[en] The ability of retaining glycoside hydrolases (GHs) to transglycosylate is inherent to the double‐displacement mechanism. Studying reaction intermediates, such as the glycosyl‐enzyme intermediate (GEI) and the Michaelis complex, could provide valuable information to better understand the molecular factors governing the catalytic mechanism. Here, the GEI structure of RBcel1, an endo‐1,4‐β‐glucanase of the GH5 family endowed with transglycosylase activity, is reported. It is the first structure of a GH5 enzyme covalently bound to a natural oligosaccharide with the two catalytic glutamate residues present. The structure of the variant RBcel1_E135A in complex with cellotriose is also reported, allowing a description of the entire binding cleft of RBcel1. Taken together, the structures deliver different snapshots of the double‐displacement mechanism. The structural analysis revealed a significant movement of the nucleophilic glutamate residue during the reaction. Enzymatic assays indicated that, as expected, the acid/base glutamate residue is crucial for the glycosylation step and partly contributes to deglycosylation. Moreover, a conserved tyrosine residue in the −1 subsite, Tyr201, plays a determinant role in both the glycosylation and deglycosylation steps, since the GEI was trapped in the RBcel1_Y201F variant. The approach used to obtain the GEI presented here could easily be transposed to other retaining GHs in clan GH‐A.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abdul Manas, N. H. M., Illias, R. & Mahadi, N. M. (2018). Crit. Rev. Biotechnol. 38, 272-293.
Adams, P. D., Afonine, P. V., Bunko? czi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse- Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. (2010). Acta Cryst. D66, 213-221.
Bartoli-German, I., Haiech, J., Chippaux, M. & Barras, F. (1995). J. Mol. Biol. 246, 82-94.
Berlemont, R., Delsaute, M., Pipers, D., D?Amico, S., Feller, G., Galleni, M. & Power, P. (2009). ISME J. 3, 1070-1081.
Bissaro, B., Monsan, P., Faure?, R. & O?Donohue, M. J. (2015). Biochem. J. 467, 17-35.
Bissaro, B., Saurel, O., Arab-Jaziri, F., Saulnier, L., Milon, A., Tenkanen, M., Monsan, P., O?Donohue, M. J. & Faure?, R. (2014). Biochim. Biophys. Acta, 1840, 626-636.
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. (2010). Acta Cryst. D66, 12-21.
Danby, P. M. &Withers, S. G. (2016). ACS Chem. Biol. 11, 1784-1794.
Davies, G. J., Mackenzie, L., Varrot, A., Dauter, M., Brzozowski, A. M., Schu? lein, M. & Withers, S. G. (1998). Biochemistry, 37, 11707-11713.
Delsaute,M., Berlemont, R., Dehareng, D., Van Elder, D., Galleni, M. & Bauvois, C. (2013). Acta Cryst. F69, 828-833.
Dilokpimol, A., Nakai, H., Gotfredsen, C. H., Baumann, M. J., Nakai, N., Abou Hachem, M. & Svensson, B. (2011). Biochim. Biophys. Acta, 1814, 1720-1729.
Ducros, M., Zechel, D. L., Murshudov, G. N., Gilbert, H. J., Szabo?, L., Stoll, D., Withers, S. G. & Davies, G. J. (2002). Angew. Chem. Int. Ed. 41, 2824-2827.
Ducros, V., Czjzek, M., Belaich, A., Gaudin, C., Fierobe, H., Belaich, J., Davies, G. J. & Haser, R. (1995). Structure, 3, 939-949.
Dutoit, R., Delsaute, M., Collet, L., Vander Wauven, C., Van Elder, D., Berlemont, R., Richel, A., Galleni, M. & Bauvois, C. (2019). Acta Cryst. D75, 605-615.
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486-501.
Garsoux, G., Lamotte, J., Gerday, C. & Feller, G. (2004). Biochem. J. 384, 247-253.
Gebler, J. C., Trimbur, D. E., Warren, R. A. J., Aebersold, R., Namchuk, M. & Withers, S. G. (1995). Biochemistry, 34, 14547- 14553.
Gloster, T. M., Roberts, S., Ducros, V. M.-A., Perugino, G., Rossi, M., Hoos, R., Moracci, M., Vasella, A. & Davies, G. J. (2004). Biochemistry, 43, 6101-6109.
