Functional analysis of the F337C mutation in the CLCN1 gene associated with dominant myotonia congenita reveals an alteration of the macroscopic conductance and voltage dependence
Background: Myotonia congenita (MC) is a common channelopathy affecting skeletal muscle and which is due to pathogenic variants within the CLCN1 gene. Various alterations in the function of the channel have been reported and we here illustrate a novel one.
Methods: A patient presenting the symptoms of myotonia congenita was shown to bear a new heterozygous missense variant in exon 9 of the CLCN1 gene (c.1010 T > G, p.(Phe337Cys)). Confocal imaging and patch clamp recordings of transiently transfected HEK293 cells were used to functionally analyze the effect of this variant on channel properties.
Results: Confocal imaging showed that the F337C mutant incorporated as well as the WT channel into the plasma membrane. However, in patch clamp, we observed a smaller conductance for F337C at −80 mV. We also found a marked reduction of the fast gating component in the mutant channels, as well as an overall reduced voltage
dependence.
Conclusion: To our knowledge, this is the first report of a mixed alteration in the biophysical properties of hClC-1 consisting of a reduced conductance at resting potential and an almost abolished voltage dependence.channel gating, CLCN1, microscopy, myotonia, patch clamp
Disciplines :
Genetics & genetic processes
Author, co-author :
Jehasse, Kevin ; Université de Liège - ULiège > Neurosciences-Neurophysiology
Jacquerie, Kathleen ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Grisar, Thierry ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Stouffs, Katrien; Vrije Universiteit Brussel (VUB, Universitair Ziekenhuis Brussel (UZ Brussel) > Neurogenetics Research Group > Neurogenetics Research Group
Lakaye, Bernard ; Université de Liège - ULiège > Stem Cells-Molecular Regulation of Neurogenesis
Seutin, Vincent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Language :
English
Title :
Functional analysis of the F337C mutation in the CLCN1 gene associated with dominant myotonia congenita reveals an alteration of the macroscopic conductance and voltage dependence
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Accardi, A., & Pusch, M. (2000). Fast and slow gating relaxations in the muscle chloride channel CLC-1. Journal of General Physiology, 116, 433–444. https://doi.org/10.1085/jgp.116.3.433
Colding-Jørgensen, E. (2005). Phenotypic variability in myotonia congenita. Muscle and Nerve, 32, 19–34. https://doi.org/10.1002/mus.20295
Derevenciuc, A.-I., Abicht, A., Hamza, S., Roth, C., & Ferbert, A. (2016). Thomsen myotonia-A 4-generation family with a new mutation and a mild phenotype. Muscle and Nerve, 53, 653–654. https://doi.org/10.1002/mus.24971
Desaphy, J.-F., Gramegna, G., Altamura, C., Dinardo, M. M., Imbrici, P., George, A. L., Modoni, A., Lomonaco, M., Conte Camerino, D., & Camerino, D. C. (2013). Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes. Experimental Neurology, 248, 530–540. https://doi.org/10.1016/j.expneurol.2013.07.018
Fahlke, C., Beck, C. L., & George, A. L. (1997). A mutation in autosomal dominant myotonia congenita affects pore properties of the muscle chloride channel. Proceedings of the National Academy of Sciences United States of America, 94, 2729–2734. https://doi.org/10.1073/pnas.94.6.2729
Fialho, D., Schorge, S., Pucovska, U., Davies, N. P., Labrum, R., Haworth, A., Stanley, E., Sud, R., Wakeling, W., Davis, M. B., Kullmann, D. M., & Hanna, M. G. (2007). Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions. Brain, 130, 3265–3274. https://doi.org/10.1093/brain/awm248
Horga, A., Rayan, D. L. R., Matthews, E., Sud, R., Fialho, D., Durran, S. C. M., Burge, J. A., Portaro, S., Davis, M. B., Haworth, A., & Hanna, M. G. (2013). Prevalence study of genetically defined skeletal muscle channelopathies in England. Neurology, 80, 1472–1475. https://doi.org/10.1212/WNL.0b013e31828cf8d0
Imbrici, P., Altamura, C., Camerino, G. M., Mangiatordi, G. F., Conte, E., Maggi, L., Brugnoni, R., Musaraj, K., Caloiero, R., Alberga, D., Marsano, R. M., Ricci, G., Siciliano, G., Nicolotti, O., Mora, M., Bernasconi, P., Desaphy, J.-F., Mantegazza, R., & Camerino, D. C. (2016). Multidisciplinary study of a new CIC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies. The FASEB Journal, 30, 3285–3295. https://doi.org/10.1096/fj.201500079R
Imbrici, P., Altamura, C., Pessia, M., Mantegazza, R., Desaphy, J. F., & Camerino, D. C. (2015). CIC-1 chloride channels: State-of-the-art research and future challenges. Front Cell Neurosci, 9:156.
