Lange, B.; Hydrogeochemistry and Soil–Environment Interactions (HydrISE), UP.2012.10.102, Institut Polytechnique LaSalle Beauvais, Beauvais, 60026, France, Laboratory of Plant Ecology and Biogeochemistry, Université Libre de Bruxelles, Brussels, 1050, Belgium
van der Ent, A.; Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia, Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine – INRA, Vandoeuvre-les-Nancy, 54518, France
Baker, A. J. M.; Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia, Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine – INRA, Vandoeuvre-les-Nancy, 54518, France, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
Echevarria, G.; Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine – INRA, Vandoeuvre-les-Nancy, 54518, France
Mahy, Grégory ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Malaisse, François ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Meerts, P.; Laboratory of Plant Ecology and Biogeochemistry, Université Libre de Bruxelles, Brussels, 1050, Belgium
Pourret, O.; Hydrogeochemistry and Soil–Environment Interactions (HydrISE), UP.2012.10.102, Institut Polytechnique LaSalle Beauvais, Beauvais, 60026, France
Verbruggen, N.; Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
Faucon, M.-P.; Hydrogeochemistry and Soil–Environment Interactions (HydrISE), UP.2012.10.102, Institut Polytechnique LaSalle Beauvais, Beauvais, 60026, France
Language :
English
Title :
Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture ANR - Agence Nationale de la Recherche ARC - Australian Research Council
Allen WR, Sheppard PM. 1971. Copper tolerance in some Californian populations of the monkey flower Mimulus guttatus. Proceedings of the Royal Society of London B: Biological Sciences 177: 177–196.
Andrés-Colás N, Sancenón V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Peñarrubia L. 2006. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant Journal 45: 225–236.
Angle JS, Chaney RL, Baker AJM, Li YM, Reeves RD, Volk V, Rosenberg R, Brewer E, Burke S, Nelkin J. 2001. Developing commercial phytoextraction technologies: practical considerations. South African Journal of Science 97: 619–623.
Antonovics J, Bradshaw AD, Turner RG. 1971. Heavy metal tolerance in plants. Advances in Ecological Research 7: 2–85.
Baker AJM. 1981. Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3: 643–654.
Baker AJM. 1987. Metal tolerance. New Phytologist 106: 93–111.
Baker AJM, Brooks RR. 1989. Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1: 81–126.
Baker AJM, Brooks RR, Pease AJ, Malaisse F. 1983. Studies on copper and cobalt tolerance in three closely-related taxa within the genus Silene L. (Caryophyllaceae) from Zaire. Plant and Soil 73: 377–385.
Bani A, Echevarria G, Sulçe S, Morel JL. 2015. Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. International Journal of Phytoremediation 17: 117–127.
Barras F, Fontecave M. 2011. Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance. Metallomics 3: 1130–1134.
Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL et al. 2012. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. The Plant Cell 24: 738–761.
Boyd RS. 2013. Exploring tradeoffs in hyperaccumulator ecology and evolution. New Phytologist 199: 871–872.
Boyd RS, Martens SN. 1992. The raison d'être for metal hyperaccumulation by plants. In: Baker AJM, Proctor J, Reeves RD, eds. The vegetation of ultramafic (serpentine) soils. Andover, UK: Intercept, 279–289.
Brooks RR, Naidu SM, Malaisse F, Lee J. 1986. The elemental content of metallophytes from the copper/cobalt deposits of Central Africa. Bulletin de la Société Royale de Botanique de Belgique 119: 179–191.
Brooks RR, Reeves RD, Morrison RS, Malaisse F. 1980. Hyperaccumulation of copper and cobalt: a review. Bulletin de la Société Royale de Botanique de Belgique 13: 166–172.
Brooks RR, Robinson BH. 1998. The potential use of hyperaccumulators and other plants for phytomining. In: Brooks RR, ed. Plants that hyperaccumulate heavy metals - their role in phytoremediation, microbiology, archeology, mineral exploration, and phytomining. Cambridge, UK: CAB International, 327–356.
