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Abstract: Poly(ethylene glycol)-b-polyphosphoester (PEG-b-PPE) block copolymer nanoparticles
are promising carriers for poorly water soluble drugs. To enhance the drug loading capacity and
efficiency of such micelles, a strategy was investigated for increasing the lipophilicity of the PPE
block of these PEG-b-PPE amphiphilic copolymers. A PEG-b-PPE copolymer bearing pendant vinyl
groups along the PPE block was synthesized and then modified by thiol-ene click reaction with thiols
bearing either a long linear alkyl chain (dodecyl) or a tocopherol moiety. Ketoconazole was used
as model for hydrophobic drugs. Comparison of the drug loading with PEG-b-PPE bearing shorter
pendant groups is reported evidencing the key role of the structure of the pendant group on the PPE
backbone. Finally, a first evidence of the biocompatibility of these novel PEG-b-PPE copolymers was
achieved by performing cytotoxicity tests. The PEG-b-PPE derived by tocopherol was evidenced as
particularly promising as delivery system of poorly water-soluble drugs.

Keywords: click chemistry; biodegradable polymer; polyphosphoester; drug-delivery

1. Introduction

The ring-opening polymerization (ROP) of cyclic phosphoesters, especially phos-
phates, into biodegradable and biocompatible aliphatic polyphosphoesters is known since
the 70s and the pioneering works of Penczek [1–5]. Since then, thanks to the devel-
opment of the organo-catalysis, 5-membered cyclic phosphate monomers became very
popular due to their fast and selective polymerization into high molar mass aliphatic
polyphosphoesters (PPE) [6–9]. Thanks to the pentavalency of the phosphorus atom, a
wide diversity of those cyclic monomers can be made available by esterification of 2-chloro-
1,3,2-dioxaphospholane 2-oxide with various alcohols. Many alcohols being available, the
pendant group of aliphatic PPEs can easily be modified, enabling the fine tailoring of a set
of properties such as (bio)degradation rate, solubility in organic solvents and in water, hy-
drophilic/lipophilic balance and reactivity for post-functionalization. If these 5-membered
phosphate rings polymerize efficiently by ROP, their high sensitivity towards hydrolysis
makes their purification more delicate. Fractional distillation is efficient for enough volatile
monomers. Nevertheless, this purification technique is no more valid for high molar mass
monomers exhibiting a high boiling point. Therefore, a two-step approach emerged that
consists in the ROP of a cyclic phosphate substituted by a functional group allowing the
chemical post-modification of the PPE. Efficient reactions that occur in conditions mild
enough to avoid the PPE degradation have to be selected. This is the case for reported
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examples that used the Cu-catalyzed azide-alkyne cycloaddition (CuAAC) [10–12], the
thiol-ene [13–18] or the thiol-yne [19–21] reactions. In this work, we applied the thiol-ene
two-step strategy to obtain PPE with long alkyl pendent chains with the ultimate goal to
drastically increase the lipophilicity of PPE.

Indeed, this work pays attention to amphiphilic diblock copolymers made up of hy-
drophilic PEG and hydrophobic PPE blocks. These copolymers are prone to self-assemble
into nanoparticles in water [22,23] which makes them very attractive for drug delivery
applications. In a previous work, we demonstrated that increasing the length of the PPE
substituent from ethyl to heptyl favorably impacts the size and stability of the nanopar-
ticles [23]. In order to increase further the lipophilicity of the PPE aiming at improving
the PPE affinity for lipophilic drugs, we investigated here the thiol-ene reaction for the
synthesis of new PEG-b-PPE with highly lipophilic PPE block. For that purpose, PEG-b-PPE
bearing butenyl side-groups (PEG-b-PBenEP) synthesized following an already reported
procedure, ref. [23] has been used to investigate the thiol-ene addition of dodecane-1-
thiol (dodec-SH) or a derivative of tocopherol substituted by a thiol function (Toco-SH)
(Scheme 1). The choice of tocopherol, a liposoluble vitamin, is based on its use in the
food and pharmaceutical industries, several drugs being ‘tocophilic’, i.e., exhibit a high
affinity for tocopherol [24], so as for biomedical applications [25–27]. The self-assembly of
these new PEG-b-PPE copolymers into nanoparticles was investigated by dynamic light
scattering and pyrene fluorescent probe spectroscopy. Their potential for loading poorly
water-soluble drugs was proved by selecting ketoconazole as a model drug. Finally, cyto-
toxicity tests by live/dead cell viability assays were performed for both types of copolymers
as a first evaluation of their biocompatibility.
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2. Results
2.1. Synthesis of Thiol Functional Tocopherol (TocoSH)

