Morphophysical and biochemical traits involved in maize grain varietal susceptibility to the maize weevil, Sitophilus zeamais (Coleoptera, Curculionidae)".
[en] Description of the subject. Maize (Zea mays L.) is a major staple food providing nutrients for humans and animals worldwide.
In Sub-Saharan Africa, maize is stored to ensure food resource availability throughout the year. However, stored-product pests
such as the maize weevil, Sitophilus zeamais (Motsch.) (Coleoptera; Curculionidae) can cause huge grain losses.
Objectives. This study aimed to assess the oviposition preference of Sitophilus zeamais over maize varieties commonly
cultivated in Senegal and the effect of grain morphophysical and biochemical characteristics on their susceptibility to the
maize weevil.
Method. Twenty-five S. zeamais pairs (M/F) were placed in the center of an arena at equal distance of small heaps of maize
grains (30 g) from nine maize varieties. Adult abundance, damaged grains, grain weight loss, and progeny were confronted to
grain characteristics (phenolics and ferulic acid content, hardness, brightness, color and size of grains).
Results. Susceptibility to the maize weevil varied significantly among maize varieties. Synth-9243 was the most susceptible
variety with greatest damaged grains (10.5 ± 2.3%), grain weight loss (2.3 ± 0.6%), and progeny (17.3 ± 3.8 adults). The least
susceptible varieties were Across-Pool, SWAN, Obatampa, and Tzee-Yellow. Grain characteristics such as phenolics and
ferulic acid content were negatively related to susceptibility, but other constituents may have antixenosis or antibiosis effects.
In addition, grain brightness may also have a visual effect deterring oviposition.
Conclusions. The most repellent and less favorable varieties for S. zeamais were Tzee-Yellow, Across-Pool, Obatampa and
SWAN, that presented high content of phenolics and ferulic acid, hardness and brightness of grains.
Disciplines :
Agriculture & agronomy Entomology & pest control
Author, co-author :
Ngom, Déthié
Fauconnier, Marie-Laure ; Université de Liège - ULiège > Département GxABT > Chimie des agro-biosystèmes
Malumba Kamba, Paul ; Université de Liège - ULiège > Département GxABT > SMARTECH
Thiaw, Cheick
Brévault, Thierry
Sembène, Mbacké
Language :
English
Title :
Morphophysical and biochemical traits involved in maize grain varietal susceptibility to the maize weevil, Sitophilus zeamais (Coleoptera, Curculionidae)".
Alternative titles :
[fr] Traits morphophysiques et biochimiques impliqués dans la sensibilité variétale des grains au charançon du maïs, Sitophilus zeamais (Coleoptera, curculionidae)
Publication date :
March 2021
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Abebe F. et al., 2009. Resistance of maize varieties to the maize weevil Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae). Afr. J. Biotechnol., 8(21), 5937-5943, doi.org/10.5897/ajb09.821
Abecassis J., Chaurand M. & Autran J-C., 1997. Structural basis of wheat hardness and technological consequences. Int. Agrophys., 11(4), 273-281.
Adjile A., 2012. Les acquisitions massives de terre agricoles, entre opportunités et menaces pour la paysannerie familiale: étude de cas au Sud et Centre Bénin. Cotonou: CEBEDES.
Adom K.K. & Liu R.H., 2002. Antioxidant activity of grains. J. Agric. Food Chem., 50(21), 6182-6187, doi. org/10.1021/jf0205099
Agriopoulou S., Stamatelopoulou E. & Varzakas T., 2020. Advances in occurrence, importance, and mycotoxin control strategies: prevention and detoxification in foods. Foods, 9, 137, doi:10.3390/foods9020137
Alshannaq A. & Yu J.-H., 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health, 14, 632, doi:10.3390/ijerph14060632
Arnason J.T. et al., 1992. Role of phenolics in resistance of maize grain to the stored grain insects, Prostephanus truncatus (Horn) and Sitophilus zeamais (Motsch.). J. Stored Prod. Res., 28(2), 119-126.
Arnason J.T. et al., 1994. Variation in resistance of Mexican landraces of maize to maize weevil Sitophilus zeamais, in relation to taxonomic and biochemical parameters. Euphytica, 74, 227-236, doi.org/10.1007/bf00040405
Arnason J.T. et al., 1997. Mechanism of resistance in maize grain to the maize weevil and the larger grain borer. In: Mihm J.A., ed. Proceedings of an international symposium, Insect resistance maize: recent advances and utilization, 27 November-3 December 1994, CIMMYT, Texcoco, Mexico, 91-95. Texcoco, Mexico: CIMMYT.
