C. Li, P. Zhou, and D. W. Zhang, Devices and applications of van der Waals heterostructures, J. Semicond. 38, 031005 (2017) 1674-4926 10.1088/1674-4926/38/3/031005.
S.-J. Liang, B. Cheng, X. Cui, and F. Miao, Van der Waals heterostructures for high-performance device applications: Challenges and opportunities, Adv. Mater. 32, 1903800 (2020) 10.1002/adma.201903800.
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for high-quality graphene electronics., Nat. Nanotechnol. 5, 722 (2010) 1748-3387 10.1038/nnano.2010.172.
F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, Excitonic Linewidth Approaching the Homogeneous Limit in MoS2-Based van der Waals Heterostructures, Phys. Rev. X 7, 021026 (2017) 10.1103/PhysRevX.7.021026.
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures., Nature (London) 499, 419 (2013) NATUAS 0028-0836 10.1038/nature12385.
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353, aac9439 (2016) SCIEAS 0036-8075 10.1126/science.aac9439.
K. J. Tielrooij, N. C. Hesp, A. Principi, M. B. Lundeberg, E. A. Pogna, L. Banszerus, Z. Mics, M. Massicotte, P. Schmidt, D. Davydovskaya, D. G. Purdie, I. Goykhman, G. Soavi, A. Lombardo, K. Watanabe, T. Taniguchi, M. Bonn, D. Turchinovich, C. Stampfer, A. C. Ferrari, G. Cerullo, M. Polini, and F. H. Koppens, Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling, Nat. Nanotechnol. 13, 41 (2018) 1748-3387 10.1038/s41565-017-0008-8.
P. Rivera, H. Yu, K. L. Seyler, N. P. Wilson, W. Yao, and X. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides, Nat. Nanotechnol. 13, 1004 (2018) 1748-3387 10.1038/s41565-018-0193-0.
T. Wakamura, F. Reale, P. Palczynski, S. Guéron, C. Mattevi, and H. Bouchiat, Strong Anisotropic Spin-Orbit Interaction Induced in Graphene by Monolayer (Equation presented), Phys. Rev. Lett. 120, 106802 (2018) PRLTAO 0031-9007 10.1103/PhysRevLett.120.106802.
M. Kim, S. G. Xu, A. I. Berdyugin, A. Principi, S. Slizovskiy, N. Xin, P. Kumaravadivel, W. Kuang, M. Hamer, R. Krishna Kumar, R. V. Gorbachev, K. Watanabe, T. Taniguchi, I. V. Grigorieva, V. I. Fal'ko, M. Polini, and A. K. Geim, Control of electron-electron interaction in graphene by proximity screenings, Nat. Commun. 11, 2339 (2020) 2041-1723 10.1038/s41467-020-15829-1.
M. M. Perera, M. W. Lin, H. J. Chuang, B. P. Chamlagain, C. Wang, X. Tan, M. M. C. Cheng, D. Tománek, and Z. Zhou, Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating, ACS Nano 7, 4449 (2013) 1936-0851 10.1021/nn401053g.
F. Riederer, T. Grap, S. Fischer, M. R. Mueller, D. Yamaoka, B. Sun, C. Gupta, K. T. Kallis, and J. Knoch, Alternatives for doping in nanoscale field-effect transistors, Phys. Status Solidi A 215, 1 (2018) 1862-6300 10.1002/pssa.201700969.
W. Zhao, S. Bi, C. Zhang, P. D. Rack, and G. Feng, Adding solvent into ionic liquid-gated transistor: The anatomy of enhanced gating performance, ACS Appl. Mater. Interfaces 11, 13822 (2019) 1944-8244 10.1021/acsami.9b03433.
N. Ma and D. Jena, Charge Scattering and Mobility in Atomically Thin Semiconductors, Phys. Rev. X 4, 011043 (2014) 10.1103/PhysRevX.4.011043.
T. Sohier, M. Gibertini, and N. Marzari, Profiling novel high-conductivity 2D semiconductors, 2D Mater. 8, 015025 (2021) 10.1088/2053-1583/abc5d0.
T. Sohier, M. Calandra, and F. Mauri, Density functional perturbation theory for gated two-dimensional heterostructures: Theoretical developments and application to flexural phonons in graphene, Phys. Rev. B 96, 075448 (2017) 2469-9950 10.1103/PhysRevB.96.075448.