Owing the straightforward synthesis of well-defined PEG-b-PPE copolymer with
pendent unsaturation on the PPE backbone, the thiol-ene reaction was selected to bring
the lipophilic side-chains by post-functionalization of the PPE. Therefore, lipophilic thiol
derivatives should first be made available. If dodecane-1-thiol (dodecSH) is a commercially
available compound, it is not the case for thiol derivatives of tocopherol. Therefore, we
developed an efficient strategy to introduce a thiol function onto tocopherol.
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The esterification between α-tocopherol and thioglycolic acid, in presence of N,N′-
dicyclohexylcarbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP) being not efficient
(less than 10% of coupling), even for three days of reaction, we synthesized mercaptoethyl-D-
α-tocopheryl succinate (TocoSH). For that purpose, D-α-tocopheryl succinate (Toco-succ)
was reacted with a slight excess of 2-mercaptoethanol (1.2 eq.), in the presence of DCC
(1.2 eq.) and a catalytic amount of DMAP (0.2 eq.) in CH2Cl2 heated at 35 ◦C for three days
to form the ester linkage, as illustrated in Scheme 2.
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After filtration to remove the dicyclohexylurea formed by the hydration of DCC, the
organic solution was washed with different aqueous solutions: (i) HCl 0.05 M, (ii) satu-
rated NaHCO3 and (iii) water and then dried on Na2SO4. The esterification reaction was
confirmed by proton nuclear magnetic resonance (1H NMR) spectroscopy (Figure 1). The
comparison of the protons of the -O-CH2-ester (peak K) to the signal of the -CH2- of the
tocopherol part (peak M) allows the determination of the reaction yield, which reached 88%.
With both thiols in hands, the post-polymerization thiol-ene reaction onto the PEG-b-PPE
copolymers can be studied.
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2.2. Synthesis of the Starting PEG-b-PBenEP Copolymer

The organocatalyzed homopolymerization of cyclic phosphate bearing various small-
size (<C10) alkyl, alkene or alkyne pendant chains from a PEG macroinitiator being already
well described, [18,23] we applied the previously reported conditions to synthesize the PEG-
b-poly(2-but-3-enoxy-1,3,2-dioxaphospholane 2-oxide) (PEG-b-PBenEP) used as starting
diblock copolymer. The 1H NMR spectrum and the size exclusion chromatography (SEC)
trace of this copolymer are shown in Figures 2a and 3a, respectively. They will be used as a
reference for compa rison with the copolymers obtained after the click reaction with both
thiols as depicted on Scheme 1.
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2.3. Post-Polymerization Functionalization by Thiol-ene Reaction

The thiol-ene click reaction was carried out onto PEG-b-PBenEP under UV irradiation
with an excess of the thiol compounds (1.5 eq. and 4.6 eq. of dodecSH and TocoSH, respec-
tively and in the presence of a catalytic amount of 2,2-dimethoxy-2-phenylacetophenone
(DMPA) as a photo-initiator, in similar conditions previously reported by Wooley et al. [28]
A larger excess of Toco-SH allows to increase the number of tocopherol moieties grafted
onto the butenyl groups of the PPE block. After reaction, the excess of the thiol compound
was easily removed by the repeated precipitation (three times) from CH2Cl2 into cold
diethyl ether, both thiol compounds are well soluble.

The comparison of the 1H NMR spectra before and after thiol-ene reaction with
dodecane-1-thiol is illustrated in Figure 2a,b and shows the completeness of the function-
alization by the total disappearance of the vinyl proton resonances at 5.8 and 5.20 ppm
(labelled A and B in Figure 2a) in Figure 2b and the appearance of the proton resonance
of the dodecane linear chains (between 1.72 and 0.92 ppm, labeled as I, J, K and L, re-
spectively). In addition, the constant integration ratio (I(C+D)/IE) before and after the
click reaction evidences the integrity of the PPE block during the post-polymerization
modification. Moreover, the comparison of the integration of the peak L with the one of
peaks (C+D) confirms the quantitativity of the thiol-ene click reaction.