Arnold S.E.J., Stevenson P.C. & Belmain S.R., 2015. Responses to colour and host odour cues in three cereal pest species, in the context of ecology and control. Bull. Entomol. Res., 105(4), 417-425, doi.org/10.1017/S0007485315000346
Barbercheck M., 2020. Management of stored grain pests in organic systems. Organic Grain Production Resource Book 2020, 182-202.
Bauer J.L., Harbaum-Piayda B. & Schwarz K., 2012. Phenolic compounds from hydrolyzed and extracted fiber-rich by-products. LWT-Food Sci. Technol., 47(2), 246-254, doi.org/10.1016/j.lwt.2012.01.012
Bergvinson D. & García-Lara S., 2004. Genetic approaches to reducing losses of stored grain to insects and diseases. Curr. Opin. Plant Biol., 7(4), 480-485, doi.org/10.1016/j. pbi.2004.05.001
Bily A.C. et al., 2003. Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to Fusarium graminearum. Phytopathology, 93(6), 712-719, doi.org/10.1094/PHYTO.2003.93.6.712
Blandino M. et al., 2010. Determination of maize kernel hardness: comparison of different laboratory tests to predict dry-milling performance. J. Sci. Food Agric., 90(11), 1870-1878, doi.org/10.1002/jsfa.4027
Bloomfield V.A., 2014. Using R for numerical analysis in science and engineering. Chapman & Hall/CRC The R Series.
Bourgou S., Beji R.S., Medini F. & Ksouri R., 2016. Effet du solvant et de la méthode d’extraction sur la teneur en composés phénoliques et les potentialités antioxydantes d’Euphorbia helioscopia. J. New Sci. Agric. Biotechnol., 28(12), 1649-1655.
Boxal R.A., 1986. A critical review of the methodology for assessing farm-level grain losses after harvest. London: Tropical Development and Research Institute.
C.I.E. (Commission Internationale de l’Éclairage), 1976. Official recommendations on uniform colour spaces, colour differences equations and metric colour terms. Supplement N°2 to C.I.E. Publication N°15. Paris: C.I.E.
Classen D. et al., 1990. Correlation of phenolic acid content of maize to resistance to Sitophilus zeamais, the maize weevil, in CIMMYT’S collections. J. Chem. Ecol., 16(2), 301-315, doi.org/10.1007/BF01021766
Commission européenne, 2009. Directive 2009/128/CE instaurant un cadre d’action communautaire pour parvenir à une utilisation des pesticides compatibles avec le développement durable. Bruxelles: Commission européenne.
De Groote H. et al., 2017. Maize storage insects (Sitophilus zeamais and Prostephanus truncatus) prefer to feed on smaller maize grains and grains with color, especially green. J. Stored Prod. Res., 71, 72-80, doi.org/10.1016/j. jspr.2017.01.005
De la Parra C., Serna Saldivar S.O. & Liu R.H., 2007. Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J. Agric. Food Chem., 55, 4177-4183, doi.org/10.1021/jf063487p
Delobel A. & Tran M., 1993. Les coléoptères des denrées alimentaires entreposées dans les régions chaudes. Paris: ORSTOM.
FAO (Food and Agricultural Organization of the United Nations), 2012a. Catalogue officiel des variétés de maïs. Rome: FAO, http://www.fao.org/pgrfa-gpa-archive/sen/docs/senegal_varietes/varietes_sen/cereales1.4.pdf, (17/02/2021).
FAO (Food and Agricultural Organization of the United Nations), 2012b. Pertes et gaspillages alimentaires dans le monde – ampleur, causes et prévention. Rome: FAO.
FAO, FIDA & PAM, 2015. L’état de l’insécurité alimentaire dans le monde 2015. Objectifs internationaux 2015 de réduction de la faim: des progrès inégaux. Rome: FAO.
FAOSTAT, 2018. Production céréalière mondiale, www. fao.org/faostat/fr/#data/QC/visualize, (15/05/2018).