K. Andersen, S. Latini, and K. S. Thygesen, Dielectric genome of van der Waals heterostructures, Nano Lett. 15, 4616 (2015) NALEFD 1530-6984 10.1021/acs.nanolett.5b01251.
K. S. Thygesen, Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures, 2D Mater. 4, 022004 (2017) 2053-1583 10.1088/2053-1583/aa6432.
M. N. Gjerding, L. S. R. Cavalcante, A. Chaves, and K. S. Thygesen, Efficient ab initio modeling of dielectric screening in 2D van der Waals materials: Including phonons, substrates, and doping, J. Phys. Chem. C 124, 11609 (2020) 1932-7447 10.1021/acs.jpcc.0c01635.
C. Guo, J. Xu, D. Rocca, and Y. Ping, Substrate screening approach for quasiparticle energies of two-dimensional interfaces with lattice mismatch, Phys. Rev. B 102, 205113 (2020) 2469-9950 10.1103/PhysRevB.102.205113.
Z. Qiu, M. Trushin, H. Fang, I. Verzhbitskiy, S. Gao, E. Laksono, M. Yang, P. Lyu, J. Li, J. Su, M. Telychko, K. Watanabe, T. Taniguchi, J. Wu, A. H. Castro Neto, L. Yang, G. Eda, S. Adam, and J. Lu, Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor, Sci. Adv. 5, eaaw2347 (2019) 2375-2548 10.1126/sciadv.aaw2347.
T. Sohier, D. Campi, N. Marzari, and M. Gibertini, Mobility of 2D materials from first principles in an accurate and automated framework, Phys. Rev. Mater. 2, 114010 (2018) 2475-9953 10.1103/PhysRevMaterials.2.114010.
T. Sohier, M. Gibertini, D. Campi, G. Pizzi, and N. Marzari, Valley-engineering mobilities in two-dimensional materials, Nano Lett. 19, 3723 (2019) NALEFD 1530-6984 10.1021/acs.nanolett.9b00865.
O. Bistoni, P. Barone, E. Cappelluti, L. Benfatto, and F. Mauri, Giant effective charges and piezoelectricity in gapped graphene, 2D Mater. 6, 045015 (2019) 2053-1583 10.1088/2053-1583/ab2ce0.
S. Poncé, W. Li, S. Reichardt, and F. Giustino, First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials, Rep. Prog. Phys. 83, 036501 (2020) RPPHAG 0034-4885 10.1088/1361-6633/ab6a43.
J. Ma, D. Xu, R. Hu, and X. Luo, Examining two-dimensional Fröhlich model and enhancing the electron mobility of monolayer InSe by dielectric engineering, J. Appl. Phys. 128, 035107 (2020) JAPIAU 0021-8979 10.1063/5.0015102.
N. Mori and T. Ando, Electronoptical-phonon interaction in single and double heterostructures, Phys. Rev. B 40, 6175 (1989) PRBMDO 0163-1829 10.1103/PhysRevB.40.6175.
S. D. Sarma and B. A. Mason, Optical phonon interaction effects in layered semiconductor structures, Ann. Phys. 163, 78 (1985) APNYA6 0003-4916 10.1016/0003-4916(85)90351-3.
P. Vogl, Microscopic theory of electron-phonon interaction in insulators or semiconductors, Phys. Rev. B 13, 694 (1976) 0556-2805 10.1103/PhysRevB.13.694.
J. Sjakste, N. Vast, M. Calandra, and F. Mauri, Wannier interpolation of the electron-phonon matrix elements in polar semiconductors: Polar-optical coupling in GaAs, Phys. Rev. B 92, 054307 (2015) PRBMDO 1098-0121 10.1103/PhysRevB.92.054307.
C. Verdi and F. Giustino, Fröhlich Electron-Phonon Vertex from First Principles, Phys. Rev. Lett. 115, 176401 (2015) PRLTAO 0031-9007 10.1103/PhysRevLett.115.176401.
T. Sohier, M. Calandra, and F. Mauri, Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations, Phys. Rev. B 94, 085415 (2016) 2469-9950 10.1103/PhysRevB.94.085415.