When the thiol-ene reaction is performed with TocoSH on the PEG-b-PBenEP copoly-
mer, the reaction is only partial as demonstrated by the 1H NMR spectra before and after
the thiol-ene reaction (Figure 2c) where only a partial disappearance of the vinyl proton
resonances (5.8 and 5.1 ppm, as labeled as A and B, respectively) is observed beside the
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appearance of the protons resonance of the tocopherol side-chain (between 2.9 and 0.8 ppm,
labelled as G’, H, I and J). A conjugation efficiency of 60% was calculated by comparing the
intensity of the protons B remaining vinyl groups and E of PEG used as internal reference
and confirmed by the intensity ratio of the peaks E and J coming from the tocopherol. This
conjugation yield is not improved by increasing the irradiation time, the bulkiness of the
tocopherol might be the reason of the limited grafting reaction yield.

SEC analyses of the copolymers after thiol-ene reaction showed peak shifts to shorter
elution time, relative to the block copolymers before the thiol-ene reaction, but no broaden-
ing of the elugram showing that the reaction does not degrade the copolymer, as illustrated
in Figure 3. Indeed, similar bimodal SEC traces were observed for the starting PEG-b-
PBenEP and both copolymers obtained after the thiol-ene reaction. It is noteworthy to
recall that the small peak at low elution time corresponds to a second population of chains,
attributed to the presence of a triblock copolymer (below 10%), PPE-PEG-PPE, due to some
homotelechelic HO-PEO-OH in the commercial MeO-PEO-OH as evidenced by MALDI-
TOF mass spectrometry analysis (Figure S1). Since the separation of this copolymer mixture
is tedious, the starting amphiphilic copolymer was used without further purification for
the thiol-ene reaction. The macromolecular characteristics of the amphiphilic copolymers
obtained after the thiol-ene reaction are summarized in Table 1.

Table 1. Macromolecular characteristics of PEG-b-PPE copolymers after thiol-ene reaction.

RSH
Used

Irradiation
Time
(min)

DP
PEG

DP
PPE

(1H NMR)

Funct.1

Yield
(%)

Mn (SEC)2

g mol−1 Ð (SEC)

DodecSH 45 120 8 100 6900 1.2
TocoSH 60 120 9 60 7300 1.2

1 Thiol-ene reaction yield determined from 1H NMR; 2 Apparent molar mass measured by SEC with
polystyrene standards.

2.4. Thermal Characterization of the Copolymers

Since long alkyl chains were introduced in the copolymers as pendant groups of
the PPE block, they could provide crystallinity to the polyphosphoester block of the
materials. The DSC thermograms of the novel copolymers are shown in Figure 4. Figure 4a
clearly evidences a melting temperature at −3 ◦C for the PEG-b-PdodecS-BEP, the main
crystallization peak at 54 ◦C being due to the PEG block. Such derivatization with a
dodecyl side group appears thus, to impart crystallinity to PPE. In contrast, we showed in
a previous paper [23] that PPE bearing shorter alkyl side chains are all amorphous.
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The DSC curve of the PEG-b-PTocoS-BEP copolymer shows the main melting peak at
52 ◦C corresponding to the crystallization of the PEG block and a slope change observed
at −31.6 ◦C corresponding to the Tg of the PPE block. Even if this Tg value is still below
0 ◦C, it appears at a higher temperature than the one obtained for common PEG-b-PPE
block copolymers (generally Tg < −50 ◦C) [23]. This also evidences the impact of the bulky
pendent chains introduced along the backbone that tend to rigidify the PPE segments.

2.5. Behavior in Water of the PEG-b-PPE Diblock Copolymers

The self-assembly in water of the amphiphilic diblock copolymers before and after the
thiol-ene reaction was first investigated by dynamic light scattering (DLS). The as-obtained
size and the size distribution (PDI) of the self-assemblies in Milli-Q water are reported in
Table 2.

Table 2. Characterization of PEG-b-PPE micelles in water.

Copolymers HLB 1 Dh
2 PDI 3 CMC 4

mol L−1

PEG-b-PBenEP 15.4 (18.7) 220 ± 40 0.318 4.2 × 10−5

PEG-b-PDodecS-BEP 12.9 (14.9) 22 ± 2 0.373 1.1 × 10−7

PEG-b-PTocoS-BEP 10.8 (13.0) 85 ± 1 0.311 8.3 × 10−8

1 HLB calculated by the Griffin equation 20 × [1 −Mn(hydrophobic block)/Mn(total)] considering the polyphos-
phate block as hydrophobic, in bracket, HLB calculated by considering only the pendant group as hydrophobic.
2 Hydrodynamic diameter. 3 Size distribution of nanoparticles in Milli-Q water, measured by DLS for a copolymer
concentration of approximatively 3.5 × 10−4 moL L−1. 4 Critical Micelles Concentration (CMC) in Milli-Q water,
measured by pyrene fluorescence probe spectroscopy.

