A Unified Mathematical Formalism for First to Third Order Dielectric Response of Matter: Application to Surface-Specific Two-Colour Vibrational Optical Spectroscopy
Noblet, Thomas ; Université de Liège - ULiège > Département de physique > Biophotonique
Language :
English
Title :
A Unified Mathematical Formalism for First to Third Order Dielectric Response of Matter: Application to Surface-Specific Two-Colour Vibrational Optical Spectroscopy
Publication date :
January 2021
Journal title :
Symmetry
eISSN :
2073-8994
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Switzerland
Hache, F. Optique Non Linéaire; EDP Sciences: Les Ulis, France, 2016.
He, G.S. Nonlinear Optics and Photonics; Oxford University Press: Oxford, UK, 2015.
Haug, H.; Koch, S. Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th ed.; World Scientific: Singapore, 2009.
Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: Hoboken, NJ, USA, 1983.
Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [CrossRef]
Dalstein, L.; Haddada, M.B.; Barbillon, G.; Humbert, C.; Tadjeddine, A.; Boujday, S.; Busson, B. Revealing the Interplay between Adsorbed Molecular Layers and Gold Nanoparticles by Linear and Nonlinear Optical Properties. J. Phys. Chem. C 2015, 119, 17146–17155. [CrossRef]
Hottechamps, J.; Noblet, T.; Brans, A.; Humbert, C.; Dreesen, L. How quantum dots aggregation enhances Förster Resonant Energy Transfer. ChemPhysChem 2020, 21, 853–862. [CrossRef] [PubMed]
Bloembergen, N. Nonlinear Optics, 4th ed.; World Scientific: Singapore, 1965.
Dalstein, L.; Humbert, C.; Haddada, M.B.; Boujday, S.; Barbillon, G.; Busson, B. The Prevailing Role of Hotspots in Plasmon-Enhanced Sum-Frequency Generation Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 7706–7711. [CrossRef]
Zhuang, X.; Miranda, P.B.; Kim, D.; Shen, Y.R. Mapping molecular orientation and conformation interfaces by surface nonlinear optics. Phys. Rev. B 1999, 59, 12632–12640. [CrossRef]
Vidal, F.; Busson, B.; Tadjeddine, A. Probing electronic and vibrational properties at the electrochemical interface using SFG spectroscopy: Methanol electro-oxidation on Pt(110). Chem. Phys. Lett. 2005, 403, 324–328. [CrossRef]
Joutsuka, T.; Hirano, T.; Sprikb, M.; Morita, A. Effects of third-order susceptibility in sum frequency generation spectra: A molecular dynamics study in liquid water. Phys. Chem. Chem. Phys. 2018, 20, 3040. [CrossRef] [PubMed]
Hunt, J.; Guyot-Sionnest, P.; Shen, Y. Observation of C-H stretch vibrations of monolayers of molecules optical sum-frequency generation. Chem. Phys. Lett. 1987, 133, 189–192. [CrossRef]
Guyot-Sionnest, P.; Hunt, J.; Shen, Y. Sum-frequency vibrational spectroscopy of a Langmuir film: Study of molecular orientation of a two-dimensional system. Phys. Rev. Lett. 1987, 59, 1597–1600. [CrossRef] [PubMed]
Zhu, X.; Suhr, H.; Shen, Y. Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys. Rev. B 1987, 35, 3047–3050. [CrossRef] [PubMed]
Nicolau, B.G.; Garcia-Rey, N.; Dryzhakov, B.; Dlott, D.D. Interfacial Processes of a Model Lithium Ion Battery Anode Observed, in Situ, with Vibrational Sum-Frequency Generation Spectroscopy. J. Phys. Chem. C 2015, 119, 10227–10233. [CrossRef]
Yang, S.; Noguchi, H.; Uosaki, K. Electronic Structure of the CO/Pt(111) Electrode Interface Probed by Potential-Dependent IR/Visible Double Resonance Sum Frequency Generation Spectroscopy. J. Phys. Chem. C 2015, 119, 26056–26063. [CrossRef]
Braunschweig, B.; Mukherjee, P.; Haan, J.L.; Dlott, D.D. Vibrational sum-frequency generation study of the CO2 electrochemical reduction at Pt/EMIM-BF4 solid/liquid interfaces. J. Electroanal. Chem. 2017, 800, 144–150. [CrossRef]
Garcia-Rey, N.; Dlott, D.D. Studies of electrochemical interfaces by broadband sum frequency generation. J. Electroanal. Chem. 2017, 800, 114–125.