S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete, and X. Gonze, Temperature dependence of the electronic structure of semiconductors and insulators, J. Chem. Phys. 143, 102813 (2015) JCPSA6 0021-9606 10.1063/1.4927081.
P. Cudazzo, I. V. Tokatly, and A. Rubio, Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane, Phys. Rev. B 84, 085406 (2011) PRBMDO 1098-0121 10.1103/PhysRevB.84.085406.
S. Latini, T. Olsen, and K. S. Thygesen, Excitons in van der Waals heterostructures: The important role of dielectric screening, Phys. Rev. B 92, 245123 (2015) PRBMDO 1098-0121 10.1103/PhysRevB.92.245123.
M. L. Trolle, T. G. Pedersen, and V. Véniard, Model dielectric function for 2D semiconductors including substrate screening, Sci. Rep. 7, 39844 (2017) 2045-2322 10.1038/srep39844.
T. Tian, D. Scullion, D. Hughes, L. H. Li, C.-J. Shih, J. Coleman, M. Chhowalla, and E. J. G. Santos, Electronic polarizability as the fundamental variable in the dielectric properties of two-dimensional materials, Nano Lett. 20, 841 (2020) NALEFD 1530-6984 10.1021/acs.nanolett.9b02982.
L. Talirz, S. Kumbhar, E. Passaro, A. V. Yakutovich, V. Granata, F. Gargiulo, M. Borelli, M. Uhrin, S. P. Huber, S. Zoupanos, C. S. Adorf, C. W. Andersen, O. Schütt, C. A. Pignedoli, D. Passerone, J. VandeVondele, T. C. Schulthess, B. Smit, G. Pizzi, and N. Marzari, Materials Cloud, a platform for open computational science, Sci. Data 7, 299 (2020) 2052-4463 10.1038/s41597-020-00637-5.
N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi, N. Marzari, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds, Nat. Nanotechnol. 13, 246 (2018) 1748-3387 10.1038/s41565-017-0035-5.
T. Sohier, M. Gibertini, N. Marzari, Profiling novel high-conductivity 2D semiconductors, Materials Cloud Archive 2020.87 (2020) 10.24435/materialscloud:fr-r0.
Z. Chen, J. Sjakste, J. Dong, A. Taleb-Ibrahimi, J.-P. Rueff, A. Shukla, J. Peretti, E. Papalazarou, M. Marsi, and L. Perfetti, Ultrafast dynamics of hot carriers in a quasi-two-dimensional electron gas on InSe, Proc. Natl. Acad. Sci. 117, 21962 (2020) PNASA6 0027-8424 10.1073/pnas.2008282117.
L. V. Keldysh, Coulomb interaction in thin semiconductor and semimetal films, JETP Lett. 29, 658 (1978).
T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides, Phys. Rev. B 88, 045318 (2013) PRBMDO 1098-0121 10.1103/PhysRevB.88.045318.
T. Sohier, M. Gibertini, M. Calandra, F. Mauri, and N. Marzari, Breakdown of optical phonons' splitting in two-dimensional materials, Nano Lett. 17, 3758 (2017) NALEFD 1530-6984 10.1021/acs.nanolett.7b01090.
D. Bohm and D. Pines, A collective description of electron interactions. I. Magnetic interactions, Phys. Rev. 82, 625 (1951) PHRVAO 0031-899X 10.1103/PhysRev.82.625.
D. Pines and D. Bohm, A collective description of electron interactions: II. Collective (Equation presented) individual particle aspects of the interactions, Phys. Rev. 85, 338 (1952) PHRVAO 0031-899X 10.1103/PhysRev.85.338.
D. Bohm and D. Pines, A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas, Phys. Rev. 92, 609 (1953) PHRVAO 0031-899X 10.1103/PhysRev.92.609.
S. Q. Wang and G. D. Mahan, Electron scattering from surface excitations, Phys. Rev. B 6, 4517 (1972) 0556-2805 10.1103/PhysRevB.6.4517.
K. Hess and P. Vogl, Remote polar phonon scattering in silicon inversion layers, Solid State Commun. 30, 797 (1979) SSCOA4 0038-1098 10.1016/0038-1098(79)90051-6.