In line with the previous studies [23], the copolymer with the pendant butenyl groups
forms large and loose aggregates about 220 nm, similar to the corresponding copolymer
bearing the saturated n-butyl groups (Dh = 126 nm, i.e., also above 100 nm). Remarkably,
both novel amphiphilic copolymers self-assembled directly in water into small and well-
defined micelles with a diameter of 22 nm and 85 nm respectively. A similar behavior was
observed for PEG-b-PHEP, a copolymer with a n-heptyl pendant groups on the PPE block
(Dh = 16 nm) [23]. The PDI remains above 0.3 for all the copolymers which could be due
to the presence of the PPE-PEG-PPE triblock. A spherical morphology was observed by
Transmission Electron Microscopy (TEM) for all the three copolymer micelles, as illustrated
in Figure 5.
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Figure 5. TEM images of (a) PEG-b-PBenEP, (b) PEG-b-PDodecS-BEP and (c) PEG-b-PTocoS-BEP self-assembled in water.

The CMC of the amphiphilic copolymers was determined by the pyrene fluores-
cence probe spectroscopy method and is reported in Table 2. Clearly, after the thiol-ene
post-polymerization modification, the micellization occurred at a concentration two and
three orders of magnitude lower owing to the increased hydrophobicity of the PPE seg-
ment. The very low CMCs, 1.1 × 10−7 and 8.3 × 10−8 moL/L respectively and the small
size of the formed self-assemblies of the PEG-b-PDodecS-BEP and PEG-b-PTocoS-BEP
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amphiphilic copolymers make them both promising candidates for carriers of poorly
water-soluble drugs.

2.6. Ketoconazole Encapsulation and Release

The key advantage of such polymer micelles is their ability to solubilize hydrophobic
drugs into their core. Yang et al. [22] previously reported on the impact of increasing the
alkyl chain length (from n-butyl to n-octyl) on the release profile of doxorubicin. Neverthe-
less, the report on the loading capacity (LC) of these different micellar systems is lacking.
Hence, the loading capacity of a highly hydrophobic antifungal agent, ketoconazole (sol-
ubility in water 0.025 mmoL/L; log P = 4.3) [29], used as model drug, was investigated
for the three PEG-b-PPE block copolymers. For that sake of comparison, the ketocona-
zole LC was also determined for amphiphilic PEG-b-PPE with the same polymerization
degree for both blocks but exhibiting different pendant groups on the PPE block, i.e.,
PEG-b-PButEP (n-butyl as pendant groups), PEG-b-PHEP (n-heptyl as pendant groups).
The 1H-and 31P NMR spectra (Figures S2 and S4 in Supplementary Materials) and SEC
analysis (Figures S3 and S5) of these copolymers used in the present study are given as
Supporting Information.

The preparation of ketoconazole-loaded nanoparticles was conducted either by direct
dissolution in water or by means of an organic co-solvent as more commonly reported to
increase the LC [30]. Dichloromethane (CH2Cl2) was selected as co-solvent since it is a
good solvent for both the copolymer and ketoconazole and because it has a low boiling
point allowing its elimination by evaporation. Table 3 summarizes the LC in self-assembled
micelles obtained via both processes for each copolymer system of decreasing HLB.

Table 3. Drug loading content (LC) of micelles prepared by direct dissolution and by solvent
evaporation for copolymers of increasing HLB.

Copolymers LC (%, w/w)
by Direct Dissolution

LC (%, w/w)
by Solvent Evaporation

PEG-b-PButEP 0.53 ± 0.01 0.60 ± 0.02
PEG-b-PBenEP 0.64 ± 0.02 1.36 ± 0.06
PEG-b-PHEP 1.10 ± 0.03 1.41 ± 0.02

PEG-b-PDodecS-BEP 1.45 ± 0.01 2.11 ± 0.01
PEG-b-PTocoS-BEP 2.04 ± 0.03 4.28 ± 0.02

For all the systems, the use of the co-solvent for the micelles preparation enhanced the
ketoconazole LC as compared to the direct dissolution in water. Indeed, due to the high
hydrophobicity of ketoconazole, it has an extremely low solubility in water. When using
an organic co-solvent, the LC is sensibly increased.