Feng, R.; Liu, A.; Liu, S.; Shi, J.; Zhang, R.; Ren, Z. In Situ Studies on the Dissociation and Photocatalytic Reactions of CH3OH on TiO2 Thin Film by Sum Frequency Generation Vibrational Spectroscopy. J. Phys. Chem. C 2015, 119, 9798–9804. [CrossRef]
Vanselous, H.; Stingel, A.M.; Petersen, P.B. Interferometric 2D Sum Frequency Generation Spectroscopy Reveals Structural Heterogeneity of Catalytic Monolayers on Transparent Materials. J. Phys. Chem. Lett. 2017, 8, 825–830. [CrossRef] [PubMed]
Ouvrard, A.; Wang, J.; Ghalgaoui, A.; Nave, S.; Carrez, S.; Zheng, W.; Dubost, H.; Bourguignon, B. CO Adsorption on Pd(100) Revisited by Sum Frequency Generation: Evidence for Two Adsorption Sites in the Compression Stage. J. Phys. Chem. C 2014, 118, 19688–19700. [CrossRef]
Morita, A.; Hynes, J.T. A Theoretical Analysis of the Sum Frequency Generation Spectrum of the Water Surface. II. Time-Dependent Approach. J. Phys. Chem. B 2002, 106, 673–685. [CrossRef]
Medders, G.R.; Paesani, F. Dissecting the Molecular Structure of the Air/Water Interface from Quantum Simulations of the Sum-Frequency Generation Spectrum. J. Am. Chem. Soc. 2016, 138, 3912–3919. [CrossRef] [PubMed]
Chiang, K.Y.; Dalstein, L.; Wen, Y.C. Affinity of Hydrated Protons at Intrinsic Water/Vapor Interface Revealed by Ion-Induced Water Alignment. J. Phys. Chem. Lett. 2020, 11, 679–701. [CrossRef] [PubMed]
Khatib, R.; Backus, E.H.G.; Bonn, M.; Perez-Haro, M.J.; Gaigeot, M.P.; Sulpizi, M. Water orientation and hydrogen-bond structure at the fluorite/water interface. Sci. Rep. 2016, 6, 24287. [CrossRef] [PubMed]
Urashima, S.; Myalitsin, A.; Nihonyanagi, S.; Tahara, T. The Topmost Water Structure at a Charged Silica/Aqueous Interface Revealed by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. J. Phys. Chem. Lett. 2018, 9, 4109–4114. [CrossRef]
Tuladhar, A.; Piontek, S.M.; Borguet, E. Insights on Interfacial Structure, Dynamics, and Proton Transfer from Ultrafast Vibrational Sum Frequency Generation Spectroscopy of the Alumina(0001)/Water Interface. J. Phys. Chem. C 2017, 121, 5168–5177. [CrossRef]
Kusaka, R.; Ishiyama, T.; Nihonyanagi, S.; Morita, A.; Tahara, T. Structure at the air/water interface in the presence of phenol: A study using heterodyne-detected vibrational sum frequency generation and molecular dynamics simulation. Phys. Chem. Chem. Phys. 2018, 20, 3002. [CrossRef]
Nguyen, K.T.; Nguyen, A.V.; Evans, G.M. Interfacial Water Structure at Surfactant Concentrations below and above the Critical Micelle Concentration as Revealed by Sum Frequency Generation Vibrational Spectroscopy. J. Phys. Chem. C 2015, 119, 15477–15481. [CrossRef]
Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Ultrafast Dynamics at Water Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy. Chem. Rev. 2017, 117, 10665–10693. [CrossRef] [PubMed]
Toledo-Fuentes, X.; Lis, D.; Cecchet, F. Structural Changes to Lipid Bilayers and Their Surrounding Water upon Interaction with Functionalized Gold Nanoparticles. J. Phys. Chem. C 2016, 120, 21399–21409. [CrossRef]
Saha, A.; SenGupta, S.; Kumar, A.; Naik, P.D. Interaction of L-Phenylalanine with Lipid Monolayers at Air-Water Interface at Different pHs: Sum-Frequency Generation Spectroscopy and Surface Pressure Studies. J. Phys. Chem. C 2018, 122, 3875–3884. [CrossRef]
Zhang, J.; Yang, W.; Tanab, J.; Ye, S. In situ examination of a charged amino acid-induced structural change in lipid bilayers by sum frequency generation vibrational spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 5657. [CrossRef] [PubMed]
Hosseinpour, S.; Roeters, S.; Bonn, M.; Peukert, W.; Woutersen, S.; Weidner, T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem. Rev. 2020, 120, 3420–3465. [CrossRef]
