Cole J.R., Chai B., Marsh T.L., Farris R.J., Wang Q., Kulam S.A., Chandra S., McGarrell D.M., Schmidt T.M., Garrity G.M., and Tiedje J.M. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31 (2003) 442-443
Daims H., Bruhl A., Amann R., Schleifer K.H., and Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22 3 (1999) 434-444
Finegold S.M., Sutter V.L., and Mathisen G.E. Normal indigenous intestinal flora. In: Henteges D.J. (Ed). Human Intestinal Microflora in Health and Disease (1983), Academic Press, New York 3-31
Gueimonde M., Tolkko S., Korpimaki T., and Salminen S. New real-time quantitative PCR procedure for quantification of bifidobacteria in human fecal samples. Appl. Environ. Microbiol. 70 7 (2004) 4165-4169
Hayashi H., Sakamoto M., and Benno Y. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol. Immunol. 46 (2002) 535-548
Harmsen H.J.M., Raangs G.C., He T., Degener J.E., and Welling G.W. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl. Environ. Microbiol. 68 (2002) 2982-2990
Holdeman L.V., Good I.J., and Moore W.E. Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. 31 (1976) 359-375
Jansen G.J., Wildeboer-Veloo A.C., Tonk R.H., Franks A.H., and Welling G.W. Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J. Microbiol. Methods 37 (1999) 215-221
Kreader C.A. Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution. Appl. Environ. Microbiol. 61 4 (1995) 1171-1179
Kutyavin I.V., Afonina I.A., Mills A., Gorn V.V., Lukhtanov E.A., Belousov E.S., Singer M.J., Walburger D.K., Lokhov S.G., Gall A.A., Dempcy R., Reed M.W., Meyer R.B., and Hedgpeth J. 3V-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 28 (2000) 655-661
Langendijk P.S., Schut F., Jansen G.J., Raangs G.C., Kamphuis G.R., Wilkinson M.H., and Welling G.W. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol. 61 (1995) 3069-3075
Lyons S.R., Griffen A.L., and Leys E.J. Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J. Clin. Microbiol. 38 6 (2000) 2362-2365
Malinen E., Kassinen A., Rinttila T., and Palva A. Comparison of real-time PCR with SYBR Green I or 5_-nuclease assays and dot-blot hybridisation with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology 149 (2003) 269-277
Matsuki T., Watanabe K., Tanaka R., Fukuda M., and Oyaizu H. Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA gene-targeted species-specific primers. Appl. Environ. Microbiol. 65 (1999) 4506-4512
Matsuki T., Watanabe K., Fujimoto J., Miyamoto Y., Takada T., Matsumoto K., Oyaizu H., and Tanaka R. Development of 16S rRNA gene targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl. Environ. Microbiol. 68 (2002) 5445-5451
Matsuki T., Watanabe K., Fujimoto J., Kado Y., Takada T., Matsumoto K., and Tanaka R. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl. Environ. Microbiol. 70 (2004) 167-173
Matsuki T., Watanabe K., Fujimoto J., Takada T., and Tanaka R. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl. Environ. Microbiol. 70 (2004) 7220-7228
Moore W.E., and Holdeman L.V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 27 (1974) 961-979
Nogva H.K., Dromtorp S.M., Nissen H., and Rudi K. Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. BioTechniques 34 (2003) 804-813
Penders J., Vink C., Driessen C., London N., Thijs C., and Stobberingh E.E. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol. Lett. 243 1 (2005) 141-147
Pernthaler J., Pernthaler A., and Amann R. Automated enumeration of groups of marine picoplankton after fluorescence in situ hybridization. Appl. Environ. Microbiol. 69 (2003) 2631-2637
Queiroz-Monici K., Costa G.E., da Silva N., Reis S.M., and de Oliveira A.C. Bifidogenic effect of dietary fiber and resistant starch from leguminous on the intestinal microbiota of rats. Nutrition 21 5 (2005) 602-608
Rinttila T., Kassinen A., Malinen E., Krogius L., and Palva A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 97 6 (2004) 1166-1177
Rudi K., Moen B., Dromtorp S.M., and Holck A.L. Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl. Environ. Microbiol. 71 2 (2005) 1018-1024
Snart J., Bibiloni R., Grayson T., Lay C., Zhang H., Allison G.E., Laverdiere J.K., Temelli F., Vasanthan T., Bell R., and Tannock G.W. Supplementation of the diet with high-viscosity beta-glucan results in enrichment for lactobacilli in the rat cecum. Appl. Environ. Microbiol. 72 (2006) 1925-1931
Suau A., Bonnet R., Sutren M., Godon J.J., Gibson G.R., Collins M.D., and Dore J. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65 (1999) 4799-4807
Tannock G.W., Munro K., Harmsen H.J., Welling G.W., Smart J., and Gopal P.K. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66 (2000) 2578-2588
Thiel R., and Blaut M. An improved method for the automated enumeration of fluorescently labelled bacteria in human faeces. J. Microbiol. Methods 61 (2005) 369-379
Wang R.-F., Cao W.-W., Campbell W.L., Hairston L., Franklin W., and Cerniglia C.E. The use of PCR to monitor the population abundance of six human intestinal bacterial species in an in vitro semicontinuous culture system. FEMS Microbiol. Lett. 124 (1994) 229-238
Wang R.-F., Cao W.-W., and Cerniglia C.E. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl. Environ. Microbiol. 62 (1996) 1242-1247
Wheeler D.L., Barrett T., Benson D.A., Bryant S.H., Canese K., Chetvernin V., Church D.M., DiCuccio M., Edgar R., Federhen S., Geer L.Y., Helmberg W., Kapustin Y., Kenton D.L., Khovayko O., Lipman D.J., Madden T.L., Maglott D.R., Ostell J., Pruitt K.D., Schuler G.D., Schriml L.M., Sequeira E., Sherry S.T., Sirotkin K., Souvorov A., Starchenko G., Suzek T.O., Tatusov R., Tatusova T.A., Wagner L., and Yaschenko E. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 34 (2006) D173-D180
Wilson K.H., and Blitchington R.B. Human colonic biota studied by ribosomal DNA sequence analysis. Appl. Environ. Microbiol. 62 (1996) 2273-2278