Comparing the copolymers bearing n-butyl or butenyl side-chains evidences that
the presence of a vinyl function on the side chain has a marked influence on the LC of
ketoconazole. While they have the same HLB, a higher loading is observed for butenyl side
groups. Based on the structure of ketoconazole, π-π interactions between the aromatic rings
and the vinyl group of the side-chains would favorably influence the drug encapsulation.
The LC is also clearly improved when the length of the alkyl pendant group on the PPE
block is increased whatever the micelles preparation processes (Table 3, top to bottom).
Remarkably, the PEG-b-PTocoS-BEP encapsulates more ketoconazole than all the other
tested PEG-PPEs, whatever the preparation process. The ketoconazole LC is increased by
a factor 2 and 3 when 60% of the butenyl are derivatized by the tocopherol. That might
be due to synergistic effects of (i) increasing the core hydrophobicity and (ii) providing
unsaturations for π-π interactions with the ketoconazole. This clearly highlights that not
only the increase of the HLB, by increasing the length of the pendant groups, favors the LC
but also the possible specific interactions between the drug and the tailor-made side chains.

The ketoconazole release profiles from the various particles prepared by solvent
evaporation are compared on Figure 6. In most cases, a fast release is observed whatever
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the copolymer, about 80% or more of the loaded content is released after 20 h. In contrast, a
slower release without Burst effect is observed in the case of PEG-b-PTocoS-BEP micelles.
Indeed, these micelles released only 9% during the first three hours. After these three first
hours, the ketoconazole release rate is very similar to obtain a percentage of release of
about 60% after 20 h and 75% after 48 h, i.e., significantly slower than the release rates
recorded for the other PPE-based micelles.
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2.7. In Vitro Cytotoxicity of PEG-b-PPE Copolymers

Cytotoxicity of the different copolymers to Human Umbilical Vein Endothelial Cells
(HUVEC) was evaluated by live/dead cell viability assay. First, it was checked by 1H-NMR
that no signal from residual amount of polymerization catalysts and thiol-ene photocatalyst,
i.e., DBU/TU and DMPA, is detected. Then, solutions of increasing concentrations of the
different PEG-b-PPE amphiphilic block copolymers were prepared in the endothelium
basal medium (EBM) cell culture. In that EBM medium, fluorescence spectroscopy in
presence of pyrene evidences the presence of the copolymers as unimers for the lowest used
concentration and confirms the presence of the micelles for all the higher concentrations
reported on Figure 7.

Cell viability after 24 h incubation (Figure 7) revealed that when copolymers are
present in the medium as unimers, i.e., at the lowest concentration used, they do not show
significant cytotoxicity for HUVEC whatever the side-chain. In contrast, the cytotoxicity of
the micelles depends on the nature of the PPE pendant group. PEG-b-PBenEP showed a
lower cytotoxicity after 24 h of incubation for 5.5 g/L copolymer concentration than PEG-b-
PButEP (Figure 7a,b). Their pendant groups containing 4 carbon atoms only differ by the
presence of the unsaturation which appears to decrease the cytotoxicity. Nevertheless, at
higher concentrations, both systems become cytotoxic. A comparable evolution is found
for PEG-b-PHEP, i.e., increase of the cytotoxicity related to the increase of the concentration.
Nevertheless, the micelles of the latter being smaller (Dh = 16 nm), they appear less
cytotoxic (some living cells are kept at 33.5 g/L).
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In case of the copolymers obtained by thiol-ene reaction, the cytotoxicity tests evi-
dence a clear impact of the thiol on the HUVEC viability. In line with the copolymers
described above, the PEG-b-PDodecS-BEP exhibit increasing cytotoxicity with concentra-
tion (Figure 7d).

Quite remarkably, the cell viability assessed after 24 h of incubation with PEG-b-
PTocoS-BEP at different concentrations (Figure 7e) revealed no cytotoxicity for HUVEC.
Indeed, the percentages of viable cells of 100% are observed for all solution concentra-
tions up to 25 g/L. By comparison with the cytotoxicity results obtained for all the other
PEG-b-PPE, the tocopherol moieties provide exceptionally high biocompatible carrier as
demonstrated by the absence of cytotoxicity of these self-assembled micelles for HUVEC.

