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Introduction

Summary

This review synthesizes contemporary understanding of copper—cobalt (Cu—Co) tolerance and
accumulation in plants. Accumulation of foliar Cu and Co to >300 pg g~ is exceptionally rare
globally, and known principally from the Copperbelt of Central Africa. Cobalt accumulation is
also observed in a limited number of nickel (Ni) hyperaccumulator plants occurring on ultramafic
soils around the world. None of the putative Cu or Co hyperaccumulator plants appears to
comply with the fundamental principle of hyperaccumulation, as foliar Cu—Co accumulation is
strongly dose-dependent. Abnormally high plant tissue Cu concentrations occur only when
plants are exposed to high soil Cu with alow root to shoot translocation factor. Most Cu-tolerant
plants are Excluders sensu Baker and therefore setting nominal threshold values for Cu
hyperaccumulation is not informative. Abnormal accumulation of Co occurs under similar
circumstances in the Copperbelt of Central Africa as well as sporadically in Ni hyperaccumulator
plants on ultramafic soils; however, Co-tolerant plants behave physiologically as Indicators sensu
Baker. Practical application of Cu—Co accumulator plants in phytomining is limited due to their
dose-dependent accumulation characteristics, although for Co field trials may be warranted on
highly Co-contaminated mineral wastes because of its relatively high metal value.

(obligate metallophytes) or also occur on ‘normal’ soils (facultative

metallophytes) (Pollard ez al., 2014). Among these, some have the

Plant species that grow and reproduce on soils strongly enriched in
trace elements, i.e. metalliferous soils of natural or anthropogenic
origin, have proved to be powerful model systems for studying the
ecophysiology and evolution of adaptation to toxicity stresses
(Baker, 1987). Metallophytes are plants able to tolerate high
concentrations of such trace elements (e.g. nickel, Ni; copper, Cu;
or cobalt, Co) in soil that are toxic for most other species (Baker,
1981). These metallophytes can be restricted to metalliferous soils
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© 2016 The Authors
New Phytologist © 2016 New Phytologist Trust

ability to actively accumulate certain trace elements in leaves, from
either low or high available concentrations in soil, without toxicity
symptoms or growth inhibition and are known as hyperaccumu-
lator plants (Jaffré ez al., 1976; van der Ent ez al., 2013).

By far the greatest number of hyperaccumulator plants are
known for Ni (> 1000 pg g71 foliar Ni) and occur on ultramafic
soils (Reeves, 2003). (Hyper)accumulation of Cu and Co was first
defined as > 1000 pg g_1 foliar Cu/Co (Malaisse ez al., 1978), but
later revised downwards to > 300 pug g71 (van der Ent ez al., 2013).
More than 95% of the putative Cu—Co hyperaccumulator plant
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species are found in the southeastern Democratic Republic of
Congo (D. R. Congo) (see Brooks et al., 1980), where there are a
large number of natural Cu—Co outcrops; the so-called ‘Copper
Hills’ of the Katangan Copperbelt. However, Co accumulation has
also been reported in plants from other countries growing on
ultramafic soils enriched in Co, for example in some individuals of
two Ni-hyperaccumulating Rinorea species (Violaceae) (Brooks
etal, 1977b), and also in the curious case of Nyssa sylvatica
(Cornaceae) (Brooks et al., 1977a; McLeod & Ciravolo, 2007). A
few cases of putative Cu hyperaccumulation have also been
reported on Cu-enriched ultramafic soils in Sri Lanka, Brazil and
Malaysia (Rajakaruna & Bohm, 2002; van der Ent & Reeves,
2015). Summarizing, putative Cu and/or Co hyperaccumulation
may occur in: Cu—Co outcrops (principally the Katangan
Copperbelt), Cu—Co-enriched ultramafic soils (e.g. Goias state,
Brazil) and Co-enriched ultramafic soils (e.g. Barberton, South
Africa). An overview of Cu- and/or Co-accumulator plants is
provided in Fig. 1.

High inter- and intraspecific variations in foliar/shoot Cu and/or
Co have been reported among Cu—Co accumulator plants (Faucon
eral.,2009; Lange ez al., 2014). Some of the early reports of Cu—Co
(hyper)accumulation have been based upon analysis of herbarium
materials (see Baker & Brooks, 1989; Reeves & Baker, 2000) and
there is now substantial experimental data to suggest that many of
these samples were contaminated with soil dust, so giving spurious
high values in foliar dry matter analyses (Faucon ez al., 2007).

