[en] Poly(ethylene glycol)-b-polyphosphoester (PEG-b-PPE) block copolymer nanoparticles are promising carriers for poorly water soluble drugs. To enhance the drug loading capacity and efficiency of such micelles, a strategy was investigated for increasing the lipophilicity of the PPE block of these PEG-b-PPE amphiphilic copolymers. A PEG-b-PPE copolymer bearing pendant vinyl groups along the PPE block was synthesized and then modified by thiol-ene click reaction with thiols bearing either a long linear alkyl chain (dodecyl) or a tocopherol moiety. Ketoconazole was used as model for hydrophobic drugs. Comparison of the drug loading with PEG-b-PPE bearing shorter pendant groups is reported evidencing the key role of the structure of the pendant group on the PPE backbone. Finally, a first evidence of the biocompatibility of these novel PEG-b-PPE copolymers was achieved by performing cytotoxicity tests. The PEG-b-PPE derived by tocopherol was evidenced as particularly promising as delivery system of poorly water-soluble drugs.
Research Center/Unit :
Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Vanslambrouck, Stéphanie ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Riva, Raphaël ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Ucakar, Bernard; Université catholique de Louvain (UCL), Brussels, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Belgium
Préat, Véronique; Université catholique de Louvain (UCL), Brussels, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Belgium
Gagliardi, Mick; University of Maastricht, Faculty of Health, Medicine and Life Science, Department of Physiology, the Netherlands
Daniel, Daniel G. M.; University of Maastricht, Faculty of Health, Medicine and Life Science, Department of Physiology, the Netherlands
Lecomte, Philippe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Language :
English
Title :
Thiol-ene reaction: an efficient tool to design lipophilic polyphosphoesters for drug delivery systems
Publication date :
20 March 2021
Journal title :
Molecules
eISSN :
1420-3049
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
Lapienis, G.; Penczek, S. Kinetics and thermodynamics of the polymerization of the cyclic phosphate esters. II. Cationic polymerization of 2-methoxy-2-oxo-1,3,2-dioxaphosphorinane (1,3-propylene methyl phosphate). Macromolecules 1974, 7, 166–174. [CrossRef]
Dove, A.P. Organic catalysis for ring-opening polymerization. ACS Macro Lett. 2012, 1, 1409–1412. [CrossRef]
Clément, B.; Grignard, B.; Koole, L.; Jérome, C.; Lecomte, P. Metal-free strategies for the synthesis of functional and well-defined polyphosphoesters. Macromolecules 2012, 45, 4476–4486. [CrossRef]
Riva, R.; Shah, U.; Thomassin, J.M.; Yilmaz, Z.; Lecat, A.; Colige, A.; Jérôme, C. Design of degradable polyphosphoester networks with tailor-made stiffness and hydrophilicity as scaffolds for tissue engineering. Biomacromolecules 2020, 21, 349–355. [CrossRef] [PubMed]
Wang, Y.-C.; Yuan, Y.-Y.; Du, J.-Z.; Yang, X.-Z.; Wang, J. Recent progress in polyphosphoesters: From controlled synthesis to biomedical applications. Macromol. Biosci. 2009, 9, 1154–1164. [CrossRef] [PubMed]
Becker, G.; Wurm, F.R. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem. Soc. Rev. 2018, 47, 7739–7782. [CrossRef] [PubMed]
Ergül Yilmaz, Z.; Jérôme, C. Polyphosphoesters: New trends in synthesis and drug delivery applications. Macromol. Biosci. 2016, 16, 1745–1751. [CrossRef]
Pelosi, C.; Tinè, M.R.; Wurm, F.R. Main-chain water-soluble polyphosphoesters: Multi-functional polymers as degradable PEG-alternatives for biomedical applications. Eur. Polym. J. 2020, 141, 110079. [CrossRef]
Wang, Y.-C.; Yuan, Y.-Y.; Wang, F.; Wang, J. Syntheses and characterization of block copolymers of poly(aliphatic ester) with clickable polyphosphoester. J. Polym. Sci. Part A 2011, 49, 487–494. [CrossRef]
Zhang, S.; Li, A.; Zou, J.; Lin, L.Y.; Wooley, K.L. Facile synthesis of clickable, water-soluble, and degradable polyphosphoesters. ACS Macro Lett. 2012, 1, 328–333. [CrossRef] [PubMed]