3. Materials and Methods
3.1. Materials

Methanol (MeOH, Acros), diethyl ether (Chem-lab), 2,2-dimethoxy-2-phenylacetophenone
(DMPA, Aldrich, St. Louis, MO, USA), dodecane-1-thiol (Aldrich), D-α-Tocopheryl succi-
nate (Toco-Succ, Aldrich), 2-mercaptoethanol (Aldrich), N,N′-dicyclohexylcarbodiimide
(DCC, Aldrich), 4-(dimethylamino)pyridine (DMAP, Aldrich) and calcium hydride (CaH2,
Aldrich) were used as received without further purification. 1,8-diazabicyclo [5.4.0]undec-7-
ene (DBU, Aldrich) were dried over CaH2 at room temperature and purified by distillation
under reduced pressure just before use. Monomethoxy poly(ethylene oxide) (MeO-PEG-
OH, Aldrich) was dried by three azeotropic distillations with anhydrous toluene before
use. Toluene (Chem-lab), tetrahydrofuran (THF, Chem-lab) and dichloromethane (CH2Cl2,
Chem-lab) were dried on molecular sieves. Milli-Q water was used for the preparation of
micelles. 1-[3,5-bis(trifluoromethyl)phenyl]-3-cyclohexyl-2-thiourea (TU), 2-butoxy-1,3,2-
dioxaphospholane 2-oxide (ButEP), 2-heptyloxy-1,3,2-dioxaphospholane 2-oxide (HEP)
and 2-butenoxy-1,3,2-dioxaphospholane 2-oxide (BenEP) monomers and their copolymers
with PEG were synthesized as described elsewhere in the literature. [23,31] Ethidium
homodimer-1 (EthD-1) and Hoechst 33,324 were purchased from Thermo Scientific. Hu-
man Umbilical Vein Endothelial Cells (HUVEC-2) and Cell culture medium EBM-PRF were
acquired from BD Biosciences and Lonza, respectively.
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3.2. Instruments
1H and 31P NMR analyses were performed on a Bruker Advance 250 MHz spectrome-

ter in CDCl3 at 25 ◦C in the FT mode. The 31P NMR measurement was carried out with
the 1H powergate decoupling method using a 30◦ flip angle. 1H NMR chemical shifts are
reported in ppm relative to Me4Si. 31P NMR chemical shifts are reported in ppm relative to
H3PO4. Size exclusion chromatography (SEC) was carried out in THF at 45 ◦C at a flow rate
of 0.7 and 1 mL/min with Viscotek 305 TDA liquid chromatograph equipped with 2 PSS
SDV analytical linear M columns calibrated with polystyrene standards. The Differential
Scanning Calorimetry (DSC) was performed using a DSC Q500 (TA instruments) calibrated
with indium. The sample is introduced in the calorimeter at room temperature and is
cooled down to −80 ◦C. A first temperature ramp (10 ◦C min−1) is applied up to 100 ◦C to
eliminate the polymer’s thermal history. Then, the sample is again cooled until −80 ◦C
and heated with a temperature ramp (20 ◦C min−1) up to 100 ◦C. The melting temperature
(Tm) is recorded during the second heating scan.

3.3. Synthesis

Synthesis of mercaptoethyl-D-α-tocopheryl succinate (TocoSH). In a 250 mL round-
bottom flask equipped with a magnetic stirring bar, DCC (2.33 g, 11.3 mmol), DMAP
(230 mg, 1.9 mmol) and D-α-Tocopheryl succinate (Toco-Succ) (5 g, 9.4 mmol) were added
and dissolved in CH2Cl2 (50 mL). After stirring at room temperature for 10 min, 2-
mercaptoethanol (900 mg, 11.5 mmol) was added. The mixture was heated at 35 ◦C
for 3 days away from the light. After filtration, the solution was washed three times with
an aqueous solution of hydrochloric acid ([HCl] = 0.05 M), three times with a saturated
aqueous solution of NaHCO3 and finally, three times with water. After drying over Na2SO4,
the organic phase was filtered and the solvent was removed under reduced pressure. 5 g of
a pale-yellow oil was recovered.