This review synthesizes recent advances and contemporary
understanding of Cu—Co tolerance and (hyper)accumulation, by:
(1) reviewing the current state of knowledge about Cu—Co
tolerance and (hyper)accumulation by physiological, ecological
and biogeochemical approaches; (2) presenting an updated global
record of unusually high Cu—Co accumulation in plantspecies; and
(3) evaluating possible applications for Cu—Co accumulating
plants.

Ecophysiology for tolerance and accumulation of Cu
and Co

Strategies of tolerance

Plants that can grow and reproduce on metalliferous soils can be
classified based upon their trace element uptake response when
exposed to increasing soil concentrations of the element under
consideration (Antonovics etal, 1971). The three main strate-
gies of tolerance are: ‘Excluder’, ‘Bioindicator’ and ‘Hyperac-
cumulator’ (Baker, 1981). Tolerance to certain trace elements
and their accumulation patterns have been widely studied over
the past decades, especially for zinc (Zn), Ni and cadmium (Cd)
(Verbruggen eral., 2009). Copper- and Co-tolerant populations
have been reported in the literature for a large number of
species collected from nature, but the capacity to grow under
elevated Cu and/or Co concentrations without toxicity symp-
toms or growth inhibition has rarely been demonstrated
experimentally (Table 1).

Most Cu-tolerant plants respond ecophysiologically as Exclud-
ers sensu Baker with very limited Cu translocation from the roots to
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the shoots (Macnair, 1981; Schat ezal., 1993; Song ez al., 2004;
Chipeng etal., 2010; Lange et al., 2016). Crassula helmsii (Cras-
sulaceae) was found to accumulate > 9000 ug g~ in its shoots atlow
Cu concentration in the nutrient solution and so is an exception
(Kipper eral, 2009). Cobalt accumulation can occur in
Anisopappus chinensis (Asteraceae), as foliar Co concentration
increases in relation to Co concentration in the nutrient solution
without a decrease in the biomass or toxicity symptoms (Lange,
2016). None of the putative Cu or Co hyperaccumulator plants,
however, appear to comply with the fundamental principle of
hyperaccumulation that high shoot concentrations are maintained
over a wide concentration range in the soil or growth medium (van

der Ent et al., 2013).

Physiology of Cu tolerance and accumulation

Copper is an essential transition metal with two oxidation states
under physiologically relevant conditions. Due to its ability to cycle
between the oxidized Cu(II) and reduced Cu(]) states, it is involved
in biological processes such as photosynthesis, respiration, oxygen
superoxide scavenging, ethylene sensing, cell wall metabolism and
lignification (Burkhead ez al., 2009). For the very reason that it is
essential, Cu can also be highly toxic (Fernandes & Henriques,
1991). Free Cu catalyzes Fenton reactions that generate hydroxyl
radicals causing damage to lipids, proteins and DNA (Cohu &
Pilon, 2010). Copper also has been reported to interfere with iron
homeostasis (Bernal ezal., 2012). An overall reduction of plant
biomass, inhibition of root growth, chlorosis, bronzing and
necrosis are the usual reported symptoms of a Cu excess due to
increased production of reactive oxygen species and harmful
interactions at the cellular level.

Copper tolerance in metallophytes is thought to arise through
adaptation of components of basic metallic homeostasis. Cellular
Cu concentrations are controlled by interplay between the ATPase
exporters and the Ctr family of Cu permeases (Leary & Winge,
2007). Most Cu-ions in cells are either compartmentalized or
bound to proteins or metabolites. Copper is delivered to enzymes
by specific chaperones, whereas excess can be chelated by thiol-rich
compounds such as metallothioneins which are low molecular
weight cysteine-rich proteins, or phytochelatins, which are
synthesized from glutathione (Yruela, 2009). Long-distance trans-
port of Cu apparently involves nicotianamine, an ubiquitous metal
chelator in higher plants, synthesized from three molecules of S-
adenosyl-methionine (Zheng ez al., 2012).

