU;

Fibonacci numeration system : Fiio = Fii1 + F;
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Advantages of regular numeration languages

@ We are able to check with an automaton whether a
representation is greedy,

@ the numeration system is linear,

@ ultimately periodic sets are recognizable.

Proposition

Let m, r be non-negative integers and let U = (U;);en be a linear
numeration system. The language

val ' (mN+r) = {w € T}, : valy(w) € mN+r}

is accepted by a DFA that can be effectively constructed. In parti-
cular, if N is U-recognizable, then any ultimately periodic set is U-
recognizable.
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Decision problem

Problem

Given a linear numeration system U and a deterministic finite auto-
maton & whose accepted language is contained in the numeration
language repy(N), decide whether the subset X of N that is reco-
gnized by o7 is ultimately periodic, i.e. whether or not X is a finite
union of arithmetic progressions (along a finite set).
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Integer base
@ J. Honkala
@ A. Lacroix, N. Rampersad, M. Rigo, E. Vandomme
e B. Boigelot, I. Mainz, V. Marsault, M. Rigo, J. Sakarovitch
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Integer base
@ J. Honkala
@ A. Lacroix, N. Rampersad, M. Rigo, E. Vandomme
e B. Boigelot, I. Mainz, V. Marsault, M. Rigo, J. Sakarovitch

Pisot numeration systems
e First-order logic (N, +, Vy)

@ X a U-recognizable set, ¢ a formula describing it

(@EN)(3Fp)(Vn = N)(p(n) & ¢(n+ p))

o J. Leroux, A. Muchnik
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When addition is not recognizable

J. Bell, E. Charlier, A. Fraenkel, M. Rigo
@ N is U-recognizable,
@ im0 (Uit1 — Uj) = +o0,
@ limptoo Ny(m) = +o0.

Uitz =3Uis2 +2Uip1 + 3U;
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Our settings

(H1) N is U-recognizable,
(H2) limsup; ,  (Uix1 — U;) = +o0,

(H3) N >0,Vi >0,Uip1 — Ui < Uiyo — Uits.
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Let U be a numeration system satisfying (H1), (H2) and (H3). There
exists a constant Z such that if w is a greedy U-representation, then
for all z> Z, 10w is also a greedy U-representation.
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Let U be a numeration system satisfying (H1), (H2) and (H3). There
exists a constant Z such that if w is a greedy U-representation, then
for all z> Z, 10w is also a greedy U-representation.

1,2,4,5,16,17,64,65, - - - Uiya =5Ui1o — 4U;

valy(1001) =6  1(00)*1001
-+ ,65,64,17,16,5,4,2,1
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Toy examples

Consider the numeration system Uji4 = 2U;y3 + 2U;i12 + 2U; with
initial conditions Ug =1, U; = 3, U, = 9, U3 = 25.
The largest root is 3 ~ 2.804 and it has also a root v ~ —1.134.

Consider the numeration system U;;3 = 12U;;2+6U;41+12U; with
initial conditions Uy = 1, U; = 13, U> = 163.

Adeline Massuir Ultimate periodicity problem 11/38



Input : DFA &

Upper bound on the admissible preperiods and periods

For each pair (N, p) of possible preperiods and periods, there
are at most 2V2P corresponding ultimately periodic sets X

Equality test : @Zx and &/
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Preperiod

Proposition

Let U be a numeration system satisfying (H1), let X be an ultimately
periodic set of non-negative integers and let @/x be a DFA with #Qx
states accepting repy(X). Then the preperiod ax of X is bounded
by a computable constant J depending only on the number of states
of @x and the period mx of X.
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Let U = (U;)jen satisfying (H1), (H2) and (H3).
Uik = ak-1Uizk—1+ -+ aoU;

Suppose that the minimal automaton </x of rep(X) is given. Let
mx be a potential period for X and consider its prime decomposition.

@ Factors that do not divide ag,
@ factors that divide ag but not all the a,
@ factors that divide all the a;.
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Factors that do not divide ag

Proposition

Let X C N an ultimately periodic U-recognizable set and let g be a
divisor of mx such that (g, ap) = 1. Then the minimal automaton of
repy(X) has at least g states.

Adeline Massuir Ultimate periodicity problem 15/38



Prime factors that divide ag but not all the a;

Take the sequence Up =1, U; =4,U, =8 and U,'+2 = U,'+1 + U;
fori e Np.

1,4,8,12,20,32,52, - - -

The sequence (U; mod 2#);>¢ has a zero period for i = 1,2 because
of the particular initial conditions. But the sequence (U; mod 8);en
is given by 1(404)~.

Let p be a prime. The sequence (U; mod p*);cn has a zero period
for all 1 > 1 if and only if all the coefficients ag,...,ax_1 of the
linear relation are divisible by p.
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Proposition

Let p be a prime not dividing all the coefficients of the recurrence
relation and let A > 1 be the least integer such that (U; mod p*)en
has a period containing a non-zero element. If X C N is an ultimately
periodic U-recognizable set with period mx = p* - r where y > A
and r is not divisible by p, then the minimal automaton of rep(X)
has at least p*~**1 states.
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The gcd of the coefficients of the recurrence is 1

Theorem

Let U be a numeration system satisfying (H1), (H2) and (H3) and
such that the gcd of the coefficients of the recurrence relation of U is
1. Given a DFA &7 accepting a language contained in the numeration
language repy(N), it is decidable whether this DFA recognizes an
ultimately periodic set.