Thiol-ene modification of the PEG-b-PBenEP copolymer with dodecyl thiol. 3 g of
PEG-b-PBenEP (0.42 mmol, Mn = 6700 g/mol) and 56 mg of DMPA (0.22 mmol) were
dissolved in 5 mL of anhydrous CH2Cl2. 1.3 g of 1-dodecanethiol (0.64 mmol) was added
to the solution and the reaction solution was stirred under UV radiation (365 nm, 200W)
at room temperature. After 45 min, the copolymer was recovered by precipitation in cold
diethyl ether three times and filtrated before being dried under vacuum.

Thiol-ene modification of the PEG-b-PBenEP copolymer with Toco-SH. 2.5 g of PEG-b-
PBenEP (1.40 mmol, Mn = 6900 g/mol) and 54 mg of DMPA (0.22 mmol) were dissolved
in 5 mL of anhydrous CH2Cl2. A total of 4 g of Toco-SH (6.4 mmol) was added to the
solution and the reaction solution was stirred under UV radiation (365 nm, 200 W) at room
temperature. After 1 h, the polymer was recovered by precipitation in cold diethyl ether
three times and filtrated before being dried under vacuum.

3.4. Micelles Size and Morphology

Preparation of self-assembled micelles. Typically, 50 mg of the PEG-b-PPE copolymer
were placed in 20 mL of milli-Q water and stirred for 2 h.

Size and morphology measurements. Particle size and size distribution were acquired
from freshly prepared micelles solutions (filtered with a microfilter having an averaged
pore size of 0.45 µm) by employing dynamic light scattering (DLS). Measurements were
carried out in a glass cells at 25 ◦C at a measuring angle of 165◦ and repeated five times
in order to check their reproducibility. The morphology of the micelles was investigated
by Transmission Electron Microscopy (TEM). A small drop of each aqueous copolymer
solution after DLS analysis was deposited onto a formvar coated copper grid. The excess
of the copolymer solution was wiped off using filter paper and the grid was let dried and
stored under ambient atmosphere until analysis with a Philips CM100 microscope equipped
with an Olympus camera and operated by a Megaview system equipped computer.

Determination of critical micelles concentration (CMC). CMC values in Milli-Q water
for the different amphiphilic block copolymers were determined by the pyrene probe fluo-
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rescence spectroscopy using a LS50B luminescence spectrometer (Perkin Elmer). Typically,
solid pyrene (2.6× 10−8 mol) was dissolved in aqueous solutions of the amphiphilic copoly-
mer of increasing concentration from 1 × 10−11 to 1 × 10−3 mol/L. Milli-Q water was used
to dissolve first the copolymer before adding it to vials containing the pyrene. Since the
amount of needed pyrene is quite low (5.2 µg), a solution of pyrene (1.3 × 10−3 moL/L)
in acetone was first prepared. A total of 20 µL of the pyrene solution was transferred into
glass vials and acetone was evaporated at room temperature before adding the copolymer
solution. After one night of stirring at room temperature, the fluorescence spectra of pyrene
were recorded from 360 to 460 nm after an excitation at 335 nm. The emission and excitation
slit widths were set at 3.0 and 3.5, respectively. The ratio of the peak intensities at 373 nm
and 383 nm (I373/I383) of the emission spectra were calculated for each copolymers solution
and recorded as a function of the copolymer concentration.

3.5. Ketoconazole Encapsulation

Encapsulation by direct dissolution. A total of 50 mg of the PEG-b-PPE copolymer
and 5 mg of ketoconazole were directly dissolved in 20 mL of Milli-Q water under stirring
at room temperature for 2 h.

Encapsulation by solvent evaporation. A total of 50 mg of the PEG-b-PPE copolymer
and 5 mg of ketoconazole were completely dissolved in 1 mL of CH2Cl2 before adding
20 mL of Milli-Q water. The solution was stirred at 25 ◦C for 2 h to evaporate of CH2Cl2.