As previously stated, most Cu-tolerant plants behave as Exclud-
ers. The genetic control of Cu tolerance in Silene vulgaris
(Caryophyllaceae) and Mimulus guttarus (Phrymaceae) appears to
be governed by a single major gene whereas tolerance level appears
to be controlled by a number of modifiers (Macnair, 1983; Schat &
Ten Bookum, 1992). Major determinants of Cu tolerance in Cu-
tolerant plants are not known or genetically confirmed. In
S. vulgaris, Cu tolerance is associated with efficient ATP-dependent
Cu efflux through the root plasma membrane (van Hoof ez al,
2001b). In Arabidopsis thaliana (Brassicaceae), which is sensitive to
Cu, HMA5 (HEAVY METAL ATPase 5) was shown to co-localize
with a major quantitative trait locus (QTL) explaining 52% of the
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Fig. 1 Visual appearance of selected copper
(Cu)- and/or cobalt (Co)-accumulator plants.
(a) Haumaniastrum robertii (Lamiaceae) (D.
R. Congo). Photo credit: copperflora.org; (b)
Hibiscus rhodanthus (Malvaceae) (D. R.
Congo). Photo credit: copperflora.org; (c)
Anisopappus chinensis (Asteraceae) (D. R.
Congo). Photo credit: B. Lange; (d) Rinorea
bengalensis (Violaceae) (S-E Asia). Photo
credit: A. van der Ent; (e) Crepidorhopalon
tenuis (Linderniaceae) (D. R. Congo). Photo
credit: B. Lange; (f) Berkheya coddii
(Asteraceae) (South Africa). Photo credit: A.
vander Ent; (g) Alyssum murale (Brassicaceae)
(Albania). Photo credit: A. van der Ent.

difference in Cu tolerance between two ecotypes (Kobayashi ez al.,
2008). HMAS5is a Cu ATPase with a role in Cu compartmentation
and detoxification in roots by moving Cu from the symplasm to
apoplasm (Andrés-Colés et al., 2006; del Pozo ez al., 2010). HMAS
activity could correspond to the ATP-dependent Cu efflux
highlichted in the study of van Hoof eral (2001b) with

© 2016 The Authors
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S. vulgaris. Some authors have suggested a role for HMA5 in xylem
loading (Kobayashi ez al., 2008), which has been debated because
this transport was mostly maintained in the HAMA5loss-of-function
Arabidopsis mutant (Andrés-Colds ez al., 2006). Enhanced toler-
ance in S. vulgarisalso has been associated with increased transcript
levels of metallothionein 2B (van Hoof et 4l., 2001a).
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Furthermore, Cu tolerance was found to be inversely correlated

with long-term K" efflux in several species, sensitive or tolerant,
including M. guttatus (Strange & Macnair, 1991; Murphy ez al.,
1999). K* serves as a counter-ion for citrate that is released upon
exposure to Cu excess, thus reducing Cu availability in the medium
(Murphy ez al., 1999).

No molecular mechanism of (hyper)accumulation has been
described yet in any of the putative Cu hyperaccumulator plants.
Similar to the hyperaccumulation of other trace elements, root

Rebele (2004)
Shu etal. (2002)

(1971)
Allen & Sheppard
(1971)
(1979)
Jowett (1958)
Lehmann &

(1980)
Shu et al. (2002)

Allen & Sheppard
Jowett (1958)
Hogan & Rauser
Cox & Hutchinson

sequestration is limited to allow mobility of Cu to the shoot. Due to
its toxicity, Cu excess is released in the shoot and immobilized by

Nutrient solution
Nutrient solution
Nutrient solution
Nutrient solution
Nutrient solution
Nutrient solution
Nutrient solution
Nutrient solution

Soil

efficient chelation and sequestration mechanisms. In the aquatic
plant C. helmsii, Cu was found to be almost exclusively bound by
oxygen ligands, likely organicacids, and not sulphur ligands (Kiipper
eral., 2009). The concentration of organic acids in Crassulacean
Acid Metabolism (CAM) plants may be so high that itis not limiting
for Cu complexation. These authors suggested that main storage sites
of Cu were vacuoles and cell walls. Similar investigations have not
yet been undertaken on land C3 Cu accumulator plants.