Brooks RR, McCleave JA, Schofield EK. 1977a. Cobalt and nickel uptake by the Nyssaceae. Taxon 26: 197–201.
Brooks RR, Wither ED, Zepernick B. 1977b. Cobalt and nickel in Rinorea species. Plant and Soil 47: 707–712.
Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M. 2009. Copper homeostasis. New Phytologist 182: 799–816.
Chaney RL, Angle JS, Baker AJ, Li YM. 1998. Method for phytomining of nickel, cobalt and other metals from soil. United States Patent 5: 711–784.
Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL. 2007. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality 36: 1429–1433.
Chen YX, Wang YP, Lin Q, Luo YM. 2005. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environment International 31: 861–866.
Chipeng KF, Hermans C, Colinet G, Faucon MP, Ngongo Luhembwe M, Meerts P, Verbruggen N. 2010. Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. and Plancke. Plant and Soil 328: 235–244.
Clavé G, Garel C, Poullain C, Renard BL, Olszewski TK, Lange B, Shutcha M, Faucon M-P, Grison C. 2016. Ullmann reaction through ecocatalysis: insights from bioresource and synthetic potential. RSC Advances 6: 59 550–59 564.
Cohu CM, Pilon M. 2010. Cell biology of copper. In: Hell R, Mendel RR, eds. Cell biology of metals and nutrients. Plant cell monographs, vol. 17. Berlin, Germany: Springer, 55–74.
Collins RN, Kinsela AS. 2011. Pedogenic factors and measurements of the plant uptake of cobalt. Plant and Soil 339: 499–512.
Cox RM, Hutchinson TC. 1980. Multiple metal tolerances in the grass Deschampsia cespitosa (L.) Beauv. from the Sudbury smelting area. New Phytologist 84: 631–647.
Cuypers A, Remans T, Weyens N, Colpaert J, Vassilev A, Vangronsveld J. 2013. Soil–plant relationships of heavy metals and metalloids. In: Alloway BJ, ed. Heavy metals in soils. Dordrecht, the Netherlands: Springer, 161–193.
Dechamps C, Noret N, Mozek R, Escarré J, Lefèbvre C, Gruber W, Meerts P. 2007. Cost of adaptation to a metalliferous environment for Thlaspi caerulescens: a field reciprocal transplantation approach. New Phytologist 177: 167–177.
Delhaye G, Violle C, Séleck M, Ilunga wa Ilunga E, Daubie I, Mahy G, Meerts P. 2016. Community variation in plant traits along copper and cobalt gradients. Journal of Vegetation Science 27: 854–864.
Dessaux Y, Grandclément C, Faure D. 2016. Engineering the rhizosphere. Special issue: unravelling the secrets of the rhizosphere. Trends in Plant Science 21: 266–278.
Duvigneaud P, Denaeyer-De Smet S. 1963. Cuivre et végétation au Katanga. Bulletin de la Société Royale de Botanique de Belgique 96: 92–231.
Faucon MP, Chipeng F, Verbruggen N, Mahy G, Colinet G, Shutcha M, Pourret O, Meerts P. 2012a. Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environmental and Experimental Botany 84: 11–16.
Faucon MP, Colinet G, Mahy G, Ngongo Luhembwe M, Verbruggen N, Meerts P. 2009. Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant and Soil 317: 201–212.
Faucon MP, Shutcha MN, Meerts P. 2007. Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant and Soil 301: 29–36.
Faucon MP, Tshilong BM, Van Rossum F, Meerts P, Decocq G, Mahy G. 2012b. Ecology and hybridization potential of two sympatric metallophytes, the narrow endemic Crepidorhopalon perennis (Linderniaceae) and its more widespread congener C. tenuis. Biotropica 44: 454–462.
Fernandes JC, Henriques FS. 1991. Biochemical, physiological, and structural effects of excess copper in plants. The Botanical Review 57: 246–273.
Gadd GM. 2004. Microbial influence on metal mobility and application for bioremediation. Geoderma 122: 109–119.
