[en] Duchenne Muscular Dystrophy (DMD) is a lethal progressive muscle-wasting disease. New treatment strategies relying on DMD gene exon-skipping therapy have recently been approved and about 30% of patients could be amenable to exon 51, 53 or 45 skipping. We evaluated the spectrum of deletions reported in DMD registries, and designed a method to screen newborns and identify DMD deletions amenable to exon 51, 53 and 45 skipping. We developed a multiplex qPCR assay identifying hemi(homo)-zygotic deletions of the flanking exons of these therapeutic targets in DMD exons (i.e. exons 44, 46, 50, 52 and 54). We conducted an evaluation of our new method in 51 male patients with a DMD phenotype, 50 female carriers of a DMD deletion and 19 controls. Studies were performed on dried blood spots with patient’s consent. We analyzed qPCR amplification curves of controls, carriers, and DMD patients to discern the presence or the absence of the target exons. Analysis of the exons flanking the exon-skipping targets permitted the identification of patients that could benefit from exon-skipping. All samples were correctly genotyped, with either presence or absence of amplification of the target exon. This proof-of-concept study demonstrates that this new assay is a highly sensitive method to identify DMD patients carrying deletions that are rescuable by exon-skipping treatment. The method is easily scalable to population-based screening. This targeted screening approach could address the new management paradigm in DMD, and could help to optimize the beneficial therapeutic effect of DMD therapies by permitting pre-symptomatic care.
Disciplines :
Laboratory medicine & medical technology
Author, co-author :
BECKERS, Pablo ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Pool assistant - biologie clinique
CABERG, Jean-Hubert ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Unité de laboratoire - neurogénétique
DIDEBERG, Vinciane ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Laboratoire génétique moléculaire
Dangouloff, Tamara ; Université de Liège - ULiège > Département des sciences cliniques > Neuropédiatrie
den Dunnen, Johan T.
BOURS, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Service de génétique
Servais, Laurent ; Centre Hospitalier Universitaire de Liège - CHU > Département de Pédiatrie > Service de pédiatrie
BOEMER, François ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Laboratoire Biochimie Génétique
Language :
English
Title :
Newborn screening of duchenne muscular dystrophy specifically targeting deletions amenable to exon‑skipping therapy
Monaco, A. P., Bertelson, C. J., Liechti-Gallati, S., Moser, H. & Kunkel, L. M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2, 90–95 (1988). DOI: 10.1016/0888-7543(88)90113-9
McDonald, C. M. et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390, 1489–1498 (2017). DOI: 10.1016/S0140-6736(17)31611-2
Aartsma-Rus, A., Van Deutekom, J. C. T., Fokkema, I. F., Van Ommen, G. J. B. & Den Dunnen, J. T. Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34, 135–144 (2006). DOI: 10.1002/mus.20586
Charleston, J. S. et al. Eteplirsen treatment for Duchenne muscular dystrophy. Neurology 90, e2135–e2145 (2018). DOI: 10.1212/WNL.0000000000005680
Frank, D. E. et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology 10.1212/WNL.0000000000009233 (2020). DOI: 10.1212/WNL.0000000000009233
Aartsma-Rus, A. & Krieg, A. M. FDA approves eteplirsen for duchenne muscular dystrophy: The next chapter in the eteplirsen saga. Nucleic Acid Therap. 27, 1–3 (2017). DOI: 10.1089/nat.2016.0657
Dunn, B. For the treatment of Duchenne muscular dystrophy (DMD) in patients who have a confirmed mutation of the DMD gene that is amenable to exon 53 skipping. (2019). Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/211970Orig1s000Approv.pdf.
Domenger, C. et al. RNA-seq analysis of an antisense sequence optimized for exon skipping in duchenne patients reveals no off-target effect. Mol. Ther. Nucleic Acids 10, 277–291 (2018). DOI: 10.1016/j.omtn.2017.12.008
Finkel, R. S. et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS ONE 8, e81302 (2013). DOI: 10.1371/journal.pone.0081302
Le Guiner, C. et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat. Commun. 8, 16105 (2017). DOI: 10.1038/ncomms16105
Nghiem, P. P. & Kornegay, J. N. Gene therapies in canine models for Duchenne muscular dystrophy. Hum. Genet. 138, 483–489 (2019). DOI: 10.1007/s00439-019-01976-z
Shieh, P. B. Emerging strategies in the treatment of Duchenne muscular dystrophy. Neurotherapeutics 15, 840–848 (2018). DOI: 10.1007/s13311-018-00687-z
Servais, L. et al. Long-term data with idebenone on respiratory function outcomes in patients with Duchenne muscular dystrophy. Neuromuscul. Disord. 30, 5–16 (2020). DOI: 10.1016/j.nmd.2019.10.008
Lavezzi, S. M., Rocchetti, M., Bettica, P., Petrini, S. & De Nicolao, G. Assessing drug effect from distributional data: A population approach with application to Duchenne muscular dystrophy treatment. Comput. Methods Programs Biomed. 178, 329–342 (2019). DOI: 10.1016/j.cmpb.2019.06.002