Physiology of Co tolerance and accumulation

under elevated concentration of Co  Growth medium  References

Experimental demonstration of Co
Up to 10000 pg g~ " [170 mM]

Lo Cobalt is a transition metal not essential for plants with seven
possible oxidation states. In physiological conditions, the oxidation
states of Co are mainly II and III, which makes Co a possible
catalyzer of Fenton reactions. Beneficial effects of Co supply have
been associated with symbiotic rhizobia that inhabit in the nodules
of leguminous plants, and need vitamin B;, (cobalamin) for the
activity of several enzymes involved in nitrogen fixation. Other
reported beneficial effects include retardation of leaf senescence
through inhibition of ethylene biosynthesis, and increased drought
resistance in seeds (reviewed by Pilon-Smits ez 4/, 2009). Toxicity
of Co excess is linked to oxidative stress, inhibition of photosyn-
thesis and iron deficiency (Palit ez al,, 1994; Morrissey et al., 2009).
Cobalt has been reported to disrupt iron homeostasis and compete

tolerance, or of the capacity to grow tolerance or of the capacity to grow

Experimental demonstration of Cu
under elevated concentration of Cu

03ugg 103 pgem3]
Uptolpugg ' [1mgl"]

Upto1pugg ' [15 uM]
Up to 1271 pg g~ ' [20 mM]
Upto1pugg ' [15 uM]
Upto127pgg ' 2 mM]
Upto0.5ugg ' [05mgl™"]

2700 ug g~ (total Cu)

Tugg™

with iron for access to transporters in many organisms including
plants (Barras & Fontecave, 2011). Cobalt can be transported into
root epidermal cells of A. thaliana by IRT1 (Korshunova et al,
1999). Once inside cells, ferroportins IRON REGULATED1
(IREG1/FPN1) and IREG2/FPN2 play a role in Co detoxification.
IREG2/FPN2 can transport Co”* inside vacuoles of root epidermal
and cortical cells, thereby sequestrating Co in the outer most layers
of roots. Mobile Co can be loaded into the xylem by FPN1 and
translocated to the shoot (Morrissey ez al., 2009). Additionally, itis
believed that HMA3, which is expressed mainly in roots, also
transports Co”" inside vacuoles in addition to other metallic ions
(Cd**, Zn®", Pb>") (Morel ez al., 2009).

Mechanisms of Co tolerance and accumulation are still poorly

Black Forest (Germany)
Ontario (Canada)
Ontario (Canada)

Parys Mountain, Anglesey (UK)
Guangdong (China)

California (USA)

Piesky (Slovakia)

Legnica (Poland)
Guangdong (China)
Coniston smelter population,

Origin

understood. Because some Co accumulators seem also to accumu-
late Cu (Faucon et al., 2007), some tolerance and/or accumulation
mechanisms are believed to be shared. Considering the targets of
Co toxicity, plants that (hyper)accumulate Co have most probably
evolved adjustments of Fe homeostatic mechanisms. Such adap-
tation has already been observed in Zn and Cd hyperaccumulators

Mimulus guttatus Fischer ex DC.
Agrostis capillaris L.

Agrostis gigantea Roth. (one clone)
Agrostis stolonifera L.
Calamagrostis epigejos (L.) Roth
Cynodon dactylon (L.) Pers.
Deschampsia cespitosa (L.) Beauv.
Paspalum distichum L.

showing modified regulation of genes involved in iron homeostasis
(Krdmer, 2010; Hanikenne & Nouet, 2011; Shanmugam ez 4l.,

Table 1 (Continued)

Phrymaceae
Poaceae

© 2016 The Authors New Phytologist (2017) 213: 537-551
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2011). Another critical aspect of Co (hyper)accumulation is
expected to be an efficient Co detoxification system to avoid the
accumulation of free ions that can induce oxidative stress. Cellular
Co tolerance of C. cobalticola was associated with an increase in
citric acid as well as in cysteine, without any further increase in
phytochelatin (Oven ez al., 2002).