Ghaderian SM, Ravandi AG. 2012. Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. Journal of Geochemical Exploration 123: 25–32.
Gonnelli C, Galardi F, Gabrielli R. 2001. Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiologia Plantarum 113: 507–514.
Hanikenne M, Nouet C. 2011. Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Current Opinion in Plant Biology 14: 252–259.
Hogan GD, Rauser WE. 1979. Tolerance and toxicity of cobalt, copper, nickel and zinc in clones of Agrostis gigantea. New Phytologist 83: 665–670.
Homer FA, Morrison RS, Brooks RR, Clemens J, Reeves RD. 1991. Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant and Soil 138: 195–205.
van Hoof NA, Hassinen VH, Hakvoort HW, Ballintijn KF, Schat H, Verkleij JA, Ernst WH, Karenlämpi SO, Tervahauta AI. 2001a. Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiology 126: 1519–1526.
van Hoof NA, Koevoets PLM, Hakvoort HWJ, Ten Bookum WM, Schat H, Verkleij JA, Ernst WH. 2001b. Enhanced ATP-dependent copper efflux across the root cell plasma membrane in copper-tolerant Silene vulgaris. Physiologia Plantarum 113: 225–232.
Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM. 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany-Botanique 92: 267–275.
Jaffré T, Brooks RR, Lee J, Reeves RD. 1976. Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193: 579–580.
Jiang LY, Yang XE, He ZL. 2004. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere 55: 1179–1187.
Jowett D. 1958. Populations of Agrostis spp. tolerant of heavy metals. Nature 182: 816–817.
Kabagale AC, Cornu B, van Vliet F, Meyer CL, Mergeay M, Lumbu Simbi JB, Droogmans L, Vander Wauven C, Verbruggen N. 2010. Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant and Soil 334: 461–474.
Keeling SM, Stewart RB, Anderson CWN, Robinson BH. 2003. Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation. International Journal of Phytoremediation 5: 235–244.
Kobayashi Y, Kuroda K, Kimura K, Southron-Francis JL, Furuzawa A, Kimura K, Iuchi S, Kobayashi M, Taylor GJ, Koyama H. 2008. Amino acid polymorphisms in strictly conserved domains of a P-type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. Plant Physiology 148: 969–980.
Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB. 1999. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology 40: 37–44.
Krämer U. 2010. Metal hyperaccumulation in plants. Annual Review of Plant Biology 61: 517–534.
Küpper H, Gotz B, Mijovilovich A, Küpper FC, Meyer-Klaucke W. 2009. Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiology 151: 702–714.
Küpper H, Küpper FC, Spiller M. 1996. Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. Journal of Experimental Botany 47: 259–266.
Lambers H, Hayes PE, Laliberté E, Oliveira RS, Turner BL. 2015. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends in Plant Science 20: 83–90.
Lange B. 2016. Tolérance et accumulation du cuivre et du cobalt chez les métallophytes facultatives d'Afrique tropicale. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium & Université Picardie Jules Verne, Amiens, France.
Lange B, Faucon MP, Meerts P, Shutcha M, Mahy G, Pourret O. 2014. Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant and Soil 379: 275–287.
Lange B, Pourret O, Meerts P, Jitaru P, Cancès B, Grison C, Faucon MP. 2016. Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Chemosphere 146: 75–84.
Leary SC, Winge DR. 2007. The Janus face of copper: its expanding roles in biology and the pathophysiology of disease. EMBO Reports 8: 224–227.
Lehmann C, Rebele F. 2004. Evaluation of heavy metal tolerance in Calamagrostis epigejos and Elymus repens revealed copper tolerance in a copper smelter population of C. epigejos. Environmental and Experimental Botany 51: 199–213.
Lenoir I, Fontaine J, Sahraoui ALH. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123: 4–15.
Lou LQ, Shen ZG, Li XD. 2004. The copper tolerance mechanism of Elsholtzia haichowensis, a plant from copper-enriched soils. Environmental and Experimental Botany 51: 111–120.