Quantification by HPLC analysis. At the end of the encapsulation procedures de-
scribed above, only a part of the ketoconazole was encapsulated in the micelles. The
excess precipitated in the nanoparticle solution. This free solid ketoconazole was thus
filtered through a 1.2 µm filter. The filtered solution was immediately diluted in acetonitrile
(micelles solution/acetonitrile: 1/1) to quantify the encapsulated ketoconazole. This quan-
tification was performed by a validated high performance liquid chromatography (HPLC)
by using a reversed-phase HPLC (Agilent 1100 series, Agilent Technologies). The samples
were analyzed at 220 nm in 80% methanol/20% ammonium acetate solution (0.5%) using a
125/4 Nucleodur RP C18 column 5 µm at 25 ◦C. A calibration curve was constructed using
different concentrations of free ketoconazole (0.01–2 mg/mL). The drug loading capacity
(LC, %, w/w) of the micelles was calculated with the following Equation (1):

LC (%, w/w) =
Amount of ketoconazole incoporated in micelles (mg)

Amount of copolymer (mg)
× 100 (1)

Ketoconazole release profiles. Ketoconazole-loaded micelles solutions (20 mL) free
from the excess of non-encapsulated drug were prepared at a polymer concentration of
2.5 mg/mL from each PEG-b-PPE block copolymers. The loaded micelles solutions were
transferred into dialysis bags (MW cut-off: 3500 Da, supplied by Spectrum Laboratories)
and placed into PBS solution. At selected time intervals, 500 µL of micelles solution
was withdrawn from inside the dialysis bag and diluted in acetonitrile to quantify the
decreasing ketoconazole amount remaining in the micelles by HPLC.

Live/Dead cell viability assay. Cytotoxicity of polymer micelles was evaluated by
determining the viability of HUVEC cells after incubation in EBM-PRF with different
concentrations of the amphiphilic copolymer depending on their CMC. Live/dead cell
viability assay was performed using BD Falcon 96-wells HTS Imaging microplates con-
taining cells and different copolymer solutions. After 24h incubation (at 37 ◦C and 5% of
carbon dioxide), Hoechst 33,342 (800 × 10−9 M) and EtHD-1 (4 × 10−6 M) were added to
distinguish between viable and non-viable adherent cells. Cells were imaged automatically
with a BD Pathway 855 high content analyzer (BD Biosciences). BD Attovision software
(BD Biosciences, version 1.6) was used for both image acquisition and individual cell
segmentation. Flow cytometry software (Kaluza 1.2; Beckman Coulter, Mijdrecht) was
used to analyze numerical data on total cell numbers and dead cells. Number of viable
cells was calculated via the following equation: number of total adherent cells (Hoechst
positive nuclei) minus number of dead cells (EtHD-1 positive nuclei) per well and averaged
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for replicates (n = 3–4 per copolymer solutions). Data were plotted as average viable cells
number for the different amphiphilic copolymers at the different copolymer concentrations
with untreated cells as control set at 100%. Student t-test was applied to define statistical
differences, with p-value below 0.05 considered significantly different (GraphPad Prism
5.01 for Windows, GraphPad Software, San Diego, CA, USA).

4. Conclusions

PEG-b-PDodecS-BEP and PEG-b-PTocoS-BEP amphiphilic block copolymers were
obtained through the chemical modification of the pendant vinyl functions of the preformed
PEG-b-PBenEP copolymer via a very efficient thiol-ene reaction. These amphiphilic block
copolymers self-assembled directly in water into well-defined small and spherical micelles.
Moreover, the CMC values measured for these two novel amphiphilic copolymers are
very low, suggesting that they will remain stable upon dilution in the body fluids. These
self-assembled nanoparticles are thus particularly well-suited to encapsulate poorly soluble
drug, as demonstrated here with ketoconazole. Indeed, ketoconazole was successfully
encapsulated during the micelle formation, which significantly enhanced the ketoconazole
concentration in aqueous medium. The tocopherol-containing micelles give the highest
ketoconazole loading content. Burst release is not observed with these micelles that exhibit
slower release as compared to other systems.

The in vitro evaluation of the cytotoxicity of these novel copolymers demonstrated
that no toxicity for HUVEC is revealed when the cells are incubated with PEG-b-PTocoS-
BEP nanoparticles, whatever the copolymer concentration. In conclusion, this tocopherol
modified polyphosphoester appear as safe and most promising material for controlled
drug delivery systems of poorly water-soluble drugs.

Supplementary Materials: The following are available online, Figure S1: MALDI-TOF spectrum of
the starting MeO-PEG-OH macroinitiator, Figure S2: 1H NMR and 1H-decoupled 31P NMR spectra
of PEG-b-PButEP, Figure S3: SEC traces in THF of PEG-b-PButEP and the starting MeO-PEG-OH,
Figure S4: 1H NMR and 1H-decoupled 31P NMR spectra of PEG-b-PHEP, Figure S5: SEC traces in
THF of PEG-b-PHEP and the starting MeO-PEG-OH.
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