Functional and evolutionary ecology of Cu and Co
accumulation

Trace element (hyper)accumulation as a functional trait

Functional traits are defined as ‘morpho-physio-phenological traits
which impact fitness indirectly via their effects on growth,
reproduction and survival’ (Violle ezal, 2007). Under that
definition, trace element concentrations in leaf tissues qualify as
functional traits. Hypotheses related to the ecological significance
of trace element accumulation should be reformulated in the
broader framework of functional plant ecology (Delhaye ezal.,
2016). Due to trade-offs between different traits, some trait
combinations are more likely to occur than others. The range of
possible traits has become known as the ‘Leaf Economics Spectrum’
(Wright et al., 2004). How (hyper)accumulation relates to the Leaf
Economics Spectrum is still an open question, but the concept is
being extended to elements other than carbon and nitrogen (Reich,
2014). Is (hyper)accumulation more likely to evolve in association
with traits favouring fast resource capture or with traits favouring
nutrient conservation? Trade-offs between the capacity to accu-
mulate trace elements and the uptake of major nutrients might
strongly constrain the evolution of trace element accumulation.
Recent findings confirm that trace element accumulation is
correlated to the capture/use of major nutrients (Lambers ez al.,
2015), thus supporting the so-called hypothesis of ‘inadvertent
uptake’ (Boyd & Martens, 1992). However, this hypothesis should
be confirmed contrary to the hypothesis that trace element (hyper)
accumulation may serve as a defence against herbivores and
pathogens (demonstrated for Ni, Zn and Cd hyperaccumulation)
(Boyd, 2013; Cappa & Pilon-Smits, 2014). Functional leaf and
root traits involved in nutrient acquisition and conservation should
be studied to understand Cu—Co accumulation.

Evolution of trace element accumulation

Does evolution of increased trace element accumulation
capacity involve changes in the niche parameters? Circumstan-
tial evidence suggests that trace element exclusion is more
frequently observed in broad-niched metallophytes compared
with narrow-niched (Faucon er al, 2012b; Delhaye eral,
2016). This observation is thought to be the consequence of the
cost of tolerance and/or (hyper)accumulation (Maestri etal.,
2010). Future work should test if evolutionary transitions to
(hyper)accumulation are linked to changes in competitive
ability and niche metrics. Another hypothesis posits that lower
occurrence of pathogenic fungi and herbivores in Cu-enriched
soils may conceivably relax selection pressure of defences in Cu-

tolerant populations (Chipeng ezal, 2010). Copper-tolerant
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populations would then be more susceptible to pathogenic
fungi compared with nontolerant populations.

Inter- and intraspecific variations of shoot/foliar Cu
and Co concentrations

Phylogeny of variations in Cu and Co accumulation

The absence of a suitable field test for Cu—Co in plant materials as
exists for Ni (in the form of dimethylglyoxime impregnated paper)
has so far limited the widespread screening for significant
accumulation of these elements. Furthermore, foliar Cu—Co
concentrations are not routinely measured in many ecological
studies around the world. Many of the records for abnormal Cu—
Co concentrations in plants, therefore, result from targeted testing
of plants from the Katangan Copperbelt, and for most part by
atomic absorption spectrometry (and hence not obtaining multi-
element data — but see Brooks ez al., 1986). As a result, systematic
analysis of the Cu—Co concentrations in plant species is limited.
Only recently has systematic multi-element mass-screening of
herbarium collections using nondestructive techniques (X-ray
fluorescence spectroscopy or XRF) commenced (van der Ent,
2016). Therefore, at present it is difficult to objectively observe
phylogenetic patterns of Cu and Co accumulation. Nevertheless, in
Central Africa, substantial Cu—Co accumulation is mostly
recorded in the Lamiaceae (Table2). On ultramafic soils,
accumulation of Co is a feature in a number of Ni hyperaccumu-
lators, especially in the Brassicaceae, Phyllanthaceae and Violaceae.

Genetic variability of Cu and Co accumulation

The substantial phenotypic variation of Cu—Co accumulation
recorded in Cu—Co metallophytes is expressed between species,
populations and individuals within a population (Faucon ezal,
2007). For Cu, these variations can be of genetic origin. Peng ez al.
(2012) demonstrated the foliar Cu variability for six distinct
metallicolous populations of Haumaniastrum katangense (Lami-
aceae). Six times as much Cu was obtained in nonmetallicolous
compared with metallicolous plants of Crepidorhopalon tenuis
(Linderniaceae) (c. 115 pg gfl) (Faucon et al., 2012a). For a given
concentration in the growth medium, Cu accumulation variation
could be related to variations in the degree of tolerance, with the less
Cu-accumulating populations the most tolerant (Ouzounidou
etal., 1994; Gonnelli ezal., 2001; Weng ez al., 2005).