Finanger, E. et al. Phase 1 study of edasalonexent (CAT-1004), an oral NF-κ B inhibitor, in pediatric patients with duchenne muscular dystrophy. J. Neuromuscul. Dis. 6, 43–54 (2019). DOI: 10.3233/JND-180341
Baker, M. et al. Maximizing the benefit of life-saving treatments for pompe disease, spinal muscular atrophy, and duchenne muscular dystrophy through newborn screening: Essential steps. JAMA Neurol. 76, 978–983 (2019). DOI: 10.1001/jamaneurol.2019.1206
Ke, Q. et al. Progress in treatment and newborn screening for Duchenne muscular dystrophy and spinal muscular atrophy. World J. Pediatr. 15, 219–225 (2019). DOI: 10.1007/s12519-019-00242-6
Ellis, J. A., Vroom, E. & Muntoni, F. 195th ENMC International Workshop: Newborn screening for Duchenne muscular dystrophy 14–16th December, 2012, Naarden, The Netherlands. Neuromuscul. Disord. 23, 682–689 (2013). DOI: 10.1016/j.nmd.2013.05.008
Scheuerbrandt, G. Screening for Duchenne muscular dystrophy in Germany, 1977–2011: A personal story. Muscle Nerve 57, 185–188 (2018). DOI: 10.1002/mus.25979
Moat, S. J., Bradley, D. M., Salmon, R., Clarke, A. & Hartley, L. Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur. J. Hum. Genet. 21, 1049–1053 (2013). DOI: 10.1038/ejhg.2012.301
Moat, S. J. et al. Characterization of a blood spot creatine kinase skeletal muscle isoform immunoassay for high-throughput newborn screening of Duchenne muscular dystrophy. Clin. Chem. 63, 908–914 (2017). DOI: 10.1373/clinchem.2016.268425
Al-Zaidy, S. A., Lloyd-Puryear, M., Kennedy, A., Lopez, V. & Mendell, J. R. A roadmap to newborn screening for Duchenne muscular dystrophy. Int. J. Neonatal Screen. 3, 8 (2017). DOI: 10.3390/ijns3020008
Timonen, A. et al. Duchenne muscular dystrophy newborn screening: Evaluation of a new GSP® neonatal creatine kinase-MM kit in a US and Danish population. Int. J. Neonatal Screen. 5, 27 (2019). DOI: 10.3390/ijns5030027
Mendell, J. R. et al. Evidence-based path to newborn screening for duchenne muscular dystrophy. Ann. Neurol. 71, 304–313 (2012). DOI: 10.1002/ana.23528
Vry, J. et al. European cross-sectional survey of current care practices for duchenne muscular dystrophy reveals regional and age-dependent differences. J. Neuromuscul. Dis. 3, 517–527 (2016). DOI: 10.3233/JND-160185
Counterman, K. J., Furlong, P., Wang, R. T. & Martin, A. S. Delays in diagnosis of Duchenne muscular dystrophy: An evaluation of genotypic and sociodemographic factors. Muscle Nerve 61, 36–43 (2020). DOI: 10.1002/mus.26720
Aartsma-Rus, A. et al. Evidence-based consensus and systematic review on reducing the time to diagnosis of Duchenne muscular dystrophy. J. Pediatr. 204, 305-313.e14 (2019). DOI: 10.1016/j.jpeds.2018.10.043
Cordova, G., Negroni, E., Cabello-Verrugio, C., Mouly, V. & Trollet, C. Combined therapies for Duchenne muscular dystrophy to optimize treatment efficacy. Front. Genet. 9, 2 (2018). DOI: 10.3389/fgene.2018.00114
Peccate, C. et al. Antisense pre-treatment increases gene therapy efficacy in dystrophic muscles. Hum. Mol. Genet. 25, 3555–3563 (2016). DOI: 10.1093/hmg/ddw201
Czibere, L. et al. High-throughput genetic newborn screening for spinal muscular atrophy by rapid nucleic acid extraction from dried blood spots and 384-well qPCR. Eur. J. Hum. Genet. 28, 23–30 (2020). DOI: 10.1038/s41431-019-0476-4
Kariyawasam, D. S. T., Russell, J. S., Wiley, V., Alexander, I. E. & Farrar, M. A. The implementation of newborn screening for spinal muscular atrophy: The Australian experience. Genet. Med. 22, 557–565 (2020). DOI: 10.1038/s41436-019-0673-0
Kay, D. M. et al. Implementation of population-based newborn screening reveals low incidence of spinal muscular atrophy. Genet. Med. 10.1038/s41436-020-0824-3 (2020). DOI: 10.1038/s41436-020-0824-3
Boemer, F. et al. Newborn screening for SMA in Southern Belgium. Neuromuscul. Disord. 29, 343–349 (2019). DOI: 10.1016/j.nmd.2019.02.003
Boemer, F. et al. (S)un (M)ay (A)rise on SMA: The hope of a region without spinal muscular atrophy. Rev. Med. Liege 74, 461–464 (2019).
Chelly, J. et al. De novo DNA microdeletion in a girl with Turner syndrome and Duchenne muscular dystrophy. Hum. Genet. 74, 193–196 (1986). DOI: 10.1007/BF00282093
Richards, C. S. et al. Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy. Am. J. Hum. Genet. 46, 672–681 (1990).
Aartsma-Rus, A. et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum. Mutat. 30, 293–299 (2009). DOI: 10.1002/humu.20918
Mah, J. K. et al. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul. Disord. 24, 482–491 (2014). DOI: 10.1016/j.nmd.2014.03.008
Annexstad, E. J., Fagerheim, T., Holm, I. & Rasmussen, M. Molecular and clinical characteristics of a national cohort of paediatric Duchenne muscular dystrophy patients in Norway. J. Neuromuscul. Dis. 6, 349–359 (2019). DOI: 10.3233/JND-190402
Forand, A. et al. Combined treatment with peptide-conjugated phosphorodiamidate morpholino oligomer-PPMO and AAV-U7 rescues the severe DMD phenotype in mice. Mol. Ther. Methods Clin. Dev. 17, 695–708 (2020). DOI: 10.1016/j.omtm.2020.03.011
Fokkema, I. F. A. C. et al. LOVD v.2.0: The next generation in gene variant databases. Hum. Mutat. 32, 557–563 (2011). DOI: 10.1002/humu.21438