.
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Uiys = 6Ui1q +3Uiy3 — Uiyo +6Uj1 +3U;,Vi >0

o Ny(3') A +o0

B = 3+ 21/3, three roots of modulus 1

Initial conditions :
U=1,U; =7,U, =45,U; =291, Us = 1881

Numeration language : set of words over {0, ...,6} avoiding
63,64, 65,66

e Forall i >0,Uiy1 — U; > 5U;
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Prime factors that divide all the coefficients

_ H1 ot
Tix =Mx Py~ - Pt
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Prime factors that divide all the coefficients

— H1 At
Tx =Mmx Py Pt

Let j € [1,t],»n > 1. The sequence (U; mod pj‘-‘),-eN has a zero
period. We let f,(11) be the integer such that

Uty ()1 # O (mod pi') and U;=0 (mod p}) Vi > f,(u).

Example :

Uiya =2Ui43+2Ui 0 +2U;, Uy =1,U; =3, U, =9,U; =25
e (Ui mod2)jey =1,1,1,1,0¢ hence fa(1) = 4
e (Uimod4)ieny=1,3,1,3,2,0,2,2,0% hence f(2) =8
e f5(3) =12,f,(4) =16
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We set

Fx = max fp,(1)-
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We set

Fx = max fp,(1)-

Example :

U,'+3 = 12U,'+2 + 6U,'+1 + 12U;, Uy =1, U, =13, U, = 163
e fp(1) =3,f2(2) =5,f2(3) =7
e f3(1) =3,f3(2) =6,f3(3) =9
o mx =72 =123.32 Fx = max(f2(3),f3(2)) =7

(U; mod 72);en = 1,13, 19, 30, 54, 48, 36, 0%
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Proposition

Let m, r be non-negative integers and let U = (U;);en be a linear
numeration system. The language

valal(mN—l-r) ={w e X, :valy(w) € mN+r}

is accepted by a DFA that can be effectively constructed. In par-
ticular, if N is U-recognizable, then any ultimately periodic set is
U-recognizable.

We let v, denote the maximum of the number of states of these
DFAs for r € [0, m—1].
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Let X C N be an ultimately periodic U-recognizable set with period
Tx = my - pyt - pi*. Assume that Fx —1— ‘repU (%‘( — 1)’ >Z.
Then there is a positive constant C such that the minimal automaton
of 0" repy(X) has at least — - Iog2 (’repu (— — 1)‘ + 1) states.
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The gcd of the coefficients of the recurrence greater than 1

ﬂX:mX.piil...pél‘t,tZ]_

nX:FX—l—’repU<;—§—1>‘ZZ

Theorem

Let U be a numeration system satisfying (H1), (H2) and (H3), and
such that the gcd of the coefficients of the recurrence relation of U is
larger than 1. Assume there is a computable positive integer D such
that for all ultimately periodic sets X of period mx = mx -pj* - - - pi*
with ¢t > 1, if max{u1,--- ,pte} > D, then nx > Z. Then, given a
DFA o/ accepting a language contained in the numeration language
repy(N), it is decidable whether this DFA recognizes an ultimately
periodic set.
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Behaviour of nx

nX:FX—l—’repU(%—l)‘
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Behaviour of ny

X

nX:FX—l—’repU(;—X—l)‘

Fx = (1)
x = max fp,(1)

fo (1) = M & (v (Una2) < 0 AT > M1, (U) > 1)

Lemma

Let j € [1,t]. Assume that there are a,e € Rsg and a non-
decreasing function g such that

vy (Ui) < |ai] +g(i)

for all i € N and there exists M such that g(i) < e/ for all i > M.
Then for large enough 1,

o]
ij(:U') > a—i—e'
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Lemma
Let j € [1,t]. Assume that there are a,e¢ € Ry and a non-
decreasing function g such that

vp,(Ui) < lai] + g(i)

for all i € N and there exists M such that g(i) < ei for all i > M.
Then for large enough 1,

7
o > .
Pj(lu) o€ )
max fi;
i 1<j<
Fx = 1rr<'|§ax fpj(,uj) > max < .HJ > > _J_lt .
<jst 1<t \ej+e /)~ max(qj +¢))
<<
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nX:FX—l—’repU<%—l)‘

e (7 -1))

Soittola : Ju > 1,80,...,84-1 > 1, non-zero polynomials
Po,...,Py_1s. t. for r € [0,u—1] and large enough i,

Uuir = Pr(D)B; + Qi(i)

where Qé(,-i) — +00 when | — +00.
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nX:FX—l—’repU<%—l>‘

o3

Soittola : Ju > 1,80,...,84-1 > 1, non-zero polynomials
Po,...,Py_1s. t. for r € [0,u—1] and large enough i,

Uuir = Pr(D)B; + Qi(i)

where Qé(,-i) — +00 when | — +00.