In the case of Co, accumulation variation has been demonstrated
between three closely related Silene taxa (Baker ez al., 1983). The
most tolerant taxon was the lowest accumulating for a given soil Co
concentration. The intraspecific variation of Co accumulation by
metallophytes from natural Co-enriched soils has not yet been
tested. For the facultative metallophyte Anisopappus chinensis, the
strong variation in the degree of Co tolerance between populations
suggests intraspecific variation of accumulation (Lange, 2016). It
may be hypothesized that a lower accumulation variation within
metallicolous populations than within nonmetallicolous popula-
tions exists, as a result of a long-term directional selection in
metallicolous populations (Dechamps ez al., 2007).
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Cyperaceae

Duvigneaud &

Perennial

Obligate

KC (D. R. Congo)

In situ

na

1200

Ascolepis metallorum

Denaeyer-De Smet (1963)

P. A. Duvign. & G. Léonard

The plant species listed in this table have received a washing protocol (clearly mentioned in the publication). When available, the range of variation is given. Otherwise, values are single measurements, or

mean values with SD. na, data not available. Ex situ, measurement on plants growing under experimental conditions. KC, Katangan Copperbelt.
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Copper and Co chemical speciation in metalliferous soils and
accumulation by plants

The Cu—Co outcrops from Katanga have high total Cu—Co soil
concentrations (up to 27793 pgg ' and 3451 pgg ', respec-
tively; Pourret et al., 2016) from which a fraction is mobile (1145—
5225 ug g71 and 39-2146 pg gfl, respectively; Figs 2a, 3a). This
permits high Cu—Co accumulation by A. chinensis (Figs 2b, 3b; up
to 736 pugg ' foliar Cu and 2822 pg g7l foliar Co). Moreover,
variations in Cu accumulation (by C. tenuis and A. chinensis) were
mostly controlled by Cu adsorbed onto manganese (Mn) and iron
(Fe) oxides (Lange ez al., 2014). Mobility is higher in soils impacted
by mining. Overall, the strong affinity of Mn oxides for Co may
explain the lower Co mobility in Mn-rich soils (Collins & Kinsela,
2011). Cobalt accumulation (in C. tenuis and A. chinensis) was
strongly influenced by free (inorganic Co on Fig. 3) Co and by Co
adsorbed onto the OM and Fe oxide fractions (Lange ¢t al., 2014).

[ Jinorganic Cu[___] Cu-MnOx [l Cu-FeOx |l organic Cu

(a)
100 -
£ 80
(2]
(0]
ko)
a
2 60
>
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o 404
Ke]
£
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o
0-
F5 G2 Et Nig5 Nig7 Nig9 Gr So AM
Katanga (RDC) Goias (Brazil) Barberton
(South Africa)
b - -
(b) ] A. chinensis
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34-303
1000 4 45-504
> 100 ;
o Pfaffia sarcophylla
2
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O E
P ]
= 12 105-298
@ 3
<y ] .
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Fig.2 Copper (Cu) speciation in soils (modelled after the method used by
Pourretet al., 2015) and accumulation in metallophytes from various origins.
(a) Proportion of Cu chemical species in considered soils; (b) inorganic Cu
concentrations (mobile concentrations considered as available) in soils.
Accumulated concentrations in plants are added when available. F5,
Fungurume 5; G2, Goma 2; Et, Etoile; Nig, Niquelandia; Gr, Groenvaly; So,
Songimvelo; AM, Agnes Mine.
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Goias (Brazil)

(b)
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100 B. coddii
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Fig. 3 Cobalt (Co) speciation in soils (modelled after the method used by
Pourretet al., 2015) and accumulation in metallophytes from various origins.
(a) Proportion of Co chemical species in considered soils; (b) inorganic Co
concentrations in soils (mobile concentrations considered as available).
Accumulated concentrations in plants are added when available. F5,
Fungurume 5; G2, Goma 2; Et, Etoile; Niq, Niquelandia; Gr, Groenvaly; So,
Songimvelo; AM, Agnes Mine.