Fixon-Owoo S. et al., 2003. Preparation and biological assessment of hydroxycinnamic acid amides of polyamines. Phytochemistry, 63(3), 315-334, doi. org/10.1016/S0031-9422(03)00133-X
Fourar-Belaifa R. & Fleurat-Lessard F., 2015. Susceptibility of some cereal species and cultivars grown in Algeria to post-harvest damage by the rice weevil. Cah. Agric., 24(5), 283-291, doi.org/10.1684/agr.2015.0767
Gallo J., 2007. Crop losses to pests. In: Pimentel D. Encyclopedia of pest management. CRCPress, 60-62.
García-Lara S. & Bergvinson D.J., 2007. Integral program to reduce post-harvest losses in maize. Agric. Técnica México, 33, 181-189.
García-Lara S. & Bergvinson D.J., 2014. Phytochemical and nutraceutical changes during recurrent selection for storage pest resistance in tropical maize. Crop Sci., 54(6), 2423-2432, doi.org/10.2135/cropsci2014.03.0223
García-Lara S. et al., 2004. The role of pericarp cell wall components in maize weevil resistance. Crop Sci., 44(5), 1546-1552, doi.org/10.2135/cropsci2004.1546
García-Lara S., García-jaimes E. & Bergvinson D.J., 2019. Mapping of maize storage losses due to insect pests in central Mexico. J. Stored Prod. Res., 84, 101529, doi. org/10.1016/j.jspr.2019.101529
Goergen G., 2005. Petit manuel d’identification des principaux ravageurs des denrées stockées en Afrique de l’Ouest. Cotonou: INRAB-IITA.
Guèye M.T. et al., 2008. La protection des stocks de maïs au Sénégal: enquêtes sur les pratiques d’utilisation des pesticides et plantes à effet insecticide en milieu paysan. ITA Echos, 3, www.researchgate.net/ publication/287205895, (04/03/3021).
Guèye M.T., Seck D., Wathelet J.P. & Lognay G., 2011. Lutte contre les ravageurs des stocks de céréales et de légumineuses au Sénégal et en Afrique occidentale: synthèse bibliographique. Biotechnol. Agron. Soc. Environ., 15(1), 183-194.
Guèye M.T., Seck D., Wathelet J. & Lognay G., 2012. Typologie des systèmes de stockage et de conservation du maïs dans l’Est et le Sud du Sénégal. Biotechnol. Agron. Soc. Environ., 16(1), 49-58.
Guiné R.P.F. & Barroca M.J., 2014. Quantification of browning kinetics and colour change for quince (Cydonia oblonga Mill.) exposed to atmospheric conditions. Agric. Eng. Int. CIGR J., 16(4), 285-298.
Isenring R., 2010. Les pesticides et la perte de biodiversité. Bruxelles: Pesticide Action Network Europe.
Kevin J.M., 2002. Maize kernel components and their roles in maize weevil resistance. Mexico City: International Center for the Improvement of Wheat and Maize (CIMMYT), www.worldfoodprize.org/documents/ filelibrary/images/youth_programs/2003_interns/ mcnee_8BBD07A320BAC.pdf, (04/03/2021).
Kim K.N., Huang Q.Y. & Lei C.L., 2019. Advances in insect phototaxis and application to pest management: a review. Pest Manage. Sci., 75(12), 3135-3143, doi. org/10.1002/ps.5536
Kossou D.K., Bosque-Pérez N.A. & Mareck J.H., 1993. Effets de l’égrenage du maïs sur l’oviposition et le développement du charançon du maïs. J. Stored Prod. Res., 28(3), 187-192.
Marin S., Ramos A., Cano-Sancho G. & Sanchis V., 2013. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem. Toxicol., 60, 218-237.
Midega C.A.O., Murage A.W., Pittchar J.O. & Khan Z.R., 2016. Managing storage pests of maize: farmers’ knowledge, perceptions and practices in western Kenya. Crop Prot., 90, 142-149, doi.org/10.1016/j. cropro.2016.08.033
Mwololo J.K., Mugo S., Tefera T. & Munyiri S.W., 2013. Evaluation of traits of resistance to postharvest insect pests in tropical maize. Int. J. Agric. Crop Sci., 6(13), 926-933
López-Castillo L.M. et al., 2018. Postharvest insect resistance in maize. J. Stored Prod. Res., 77, 66-76, doi. org/10.1016/j.jspr.2018.03.004
Ngom D. et al., 2020. Varietal susceptibility of maize to larger grain borer, Prostephanus truncatus (Horn) (Coleoptera; Bostrichidae), based on grain physicochemical parameters. PLoS ONE, 15(4), e0232164, doi.org/10.1371/journal.pone.0232164
Pantenius C.U., 1988. Storage losses in traditional maize granaries in Togo. Int. J. Trop. Insect Sci., 9(6), 725-735, doi.org/10.1017/s1742758400005610
Peters L.L., Fairchild M.L. & Zuber M.S., 1972. Effect of corn endosperm containing different levels of amylose on angoumois grain moth biology. 3. Interrelationship of amylose levels and moisture content of diets. J. Econ. Entomol., 65(4), 1168-1169, doi.org/10.1093/jee/65.4.1168
Philogène B.J.R. & Arnason J.T., 1995. La résistance du maïs aux insectes phytophages: une question de molécules. Cah. Agric., 4, 85-90.