Ma Y, Rajkumar M, Zhang C, Freitas H. 2016. Benefical role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management 174: 14–25.
Macnair MR. 1981. The uptake of copper by plants of Mimulus guttatus differing in genotype primarily at a single major copper tolerance locus. New Phytologist 88: 723–730.
Macnair MR. 1983. The genetic control of copper tolerance in the yellow monkey flower Mimulus guttatus. Heredity 50: 283–293.
Maestri E, Marmiroli M, Visioli G, Marmiroli N. 2010. Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environmental and Experimental Botany 68: 1–13.
Malaisse F, Grégoire J, Brooks RR, Morrison RS, Reeves RD. 1978. Aeolanthus biformifolius: a hyperaccumulator of copper from Zaïre. Science 199: 887–888.
Malik M, Chaney RL, Brewer EP, Li YM, Angle JS. 2000. Phytoextraction of soil cobalt using hyperaccumulator plants. International Journal of Phytoremediation 2: 319–329.
McLeod KW, Ciravolo TG. 2007. Cobalt uptake by Nyssa aquatica, N. sylvatica var. biflora, and Taxodium distichum seedlings. Wetlands 27: 40–43.
Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P. 2009. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiology 149: 894–904.
Morrison RS, Brooks RR, Reeves RD, Malaisse F. 1979. Copper and cobalt uptake by metallophytes from Zaïre. Plant and Soil 53: 535–539.
Morrison RS, Brooks RR, Reeves RD, Malaisse F, Horowitz P, Aronson M, Merriam GR. 1981. The diverse chemical forms of heavy metals in tissue extracts of some metallophytes from Shaba province, Zaïre. Phytochemistry 20: 455–458.
Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML. 2009. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21: 3326–3338.
Murphy AS, Eisinger WR, Shaff JE, Kochian LV, Taiz L. 1999. Early copper-induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiology 121: 1375–1382.
Ouzounidou G, Symeonidis L, Babalonas D, Karataglis S. 1994. Comparative responses of a copper-tolerant and a copper-sensitive population of Minuartia hirsuta to copper toxicity. Journal of Plant Physiology 144: 109–115.
Oven M, Grill E, Golan-Goldhirsh A, Kutchan TM, Zenk MH. 2002. Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry 60: 467–474.
Paliouris G, Hutchinson TC. 1991. Arsenic, cobalt and nickel tolerances in two populations of Silene vulgaris (Moench) Garcke from Ontario, Canada. New Phytologist 117: 449–459.
Palit S, Sharma A, Talukder G. 1994. Effects of cobalt on plants. The Botanical Review 60: 149–181.
Peng H, Wang-Müller Q, Witt T, Malaisse F, Küpper H. 2012. Differences in copper accumulation and copper stress between eight populations of Haumaniastrum katangense. Environmental and Experimental Botany 79: 58–65.
Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M. 2009. Physiological functions of benefical elements. Current Opinion in Plant Biology 12: 267–274.
Pollard AJ, Reeves RD, Baker AJM. 2014. Facultative hyperaccumulation of heavy metals and metalloids. Plant Science 217: 8–17.
Pourret O, Lange B, Bonhoure J, Colinet G, Decrée S, Mahy G, Séleck M, Shutcha M, Faucon M-P. 2016. Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Applied Geochemistry 64: 43–55.
Pourret O, Lange B, Houben D, Colinet G, Shutcha M, Faucon MP. 2015. Modeling of cobalt and copper speciation in metalliferous soils from Katanga (Democratic Republic of Congo). Journal of Geochemical Exploration 149: 87–96.
del Pozo T, Cambiazo V, González M. 2010. Gene expression profiling analysis of copper homeostasis in Arabidopsis thaliana. Biochemical and Biophysical Research Communication 393: 248–252.
Rajakaruna N, Bohm BA. 2002. Serpentine and its vegetation: a preliminary study from Sri Lanka. Journal of Applied Botany 76: 20–28.