Copper and Co concentrations in soils from Goids (513—
2015 pugg ' and 4301230 ug g ', respectively) only have a small
mobile fraction (0.054.25 pg g~ 'and 7-134 pg g~ ', respectively;
Figs2a, 3a). The Ni-hyperaccumulator Pfaffia  sarcophylla
(Amaranthaceae) has high foliar Cu concentrations (105—
298 ug g~ ") on Niquelandia 7 soil but far lower concentrations
(826 g gfl) on Niquelandia 5 soil (van der Ent & Reeves, 2015;
Fig. 2b). Piriqueta sp. (Turneraceae) can accumulate up to
149 pg g~ foliar Co (van der Ent & Reeves, 2015; Fig. 3b).

Soils from Barberton have lower Cu—Co concentrations (50—
150 ugg ' and 95-272pgg !, respectively) with a very low
mobile fraction (0.01-1.86 ugg ™' and 2-13 pg g™ ', respectively;
Figs 2a, 3a). No Cu accumulation has been found. When soils are
waterlogged (i.e. as at Groenvaly; Fig. 3), Co is associated mainly
with amorphous Fe oxides. Soluble Co : Ni ratio becomes then

New Phytologist (2017) 213: 537-551
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higher (i.e. I : 5) than in typical ultramaficsoils (1 : 201 : 100) and
Berkheya coddii (Asteraceae) may thus accumulate > 600 pugg ™.
Cobalt is preferred over Ni by B. coddii when both are supplied at
isomolar ratios as for Alyssum-species (Brassicaceac) (Homer ez al.,
1991). Cobalt (hyper)accumulation in ultramafic soils is triggered
by the available Co : Ni ratio.

Influence of the rhizosphere biota on trace element uptake by
plants

Soil-plant—microbe interactions are widely investigated in the
study of soil-plant processes (Huang ez al., 2014; Dessaux ez al.,
2016). The soil microbial community has the capacity to mobilize/
immobilize trace elements, and thus, to affect the soil trace element
speciation (reviewed by Gadd, 2004) and availability (Cuypers
etal., 2013). However, the rhizosphere biota influence on Cu—Co
accumulation remains poorly understood. It should be emphasized
that natural soil properties are difficult to replicate synthetically and
directly influence accumulation patterns in plants. The most
appropriate method to study strategies of tolerance, therefore, is
using natural soils from the habitat of the species under investi-
gation (van der Ent ez al., 2015¢).

A diversity of metal-tolerant bacteria and fungi are naturally
present in metalliferous soils (including plant growth-promoting
bacteria, endophytic bacteria and arbuscular mycorrhizal fungi,
AMF), having in some cases a beneficial effect on plant establish-
ment, growth and trace element tolerance and accumulation
(Sessitsch et al., 2013; Lenoir etal, 2016; Ma etal., 2016).
However, the majority of studies have focused on Ni- and Zn-
accumulating plants. For Cu, Chen ez 4/. (2005) demonstrated that
Cu-tolerant bacteria strains from the rhizosphere of Elsholtzia
splendens (Lamiaceae) had a positive effect on both the Cu mobility
in soil and uptake by the plant. In the same species, the presence and
diversity of AMF had a positive effect on the uptake of Cu from a
Cu—contaminated soil (£ 15%) (Wang ez 4l., 2005, 2007).

Endophytic bacteria associated with H. katangenseand C. tenuis
(Katangan Copperbelt) have been characterized (Kabagale ez 4/,
2010). However, no studies have yet investigated the relationships
between Cu—Co accumulation by these plants and their rhizo-
sphere biota diversity/activity. Hypothetical influence of rhizo-
sphere biotic processes on Cu—Co speciation, availability and
uptake is displayed in Fig. 4. Further studies should be performed,
especially 77 situ characterization of the rhizosphere microbial
community from a Cu—Co metallophyte in relationship to Cu—Co
uptake and accumulation.

Phytomining technology using Cu-Co (hyper)
accumulator plants

Phytomining involves extracting target elements from the soil by
accumulation in the plant biomass, which is then harvested and
processed for recovery of the target elements from the ashed ‘bio-
ore’ (Chaney eral., 1998; van der Ent ez al., 2015a). The feasibility
of phytomining has been demonstrated at field scale (Brooks &
Robinson, 1998; Angle ez al., 2001; Chaney ez al., 2007; Bani et al.,
2015; van der Ent ez al., 2015a), but is limited principally to Ni.