Philogène B.J.R., Arnasson J.T. & Lambert J.D.H., 1989. Facteurs contribuant à la protection du maïs contre les attaques de Sitophilus et Prostephanus. In: Actes du colloque international de technologie, Céréales en régions chaudes: conservation et transformation, 22-26 février 1988, Centre universitaire de N’Gaoundéré, Cameroun. Paris: Aupelf-Uref; Eds. John Libbey Eurotext, 141-150.
Pomeranz Y., Hall G.E., Czuchjowska Z. & Lai F., 1986. Test weight, hardness, and breakage susceptibility of yellow dent corn hybrids. Cereal Chem., 63, 349-351.
Reddy et al., 2010. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev., 29(1), 3-26, doi.org/10.3109/15569541003598553
Rodriguez-Carrasco Y., Ruiz M.J., Font G. & Berrada H., 2013. Exposure estimates to Fusarium mycotoxins through cereals intake. Chemosphere, 93, 2297-2303.
Santiago R. &Malvar R.A., 2010. Role of dehydrodiferulates in maize resistance to pests and diseases. Int. J. Mol. Sci., 11(2), 691-703, doi.org/10.3390/ijms11020691
Sen A. et al., 1994. Distribution and microchemical detection of phenolic acids, flavonoids, and phenolic acid amides in maize kernels. J. Agric. Food Chem., 42, 1879-1883.
Serratos A. et al., 1987. Factors contributing to resistance of exotic maize populations to maize weevil, Sitophilus zeamais. J. Chem. Ecol., 13(4), 751-762, doi. org/10.1007/BF01020157
Shiferaw B., Prasanna B.M., Hellin J. & Bänziger M., 2011. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur., 3(3), 307-327, doi.org/10.1007/s12571-011-0140-5
Singleton V.L. & Rossi J.A. Jr., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16(3), 144-158, doi. org/10.12691/ijebb-2-1-5
Siwale J., Mbata K., Mcrobert J. & Lungu D., 2009. Comparative resistance of improved maize genotypes and landraces to maize weevil. Afr. Crop Sci. J., 17, 1-16
Stephens E.C. & Barrett C.B., 2010. Incomplete credit markets and commodity marketing behaviour. J. Agric. Econ., 62(1), 1-24, doi: 10.1111/j.1477-9552.2010.00274.x.
Suleiman R., Rosentrater K.A. & Bern C.J., 2015. Evaluation of maize weevils Sitophilus zeamais Motschulsky infestation on seven varieties of maize. J. Stored Prod. Res., 64, 97-102, doi.org/10.1016/j.jspr.2015.09.005
Tefera T., Mugo S. & Likhayo P., 2011a. Effects of insect population density and storage time on grain damage and weight loss in maize due to the maize weevil Sitophilus zeamais and the larger grain borer Prostephanus truncatus. Afr. J. Agric., 6(10), 2249-2254.
Tefera T. et al., 2011b. The metal silo: an effective grain storage technology for reducing post-harvest insect and pathogen losses in maize while improving smallholder farmers’food security in developing countries. Crop Prot., 30(3), 240-245, doi.org/10.1016/j.cropro.2010.11.015
Williams P.J., Geladi P., Britz T.J. & Manley M., 2012. Investigation of fungal development in maize kernels using NIR hyperspectral imaging and multivariate data analysis. J. Cereal Sci., 55(3), 272-278, doi. org/10.1016/j.jcs.2011.12.003
Yadu Y.K., Saxena R.C. & Dubey V.K., 2000. Relative susceptibility of different varieties of maize to infestation by the Sitotroga cerealella (Olivier) as influenced by the biochemical content of the grains. Indian J. Agric. Res., 34(4), 243-246.