B. T. Moore and D. K. Ferry, Remote polar phonon scattering in Si inversion layers, J. Appl. Phys. 51, 2603 (1980) JAPIAU 0021-8979 10.1063/1.327988.
G. Brunin, H. P. C. Miranda, M. Giantomassi, M. Royo, M. Stengel, M. J. Verstraete, X. Gonze, G.-M. Rignanese, and G. Hautier, Electron-Phonon beyond Fröhlich: Dynamical Quadrupoles in Polar and Covalent Solids, Phys. Rev. Lett. 125, 136601 (2020) PRLTAO 0031-9007 10.1103/PhysRevLett.125.136601.
G. Brunin, H. P. C. Miranda, M. Giantomassi, M. Royo, M. Stengel, M. J. Verstraete, X. Gonze, G.-M. Rignanese, and G. Hautier, Phonon-limited electron mobility in Si, GaAs, and GaP with exact treatment of dynamical quadrupoles, Phys. Rev. B 102, 094308 (2020) 2469-9950 10.1103/PhysRevB.102.094308.
V. A. Jhalani, J.-J. Zhou, J. Park, C. E. Dreyer, and M. Bernardi, Piezoelectric Electron-Phonon Interaction from Ab Initio Dynamical Quadrupoles: Impact on Charge Transport in Wurtzite GaN, Phys. Rev. Lett. 125, 136602 (2020) PRLTAO 0031-9007 10.1103/PhysRevLett.125.136602.
J. Park, J.-J. Zhou, V. A. Jhalani, C. E. Dreyer, and M. Bernardi, Long-range quadrupole electron-phonon interaction from first principles, Phys. Rev. B 102, 125203 (2020) 2469-9950 10.1103/PhysRevB.102.125203.
K. H. Michel and B. Verberck, Phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride, Phys. Rev. B 83, 115328 (2011) PRBMDO 1098-0121 10.1103/PhysRevB.83.115328.
T. Sohier, M. Calandra, and F. Mauri, Density-functional calculation of static screening in two-dimensional materials: The long-wavelength dielectric function of graphene, Phys. Rev. B 91, 165428 (2015) PRBMDO 1098-0121 10.1103/PhysRevB.91.165428.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials., J. Phys.: Condens. Matter 21, 395502 (2009) JCOMEL 0953-8984 10.1088/0953-8984/21/39/395502.
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. De Gironcoli, P. Delugas, R. A. Distasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, Advanced capabilities for materials modeling with Quantum ESPRESSO, J. Phys.: Condens. Matter 29, 465901 (2017) JCOMEL 0953-8984 10.1088/1361-648X/aa8f79.
G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, and N. Marzari, Precision and efficiency in solid-state pseudopotential calculations, npj Comput. Mater. 4, 72 (2018) 2057-3960 10.1038/s41524-018-0127-2.
D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B 88, 085117 (2013) PRBMDO 1098-0121 10.1103/PhysRevB.88.085117.
M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G. M. Rignanese, The PSEUDODOJO: Training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Commun. 226, 39 (2018) CPHCBZ 0010-4655 10.1016/j.cpc.2018.01.012.
G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky, AiiDA: automated interactive infrastructure and database for computational science, Comput. Mater. Sci. 111, 218 (2016) CMMSEM 0927-0256 10.1016/j.commatsci.2015.09.013.
S. P. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle, R. Häuselmann, D. Gresch, T. Müller, A. V. Yakutovich, C. W. Andersen, F. F. Ramirez, C. S. Adorf, F. Gargiulo, S. Kumbhar, E. Passaro, C. Johnston, A. Merkys, A. Cepellotti, N. Mounet, N. Marzari, AiiDA 1.0, A scalable computational infrastructure for automated reproducible workflows and data provenance, Sci. Data 7, 300 (2020) 2052-4463 10.1038/s41597-020-00638-4.
https://gitlab.com/tsohier/vdw_electrostatics.
P. F. Maldague, Many-body corrections to the polarizability of the two-dimensional electron gas, Surf. Sci. 73, 296 (1978) SUSCAS 0039-6028 10.1016/0039-6028(78)90507-1.
J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces, Phys. Rev. B 83, 245122 (2011) PRBMDO 1098-0121 10.1103/PhysRevB.83.245122.