Reeves RD. 2003. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil 249: 57–65.
Reeves RD, Baker AJM. 2000. Metal hyperaccumulating plants. In: Raskin I, Ensley BD, eds. Phytoremediation of toxic metals: using plants to clean up the environment. New York, NY, USA: Wiley, 193–229.
Schat H, Kuiper E, Ten Bookum WM, Vooijs R. 1993. A general model for the genetic control of copper tolerance in Silene vulgaris: evidence from crosses between plants from different tolerant populations. Heredity 70: 142–147.
Schat H, Ten Bookum WM. 1992. Genetic control of copper in Silene vulgaris. Heredity 68: 219–229.
Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M. 2013. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology and Biogeochemistry 60: 182–194.
Shanmugam V, Lo JC, Wu CL, Wang SL, Lai CC, Connolly EL, Huang JL, Yeh KC. 2011. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana – the role in zinc tolerance. New Phytologist 190: 125–137.
Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH. 2002. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environmental Pollution 120: 445–453.
Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H. 2004. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environmental Pollution 128: 307–315.
Strange J, Macnair MR. 1991. Evidence for a role for the cell membrane in copper tolerance of Mimulus guttatus Fischer ex DC. New Phytologist 119: 383–388.
Tang S, Wilke B, Huang C. 1999. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People's Republic of China. Plant and Soil 209: 225–232.
Tappero R, Peletier E, Gräfe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL. 2007. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytologist 175: 641–654.
Tilstone GH, Macnair MR. 1997. The consequence of selection for copper tolerance on the uptake and accumulation of copper in Mimulus guttatus. Annals of Botany 80: 747–751.
van der Ent A. 2016. Analysis of the content of copper, cobalt and other elements in plant leaves. In: Malaisse F, Schaijes M, D'Outreligne C, eds. Copper–cobalt flora of Upper Katanga and Copperbelt – field guide. Gembloux, Belgium: Presses agronomiques de Gembloux, 27–37.
van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson C, Meech J, Erskine PD, Simonnot MO, Vaughan J, Morel JL et al. 2015a. ‘Agromining’: farming for metals in the future? Environmental Science and Technology 49: 4773–4780.
van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H. 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil 362: 319–333.
van der Ent A, Erskine PD, Sumail S. 2015b. Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25: 243–259.
van der Ent A, Reeves RD. 2015. Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. Plant and Soil 389: 401–418.
van der Ent A, Reeves RD, Baker AJM, Pollard J, Schat H. 2015c. A Commentary on “Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants”. Frontiers in Plant Science 6: 554.
Verbruggen N, Hanikenne M, Clemens S. 2013. A more complete picture of metal hyperaccumulation through next-generation sequencing technologies. Frontiers in Plant Science 4: 388.
Verbruggen N, Hermans C, Schat H. 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181: 759–776.
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of trait be functional! Oikos 116: 882–892.
Wang F, Lin X, Yin R. 2005. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant and Soil 269: 225–232.
Wang F, Lin X, Yin R. 2007. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens – a field case. Environmental Pollution 147: 248–255.
Weng G, Wu L, Wang Z, Luo Y, Christie P. 2005. Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture. Environment International 31: 880–884.
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821–827.
Wu L, Bradshaw AD, Thurman DA. 1975. The potential for evolution of heavy metal tolerance in plants. III. The rapid evolution of copper tolerance in Agrostis stolonifera. Heredity 34: 165–187.
Yang MJ, Yang XE, Römheld V. 2002. Growth and nutrient composition of Elsholtzia splendens Nakai under copper toxicity. Journal of Plant Nutrition 25: 1359–1375.
Yang XE, Peng HY, Jiang LY, He ZL. 2005. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost. International Journal of Phytoremediation 7: 69–83.
Yruela I. 2009. Copper in plants: acquisition, transport and interactions. Functional Plant Biology 36: 409–430.
Zheng L, Yamaji N, Yokosho K, Ma JF. 2012. YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice. The Plant Cell 24: 3767–3782.