Laaser, J.E.; Skoff, D.R.; Ho, J.J.; Joo, Y.; Serrano, A.L.; Steinkruger, J.D.; Gopalan, P.; Gellman, S.H.; Zanni, M.T. Two-Dimensional Sum-Frequency Generation Reveals Structure and Dynamics of a Surface-Bound Peptide. J. Am. Chem. Soc. 2014, 136, 956–962. [CrossRef]
Yan, E.C.Y.; Fu, L.; Wang, Z.; Liu, W. Biological Macromolecules at Interfaces Probed by Chiral Vibrational Sum Frequency Generation Spectroscopy. Chem. Rev. 2014, 114, 8471–8498. [CrossRef]
Schmüser, L.; Roeters, S.; Lutz, H.; Woutersen, S.; Bonn, M.; Weidner, T. Determination of Absolute Orientation of Protein α-Helices at Interfaces Using Phase-Resolved Sum Frequency Generation Spectroscopy. J. Phys. Chem. Lett. 2017, 8, 3101–3105. [CrossRef]
Xiao, M.; Wei, S.; Li, Y.; Jasensky, J.; Chen, J.; Brooks, C.L.; Chen, Z. Molecular interactions between single layered MoS2 and biological molecules. Chem. Sci. 2018, 9, 1769. [CrossRef]
Raab, M.; Becca, J.C.; Heo, J.; Lim, C.K.; Baev, A.; Jensen, L.; Prasad, P.N.; Velarde, L. Doubly resonant sum frequency spectroscopy of mixed photochromic isomers on surfaces reveals conformation-specific vibronic effects. J. Chem. Phys. 2019, 150, 114704. [CrossRef]
Peremans, A.; Caudano, Y.; Thiry, P.A.; Dumas, P.; Zhang, W.Q.; Rille, A.L.; Tadjeddine, A. Electronic Tuning of Dynamical Charge Transfer at an Interface: K Doping of C60/Ag(111). Phys. Rev. Lett. 1997, 78, 2999–3002. [CrossRef]
Caudano, Y.; Silien, C.; Humbert, C.; Dreesen, L.; Mani, A.A.; Peremans, A.; Thiry, P.A. Electron-phonon couplings at C60 interfaces: a case study by two-color, infrared-visible sum-frequency generation spectroscopy. J. Electron Spectroscop. Relat. Phenom. 2003, 129, 139–147. [CrossRef]
Elsenbeck, D.; Das, S.K.; Velarde, L. Substrate influence on the interlayer electron-phonon couplings in fullerene films probed with doubly-resonant SFG spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 18519. [CrossRef] [PubMed]
Chou, K.C.; Westerberg, S.; Shen, Y.R.; Ross, P.N.; Somorjai, G.A. Probing the charge-transfer state of CO on Pt(111) by two-dimensional infrared-visible sum frequency generation spectroscopy. Phys. Rev. B 2004, 69, 153413. [CrossRef]
Bozzini, B.; D’Urzo, L.; Mele, C.; Busson, B.; Humbert, C.; Tadjeddine, A. Doubly Resonant Sum Frequency Generation Spectroscopy of Adsorbates at an Electrochemical Interface. J. Phys. Chem. C 2008, 112, 11791–11795. [CrossRef]
Dreesen, L.; Humbert, C.; Celebi, M.; Lemaire, J.J.; Mani, A.A.; Thiry, P.A.; Peremans, A. Influence of the metal electronic properties on the sum-frequency generation spectra of dodecanethiol self-assembled monolayers on Pt(111), Ag(111) and Au(111) single crystals. Appl. Phys. B 2002, 74, 621–625. [CrossRef]
Lis, D.; Caudano, Y.; Henry, M.; Demoustier-Champagne, S.; Ferain, E.; Cecchet, F. Selective Plasmonic Platforms Based on Nanopillars to Enhance Vibrational Sum-Frequency Generation Spectroscopy. Adv. Opt. Mater. 2013, 1, 244–255. [CrossRef]
Hayashi, M.; Lin, S.H.; Raschke, M.B.; Shen, Y.R. A Molecular Theory for Doubly Resonant IR-UV-vis Sum-Frequency Generation. J. Phys. Chem. A 2002, 106, 2271–2282. [CrossRef]
Wilson, E.B.; Decius, J.C.; Cross, P.C. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra; Dover Publications: New York, NY, USA, 1955.
Mahan, G.D. Many-Particle Physics, 2nd ed.; Plenum Press: New York, NY, USA, 1990.
Albrecht, A.C. On the Theory of Raman Intensities. J. Chem. Phys. 1961, 34, 1476. [CrossRef]
Chen, F.; Gozdzialski, L.; Hung, K.K.; Stege, U.; Hore, D.K. Assessing the Molecular Specificity and Orientation Sensitivity of Infrared, Raman, and Vibrational Sum-Frequency Spectra. Symmetry 2021, 13, 42. [CrossRef]
Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press: Cambridge, MA, USA, 1991.
