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Abstract: To take advantage of the singular properties of matter, as well as to characterize it, we need
to interact with it. The role of optical spectroscopies is to enable us to demonstrate the existence
of physical objects by observing their response to light excitation. The ability of spectroscopy to
reveal the structure and properties of matter then relies on mathematical functions called optical
(or dielectric) response functions. Technically, these are tensor Green’s functions, and not scalar
functions. The complexity of this tensor formalism sometimes leads to confusion within some articles
and books. Here, we do clarify this formalism by introducing the physical foundations of linear and
non-linear spectroscopies as simple and rigorous as possible. We dwell on both the mathematical
and experimental aspects, examining extinction, infrared, Raman and sum-frequency generation
spectroscopies. In this review, we thus give a personal presentation with the aim of offering the
reader a coherent vision of linear and non-linear optics, and to remove the ambiguities that we have
encountered in reference books and articles.

Keywords: non-linear optics; centrosymmetry; spectroscopy; selection rules; infrared; Raman; sum-
frequency generation; interfaces; molecules; nanoparticles

1. Introduction

Within the field of chemical physics, optical spectroscopies are mainly used to char-
acterize the structural and chemical composition of materials. Among the most common
techniques, we count UV–visible and infrared extinction spectroscopies, fluorescence emis-
sion, Raman scattering and sum-frequency generation (SFG). On a theoretical point of view,
they all arise from electromagnetism and quantum mechanics, which enable to implement
light–matter interactions. As characterized by its dipole moments, a material is able to
couple with light at different orders. Extinction spectroscopies are first order phenomena,
while SFG is a second order process, and fluorescence emission and Raman scattering are
third order processes. The former fall within the scope of linear optics, whereas the latter
constitute the core of non-linear optics. Mathematically, an optical process is qualified
as an nth-order process when the material is described by a dipole moment density P,
so-called polarization, whose amplitude depends on the nth power of the light electric
field amplitude: |P| ∼ |E|n. The proportionality coefficient is then characteristic of the
inner properties of the material: crystal structure, molecular vibrations, electronic density,
chemical composition, internal symmetries and so on. This response factor is denoted
χ(n). It must be handled with care: the relation between the polarization P of the material
and the electric field E of the light is not as simple as P = χ(n)En: first, the nth power
of E is not necessarily a vector (e.g., E2 is a number), while P is a vector; second, each
component Pi of P may depend on all the components Ex, Ey and Ez of the electric field,
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so that the response factor is actually a tensor [1]; and third, the frequencies of P and of
the different spectral contributions to E must be explicitly written. In order to properly
describe optical spectroscopies, the response functions χ(n) must be well defined on a
mathematical point of view: dimension of the tensor, number of frequency arguments,
relation with the polarization and the electric field. Given that it is not the case in many
articles, we dwell on that point through this review.

To begin, we must distinguish the response functions, which are temporal functions,
from the associated susceptibilities, which are spectral functions. The first ones describe
how the polarization of the material evolves along time with respect to the time profile of the
light excitation, whereas the second ones give the spectral distribution of all the frequencies
which compose the dipolar response of the material. Since then, we often encounter two
important ambiguities. First, some authors use complex exponential functions to express
the physical quantities instead of Fourier transforms. They assume in this way that the
signals are monochromatic and hide all the effects which are related to polychromaticity.
For instance, strictly speaking, SFG does not combine a visible and an IR beam, both
characterized by their own electric field, but all the couples of frequencies available within
the Fourier spectrum of the total electric field. This difference of point of view is schemed in
Figure 1. Second, while nth-order dielectric response functions χ(n)(t1, · · · , tn) are always
defined as functions of n time variables, the associated susceptibilities are incoherently
written as functions of (n + 1) frequency variables: χ(n)(ωn+1; ω1, · · · , ωn). This confusion
derives actually from the previous one, when authors illegitimately assume the fields are
monochromatic. Such (n + 1)-argument functions indeed exist mathematically and make
sense, but they cannot be assigned to n-argument optical susceptibilities. Section 3.1 of
this paper sheds light on these two difficulties. Furthermore, it is not unusual to read
misleading interpretations of non-linear processes. For instance, sum-frequency generation
is commonly described as a combination of infrared and Raman spectroscopies, but we
show that it is not correct (Section 4.5). Another example relates to Raman scattering,
which is sometimes considered as a first order phenomenon because the light power of the
Raman signal linearly depends on the input light power. There is a difference between the
behaviour of the polarization P of a material and that of the emitted/scattered light power
〈|P|2〉. As explained in Section 4.4, this comes from quantum mechanics.

ω1

ω2
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ω
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SHG DFG

input

output
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SFG SHG

ω1 + ω2
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(b)(a)

Figure 1. Mono- and polychromatic picture of second order response functions. (a) Common
description of sum-frequency generation (SFG) from a monochromatic point of view, considered to
derive from a 3-argument function. (b) Description of second order processes (SFG, DFG, SHG) from
a polychromatic point of view, considered to derive from the 2-argument second order susceptibility
χ(2)(ω1, ω2) combining any input frequencies ω1 and ω2.