Zhang, S.; Zou, J.; Elsabahy, M.; Karwa, A.; Li, A.; Moore, D.A.; Dorshowdf, R.B.; Wooley, K.L. Poly(ethylene oxide)-block-polyphosphester-based paclitaxel conjugates as a platform for ultra-high paclitaxel-loaded multifunctional nanoparticles. Chem. Sci. 2013, 4, 2122–2126. [CrossRef] [PubMed]
Du, J.-Z.; Du, X.J.; Mao, C.-Q.; Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 2011, 133, 17560–17563. [CrossRef]
Yang, X.-Z.; Du, J.Z.; Dou, S.; Mao, C.-Q.; Long, H.Y.; Wang, J. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano 2012, 6, 771–781. [CrossRef] [PubMed]
Yuan, Y.-Y.; Mao, C.-Q.; Du, X.-J.; Du, J.-Z.; Wang, F.; Wang, J. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv. Mater. 2012, 24, 5476–5480. [CrossRef]
Yuan, Y.-Y.; Du, J.-Z.; Wang, J. Two consecutive click reactions as a general route to functional cyclic polyesters. Chem. Commun. 2012, 48, 570–572. [CrossRef] [PubMed]
Sun, C.-Y.; Dou, S.; Du, J.-Z.; Yang, X.-Z.; Li, Y.-P.; Wang, J. Doxorubicin conjugate of poly(ethylene glycol)-block-polyphosphoester for cancer therapy. Adv. Healthc. Mater. 2014, 3, 261–272. [CrossRef]
Baeten, E.; Vanslambrouck, S.; Jérôme, C.; Lecomte, P.; Junkers, T. Anionic flow polymerizations toward functional polyphospho-esters in microreactors: Polymerization and UV-modification. Eur. Polym. J. 2016, 80, 208–218. [CrossRef]
Zhang, S.; Zou, J.; Zhang, F.; Elsabahy, M.; Felder, S.E.; Zhu, J.; Pochan, D.J.; Wooley, K.L. Rapid and versatile construction of diverse and functional nanostructures derived from a polyphosphoester-based biomimetic block copolymer system. J. Am. Chem. Soc. 2012, 134, 18467–18474. [CrossRef] [PubMed]
Lim, Y.H.; Heo, G.S.; Cho, S.; Wooley, K.L. Construction of a reactive diblock copolymer, polyphosphoester block-poly(L-lactide), as a versatile framework for functional materials that are capable of full degradation and nanoscopic assembly formation. ACS Macro Lett. 2013, 2, 785–789. [CrossRef] [PubMed]
Ergül Yilmaz, Z.; Debuigne, A.; Calvignac, B.; Boury, F.; Jérôme, C. Double hydrophilic polyphosphoester containing copolymers as efficient templating agents for calcium carbonate microparticles. J. Mater. Chem. B 2015, 3, 7227–7236. [CrossRef]
Sun, C.-Y.; Ma, Y.-C.; Cao, Z.-Y.; Li, D.-D.; Fan, F.; Wang, J.-X.; Tao, W.; Yang, X.-Z. Effect of hydrophobicity of core on the anticancer efficiency of micelles as drug delivery carriers. ACS Appl. Mater. Interfaces 2014, 6, 22709–22718. [CrossRef] [PubMed]
Vanslambrouck, S.; Clément, B.; Riva, R.; Koole, L.H.; Molin, D.G.M.; Broze, G.; Lecomte, P.; Jérôme, C. Synthesis and tensioactive properties of PEO-b-polyphosphate copolymers. RSC Adv. 2015, 5, 27330–27337. [CrossRef]
Karmowski, J.; Hintze, V.; Kschonsek, J.; Killenberg, M.; Böhm, V. Antioxidant activities of tocopherols/tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence. Food Chem. 2015, 175, 593–600. [CrossRef]
Constantinides, P.P.; Han, J.; Davis, S.S. Advances in the use of tocols as drug delivery vehicles. Pharm. Res. 2006, 23, 243–255. [CrossRef] [PubMed]
Duhem, N.; Danhier, F.; Préat, V. Vitamin E-based nanomedicines for anti-cancer drug delivery. J. Control. Release 2014, 182, 33–44. [CrossRef] [PubMed]
Brigelius-Flohé, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 1145–1155. [CrossRef]
Lim, Y.H.; Heo, G.S.; Rezenom, Y.H.; Pollack, S.; Raymond, J.E.; Elsabahy, M.; Wooley, K.L. Development of a vinyl ether-functionalized polyphosphoester as a template for multiple postpolymerization conjugation chemistries and study of core degradable polymeric nanoparticles. Macromolecules 2014, 47, 4634–4644. [CrossRef] [PubMed]
Balata, G.; Maahdi, M.; Bakera, R.A. Improvement of solubility and dissolution properties of ketoconazole by solid dispersions and inclusion complexes. Asian J. Pharm. Sci. 2010, 5, 1–12.
Gaucher, G.; Dufresne, M.-H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J.-C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release 2005, 109, 169–188. [CrossRef]
Ergül Yilmaz, Z.; Vanslambrouck, S.; Cajot, S.; Thiry, J.; Debuigne, A.; Lecomte, P.; Jérôme, C.; Riva, R. Core cross-linked micelles of polyphosphoester containing amphiphilic block copolymers as drug nanocarriers. RSC Adv. 2016, 6, 42081–42088. [CrossRef]