Porezag, D.; Pederson, M.R. Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 1996, 54, 7830–7836. [CrossRef] [PubMed]
Hung, K.K.; Stege, U.; Hore, D.K. IR Absorption, Raman Scattering, and IR-Vis Sum-Frequency Generation Spectroscopy as Quantitative Probes of Surface Structure. Appl. Spec. Rev. 2015, 50, 351–376. [CrossRef]
Veilly, E.; Roques, J.; Jodin-Caumon, M.C.; Humbert, B.; Drot, R.; Simoni, E. Uranyl interaction with the hydrated (001) basal face of gibbsite: A combined theoretical and spectroscopic study. J. Chem. Phys. 2008, 129, 244704. [CrossRef] [PubMed]
Kakkar, R. Atomic and Molecular Spectroscopy: Basic Concepts and Applications; Cambridge University Press: Cambridge, UK, 2015.
Huang, J.H.; Shen, Y.R. Theory of doubly resonant infrared-visible sum-frequency and difference-frequency generation from adsorbed molecules. Phys. Rev. A 1994, 49, 3973–3981. [CrossRef]
Humbert, C.; Noblet, T.; Dalstein, L.; Busson, B.; Barbillon, G. Sum-Frequency Generation Spectroscopy of Plasmonic Nanomate-rials: A Review. Materials 2019, 12, 836. [CrossRef] [PubMed]
Humbert, C.; Dahi, A.; Dalstein, L.; Busson, B.; Lismont, M.; Colson, P.; Dreesen, L. Linear and nonlinear optical properties of functionalized CdSe quantum dots prepared by plasma sputtering and wet chemistry. J. Colloid Interface Sci. 2015, 445, 69–75. [CrossRef] [PubMed]
Dreesen, L.; Humbert, C.; Sartenaer, Y.; Caudano, Y.; Volcke, C.; Mani, A.A.; Peremans, A.; Thiry, P.A.; Hanique, S.; Frère, J.M. Electronic and Molecular Properties of an Adsorbed Protein Monolayer Probed by Two-Color Sum-Frequency Generation Spectroscopy. Langmuir 2004, 20, 7201–7207. [CrossRef] [PubMed]
Yang, W.C.; Hore, D.K. Determining the Orientation of Chemical Functional Groups on Metal Surfaces by a Combination of Homodyne and Heterodyne Nonlinear Vibrational Spectroscopy. J. Phys. Chem. C 2017, 121, 28043–28050. [CrossRef]
Busson, B. Doubly resonant SFG and DFG Spectroscopies: An analytic model for data analysis including distorted and rotated vibronic levels. I. Theory. J. Chem. Phys. 2020, 153, 174701. [CrossRef] [PubMed]
Busson, B. Doubly resonant SFG and DFG Spectroscopies: An analytic model for data analysis including distorted and rotated vibronic levels. II. Applications. J. Chem. Phys. 2020, 153, 174702. [CrossRef] [PubMed]
Ishibashi, T.A.; Okuno, M. Chapter 9—Heterodyne-detected chiral vibrational sum frequency generation spectroscopy of bulk and interfacial samples. In Molecular and Laser Spectroscopy; Gupta, V., Ozaki, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 315–348.
Nafie, L. Vibrational optical activity: From discovery and development to future challenges. Chirality 2020, 32, 667–692. [CrossRef] [PubMed]
Fujisawa, T.; Unno, M. Chapter 2—Vibrational optical activity spectroscopy. In Molecular and Laser Spectroscopy; Gupta, V., Ozaki, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 41–82.
Lee, C.M.; Kafle, K.; Huang, S.; Kim, S.H. Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope. J. Phys. Chem. B 2016, 120, 102–116. [CrossRef] [PubMed]
Allgeyer, E.S.; Sterling, S.M.; Gunewardene, M.S.; Hess, S.T.; Neivandt, D.J.; Mason, M.D. Combining Total Internal Reflection Sum Frequency Spectroscopy Spectral Imaging and Confocal Fluorescence Microscopy. Langmuir 2015, 31, 987–994. [CrossRef] [PubMed]
Fang, M.; Santos, G.; Chen, X.; Baldelli, S. Roles of oxygen for methanol adsorption on polycrystalline copper surface revealed by sum frequency generation imaging microscopy. Surf. Sci. 2016, 648, 35–41. [CrossRef]
Wang, H.; Gao, T.; Xiong, W. Self-Phase-Stabilized Heterodyne Vibrational Sum Frequency Generation Microscopy. ACS Photonics 2017, 4, 1839–1845. [CrossRef]