Gonc?alves, A.M. D., Silva, C. S.,Madeira, T. I., Coelho, R., de Sanctis, D., San Roma?o, M. V. & Bento, I. (2012). Acta Cryst. D68, 1468- 1478.
Goubet, F., Jackson, P., Deery, M. J. & Dupree, P. (2002). Anal. Biochem. 300, 53-68.
Jackson, P. (1990). Biochem. J. 270, 705-713.
Kabsch, W. (2010). Acta Cryst. D66, 125-132.
Kim, H. & Ishikawa, K. (2011). Biochem. J. 437, 223-230.
Koshland, D. E. Jr (1953). Biol. Rev. 28, 416-436.
Laskowski, R. A. & Swindells, M. B. (2011). J. Chem. Inf. Model. 51, 2778-2786.
Liebschner, D., Afonine, P. V., Baker, M. L., Bunko? czi, G., Chen, V. B., Croll, T. I., Hintze, B., Hung, L.-W., Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant, M. G., Read, R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev, O. V., Stockwell, D. H., Terwilliger, T. C., Urzhumtsev, A. G., Videau, L. L., Williams, C. J. & Adams, P. D. (2019). Acta Cryst. D75, 861-877.
Ly, H. D. & Withers, S. G. (1999). Annu. Rev. Biochem. 68, 487- 522.
McCarter, J. D. & Withers, S. G. (1994). Curr. Opin. Struct. Biol. 4, 885-892.
McIntosh, L. P., Hand, G., Johnson, P. E., Joshi, M. D., Ko? rner, M., Plesniak, L. A., Ziser, L., Wakarchuk, W. W. & Withers, S. G. (1996). Biochemistry, 35, 9958-9966.
Mosi, R. M. & Withers, S. G. (2002). Methods Enzymol. 354, 64-84.
Noguchi, J., Hayashi, Y., Baba, Y., Okino, N., Kimura, M., Ito, M. & Kakuta, Y. (2008). Biochem. Biophys. Res. Commun. 374, 549-552.
Notenboom, V., Birsan, C., Nitz, M., Rose, D. R., Warren, R. A. J. & Withers, S. G. (1998). Nat. Struct. Mol. Biol. 5, 812-818.
Penner, R. M., Roth, N. J., Rob, B., Lay, H. & Huber, R. E. (1999). Biochem. Cell Biol. 77, 229-236.
Rempel, B. P. & Withers, S. G. (2008). Glycobiology, 18, 570-586.
Rosengren, A., Ha?gglund, P., Anderson, L., Pavon-Orozco, P., Peterson-Wulff, R., Nerinckx, W. & Sta? lbrand, H. (2012). Biocatal. Biotransformation, 30, 338-352.
Roth, N. J., Penner, R.M. & Huber, R. E. (2003). J. Protein Chem. 22, 663-668.
Sakon, J., Adney,W. S., Himmel,M. E., Thomas, S. R. & Karplus, P. A. (1996). Biochemistry, 35, 10648-10660.
Shallom, D., Belakhov, V., Solomon, D., Shoham, G., Baasov, T. & Shoham, Y. (2002). J. Biol. Chem. 277, 43667-43673.
Speciale, G., Thompson, A. J., Davies, G. J. & Williams, S. J. (2014). Curr. Opin. Struct. Biol. 28, 1-13.
Van Petegem, F., Vandenberghe, I., Bhat, M. K. & Van Beeumen, J. (2002). Biochem. Biophys. Res. Commun. 296, 161-166.
Varrot, A. & Davies, G. J. (2003). Acta Cryst. D59, 447-452.
Varrot, A., Schu? lein, M. & Davies, G. J. (2000). J. Mol. Biol. 297, 819- 828.
Wallace, A. C., Laskowski, R. A. & Thornton, J. M. (1995). Protein Eng. Des. Sel. 8, 127-134.
Wang, Q., Trimbur, D., Graham, R., Warren, R. A. J. & Withers, S. G. (1995). Biochemistry, 34, 14554-14562.
Wicki, J., Rose, D. R. & Withers, S. G. (2002). Methods Enzymol. 354, 84-105.
Withers, S. G. & Aebersold, R. (1995). Protein Sci. 4, 361-372.
Zheng, B., Yang, W., Zhao, X., Wang, Y., Lou, Z., Rao, Z. & Feng, Y. (2012). J. Biol. Chem. 287, 8336-8346.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.