Jentsch, T. J., & Pusch, M. (2018). CLC chloride channels and transporters: Structure, function, physiology, and disease. Physiological Reviews, 98, 1493–1590. https://doi.org/10.1152/physrev.00047.2017
Ludewig, U., Pusch, M., & Jentsch, T. J. (1996). Two physically distinct pores in the dimeric CIC-0 chloride channel. Nature, 383, 340–343. https://doi.org/10.1038/383340a0
Middleton, R. E., Pheasant, D. J., & Miller, C. (1996). Homodimeric architecture of a CIC-type chloride ion channel. Nature, 383, 337–340. https://doi.org/10.1038/383337a0
Mindell, J. A., Maduke, M., Miller, C., & Grigorieff, N. (2001). Projection structure of a CIC-type chloride channel at 6.5 Å resolution. Nature, 409, 219–223.
Park, E., & Mackinnon, R. (2018). Structure of the CLC-1 chloride channel from homo sapiens. Elife, 7, e36629. https://doi.org/10.7554/eLife.36629
Pedersen, T. H., Riisager, A., de Paoli, F. V., Chen, T.-Y., & Nielsen, O. B. (2016). Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle. Journal of General Physiology, 147, 291–308. https://doi.org/10.1085/jgp.201611582
Pusch, M., Steinmeyer, K., Koch, M. C., & Jentsch, T. J. (1995). Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel. Neuron, 15, 1455–1463. https://doi.org/10.1016/0896-6273(95)90023-3
Ronstedt, K., Sternberg, D., Detro-Dassen, S., Gramkow, T., Begemann, B., Becher, T., Kilian, P., Grieschat, M., Machtens, J. P., Schmalzing, G., Fischer, M., & Fahlke, C. (2015). Impaired surface membrane insertion of homo- and heterodimeric human muscle chloride channels carrying amino-terminal myotonia-causing mutations. Scientific Reports, 5, 15382. https://doi.org/10.1038/srep15382
Tsujino, A., Kaibara, M., Hayashi, H., Eguchi, H., Nakayama, S., Sato, K., Fukuda, T., Tateishi, Y., Shirabe, S., Taniyama, K., & Kawakami, A. (2011). A CLCN1 mutation in dominant myotonia congenita impairs the increment of chloride conductance during repetitive depolarization. Neuroscience Letters, 494, 155–160. https://doi.org/10.1016/j.neulet.2011.03.002
Ulzi, G., Lecchi, M., Sansone, V., Redaelli, E., Corti, E., Saccomanno, D., Pagliarani, S., Corti, S., Magri, F., Raimondi, M., D'Angelo, G., Modoni, A., Bresolin, N., Meola, G., Wanke, E., Comi, G. P., & Lucchiari, S. (2012). Myotonia congenita: Novel mutations in CLCN1 gene and functional characterizations in Italian patients. Journal of the Neurological Sciences, 318, 65–71. https://doi.org/10.1016/j.jns.2012.03.024
Vindas-Smith, R., Fiore, M., Vásquez, M., Cuenca, P., del Valle, G., Lagostena, L., Gaitán-Peñas, H., Estevez, R., Pusch, M., & Morales, F. (2016). Identification and Functional Characterization of CLCN1 Mutations Found in Nondystrophic Myotonia Patients. Human Mutation, 37, 74–83.
Weinberger, S., Wojciechowski, D., Sternberg, D., Lehmann-Horn, F., Jurkat-Rott, K., Becher, T., Begemann, B., Fahlke, C., & Fischer, M. (2012). Disease-causing mutations C277R and C277Y modify gating of human ClC-1 chloride channels in myotonia congenita. Journal of Physiology, 590, 3449–3464. https://doi.org/10.1113/jphysiol.2012.232785
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.