© 2016 The Authors
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Absorption

Fig. 4 Hypothetical rhizosphere processes
influencing copper (Cu) and cobalt (Co)
availability and uptake by metallophytes
originating from naturally Cu- and Co-
enriched soils. LOA, low molecular weight
organic acids. The proportions of the different
Cuand Co fractionsin the soil are related to the
font size (Lange etal., 2014; Pourret et al.,
2015).

Copper extraction yield was tested experimentally using
A. chinensis from southeastern D. R. Congo, and some individuals
could accumulate up to 6.8 mg Cu per plant — that is, a yield of
lkgCuha'yr™' (Clavé eral, 2016). The amount of Cu
phytoextracted would be of the same magnitude as other species
such as E. splendens (Yang et al., 2005). Given the relatively low
economic value of Cu, combined with very limited achievable
yields, it is unlikely that Cu phytomining will ever be commercially
viable.

Cobalt phytomining was first proposed in the early 1990s as
a possibility using Ni-hyperaccumulator species on ultramafic
soils (Homer etal, 1991), but it was noted that Ni limits the
uptake of Co in most Ni-hyperaccumulator plants (Malik ez 4/,
2000). Alyssum species can grow with shoot concentrations
> 1000 },ng71 in Co-contaminated soils (Malik ezal, 2000)
and B. coddii can have foliar Co concentrations of
>2000 ugg ' (Keeling eral, 2003). In the Copperbelt flora,
Haumaniastrum robertii, can achieve leaf concentrations of
>4000 ugg ' (Morrison eral, 1981), and might be a good
candidate for Co phytomining. B. coddii could also be a
candidate in Co-enriched tailings due to its high biomass and

© 2016 The Authors
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foliar Co (up to 5000 ugg ;s unpublished results). Cobalt
phytomining may, therefore, be considered for Co-
contaminated lands because of the possible attainable yields
and the high metal product value (LME was USD $25 000 per
tonne in August 2016).

Conclusions and outlook

Accumulation of Cu and/or Co in plant leaves is exceptionally rare
globally and known principally from the Cu—Co outcrops of the
Copperbelt of Central Africa. None of the putative Cu or Co
hyperaccumulator plants appears to comply with the fundamental
principle of hyperaccumulation that uptake and accumulation
characteristics are not dose-dependent. In the case of plants
growing on ultramafic soils, we postulate that Co accumulation
coincides with Ni accumulation operating on similar physiological
pathways. True Cu hyperaccumulation does not appear to exist
because Cu-tolerant plants are essentially Excluders sensu Baker and
there is no physiological mechanism of Cu hyperaccumulation
known in these species. The occasional observations of high foliar
Cu concentrations can be explained by stress and the breakdown of
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tolerance mechanisms reducing Cu storage capacity in the roots,
leading to a release of Cu in the plant shoot, which highly Cu-
tolerant genotypes can survive up to a certain concentration.

The ecophysiology of Co tolerance and accumulation is still
poorly understood compared with the state of knowledge on Cu
regulation in plants, and investigations of the interactions with
simultaneous tolerance/accumulation of Co and Cu makes a
strong science case. Application of next-generation sequencing
technologies to study nonmodel organisms such as Cu- and Co-
tolerant and Co-accumulating plants is expected to uncover
novel adaptation mechanisms (Verbruggen ezal, 2013). The
ecological significance of Cu—Co accumulation should be
investigated in relation to the ‘Leaf Economics Spectrum’, and
in relation to the adaptive significance of Cu—Co accumulation.
Adaptations to local soil conditions, by characterizing the soil
microbial communities and comparing the response of Cu—Co-
tolerant vs nontolerant populations to the pathogen pressure,
should also be investigated.

The potential of Co accumulator plants in future phytomining
applications is limited because their accumulation characteristics
mean that only ‘ore-grade soils’ may yield sufficient accumulation
in the shoots to develop this technology. Cobalt phytomining may
be considered, however, for strongly Co-contaminated soils and
tailings, because of the high metal value of this element.
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