Bo="=Pu_1=0 and deg(Pp) = --- =deg(Py_1) =d

Uiigr ~ Cr’.dﬁl
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If B3 > 1, there is a non-negative constant K such that

[repy(n)] < ulogs(n) + K

for all n € N.
If 3> 1, then
- t
X W
—— 1) <ul J
repy <mX )‘ < ulogg |7| p;
<u

I
() S0+
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Behaviour of nx

nx:FX—l—‘repU(;’—f(—lﬂ

t

> logs(py) | —K -1

Jj=1

1

nx > max pj | —— —u
i\ “max (aj +€j)
1<j<t

1<j<t
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Some intuition for o

vp,(Ui) < lai] +g(i)

Consider the numeration system Uji4 = 2U;y3 + 2U; 12 + 2U; with
initial conditions Uy =1, U; =3, U> =9, U3 = 25.

For 41 < <60, 1a(U;) is
10,10,10,11,13,11,11, 12,12, 12, 12,13, 14, 13, 13, 14, 14, 14, 14, 15.

Conjecture : a1 = %

1
4=—> |0g2.804(2) ~ 0.672
o
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Consider the numeration system U, 3 = 12U;;2+6U;11+12U; with
initial conditions Uy = 1, U; = 13, U, = 163.

For 41 <i <60, (V) is

24,20,21,21, 24,22, 23,23, 27, 24,25, 25, 28, 26, 27, 27, 33, 28, 29, 29
and v3(U;) is

13,14,14,14,15,15,15,16,17,16,17,17,17,18, 18,18, 19, 20, 19, 20.

Conjecture : a1 = % ar =

W=

1
2= ——5—- > log15554(2) + logy2554(3) ~ 0.708
max{3, 3
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Problem to solve

Ve, (Us) < Lai] + g(i)

Consider the numeration system U3 = 12U;;2+6U;11+ 12U; with
initial conditions Uy = 1, U; = 13, U, = 163.

1/2(U,') and V3(U,')
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For all i € N, we have

Nl 0 ifiZ4 (mod?9)
r(U;) = {3J+{1 if i=4 (mod?9).

T:=U;/35 forallieN
Modulo 97Z[3/3],

32/3 4.31/3 1 7.32/3 3.31/3 1 2.32/3 2.31/3
323 313 7 7.3%3 3.3Y3 7 8.3%3 5.31/3

32/3 7.31/3 4 7.32/3 3.313 4 5.32/3 g.31/3 7.

and thus the sequence (v3(T;));en of 3-adic valuations is

with period 9.
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The previous theorem implies 52 < v3(U;) < &2 for all i € N. In
particular, v3(U;) < | 4] +2.

What about v»(U;)?

Ti=U;j/2z L forall i € N
Modulo 2 Z[v/2],

*7*117\/57170117\/571701"' :*,*(1’\/5’170)40_
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The previous theorem implies 52 < v3(U;) < &2 for all i € N. In
particular, v3(U;) < | 4] +2.

What about v»(U;)?

Ti=U;j/2z L forall i € N
Modulo 2 Z[v/2],

*7*117\/57170117\/571701"' :*,*(1’\/5’170)00_

For i large enough such that i # 1 (mod 4), we have

v =| 3.

Adeline Massuir Ultimate periodicity problem 34/38



p-adic analysis

p-adic valuation v, (n) : exponent of the highest power of p dividing n
p-adic absolute value |n|, : p~¥#(")
Non-archimedean : |m + n|, < max{|m|p, |n|p}

Qp : completion of Q with respect to the p-adic absolute value
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p-adic analysis

p-adic valuation v, (n) : exponent of the highest power of p dividing n
p-adic absolute value |n|, : p~¥#(")
Non-archimedean : |m + n|, < max{|m|p, |n|p}
Qp : completion of Q with respect to the p-adic absolute value
Every ¢ € Q, can be written in the form
¢ = d_Np_N+"'+d_1p_1+do+d1p+d2p2+"'
= Z dipiv
i>—N

with N € Z and d; € [0, p—1] for all i > —N. This representation
is unique.
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Back to 1,(U)

Construct a piecewise interpolation of U; to Zj.

P(x) = x® — 12x* — 6x — 12
= (x = B1)(® + (b1 — 12)x + (57 — 1261 — 6))

Q2(62)

Ui = aBi + cfBy + s
= B£ <C1 (%) + o+ c (%) )
= p5 <C1 (%) + fl(i))
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Conjecture (*)

Under conjecture (x), for all i > 13 such that i = 1 (mod 4), we

have

for all i > 10.
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Conclusion

Uity = bU;
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Conclusion

Uity = bU;

Proposition

Letb>2,u>1, N >0.Let Ubeanumeration system U = (U;)jen
such that U;y, = bU; for all i > N. If a set is U-recognizable then
it is b-recognizable. Moreover, given a DFA accepting rep(X) for
some set X, we can compute a DFA accepting rep,(X).
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