In other words, optical spectroscopies are based on a mathematical formalism which
exhibit numerous subtleties. From an experimental point of view, they are extensively used
in analytical and physical chemistry to study molecular systems. It is then important to
clarify the formalism and to make it accessible to all experimentalists. Hence, this review
first recalls the foundations of linear response theory, leading to refraction, absorption,
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scattering and extinctions processes. Second, we formally introduce the response functions
and dielectric susceptibilities as defined to account for second- and third-order processes.
We especially dwell on the case of two-dimension SFG spectroscopy, as it is a powerful
tool to combine visible (i.e., electronic) and infrared (i.e., vibrational) spectroscopies. Third,
we show how it is concretely applied to vibrational spectroscopies. Taking the example
of hybrid organic/inorganic systems made of nanostructured interfaces grafted by func-
tional molecules, we evidence the power of two-dimension non-linear spectroscopies for
examining vibroelectronic couplings between nanostructures and organic molecules.

2. Linear Response Theory

Most of the experimental studies which aim to probe the physicochemical properties
of matter are well described by the theory of linear response. This is indeed the case when
samples are probed by low power light excitations. Under the dipolar approximations,
atoms, molecules, nanoparticles and solid-state materials are characterized by their electric
dipole moments. We recall in this section its definition and develop the consequences on
the optical refraction, absorption and extinction processes.

2.1. Polarization of Matter and Optical Response Function

Within neutral matter, the electric polarity of microscopic components is first charac-
terized by their dipole moments µ. For atoms, as for molecules, which have an electronic
cloud of charge −q, we commonly define µ =̂ qd, where d denotes the vector connecting
the barycentre of the negative charges (of the electronic cloud) to the barycentre of the
positive charges (of the nucleus). In this context, reducing the behaviour of matter to that
of the dipole moment alone is an approximation. When this is necessary (which will not be
our case), we may have to consider quadrupole and octupole moments. It is then possible
to define for any macroscopic material system the local polarization P as the volume density
of dipole moments:

P =̂ ∑
i

µi
V

= N〈µ〉. (1)

The sum over the integers i describes the set of microscopic components of dipole
moment µi involved in the system. We note V the volume of the total system, N the density
of atoms or molecules (considered as uniform) and 〈µ〉 the mean dipole moment calculated
over the entire system.

At equilibrium and in the absence of an external electric field, the microscopic compo-
nents may, (i), not be polarized (∀i, µi = 0) or else, (ii), have a permanent dipole moment
(∀i, µi 6= 0). In the first case, the polarization at equilibrium is clearly zero: P = 0. In the
second one, it may turn out to be non-zero. However, we often observe an average dipole
moment reduced to zero, due to the isotropic orientation distribution of these moments:
〈µ〉 = 0.

As a matter of fact, materials can most frequently be polarized only thanks to the
presence of an external electric field E(t). As far as we are concerned, we will consider this
field to be uniform across the system. For instance, in the case of metallic or semiconductor
nanoparticles, this approximation remains quite reasonable. Their radius R is indeed
much smaller than the wavelength of the light (visible and infrared) which probes them:
λ & 400 nm� R ∼ 10 nm. We therefore define the first order optical response function
t 7→ χ(1)(t) as the 2nd rank tensor (i.e., 2D matrix) which links the induced polarization
P(t) to the excitation E(t′) [2–5]:

P(t) =̂ ε0 χ(1) ∗ E(t) = ε0

∫
R

dt′ χ(1)(t− t′) E(t′). (2)

In other words, ∀i ∈ {x, y, z}:

Pi(t) = ε0 ∑
j=x,y,z

∫
R

dt′ χ
(1)
ij (t− t′)Ej(t′). (3)
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This phenomenological relation reflects the fact that the polarization of the system
at time t depends on the excitation at any previous time t′. Moreover, if the material is
anisotropic, each component Pi of the polarization can depend on the three components
{Ej}j=x,y,z of the electric field. The response function is actually a tensor which consists of

a 3× 3 matrix of response functions χ
(1)
ij (t). In Fourier space, the convolution product of

Equation (2) can be simply written as a matrix product:

P(ω) = ε0 χ(1)(ω) E(ω), (4)

where the Fourier transforms are here defined for any function f by:

f (ω) =̂
∫
R

f (t) eiωt dt and f (t) =̂
∫
R

f (ω) e−iωt dω

2π
. (5)

The functions χ
(1)
ij (ω), so called first order dielectric susceptibilities, are the Fourier

transforms of the response functions χij(t). In the case of an isotropic material, χ(1) = χ(1)1:

P(ω) = ε0 χ(1)(ω) E(ω). (6)

A single scalar susceptibility is thus enough to describe the optical response of the
system. Generally speaking, polarization can be considered as a secondary source of
electric field. As oscillating dipoles, the microscopic components of moments µ = P(ω)/N
emit their own field, in-phase or out-of-phase with respect to the incident source field,
and thereby affect the propagation of the latter. Hence, the response functions govern
the propagation of electromagnetic waves in materials and are naturally involved in the
description of refraction and absorption phenomena.

2.2. Refraction and Absorption

The propagation of light waves in dielectric materials is commonly described by the
D’Alembert Equation [6]:

∇2E(r, ω) +
ω2

c2 ε(ω)E(r, ω) = 0, (7)

here given in Fourier space. It involves the dielectric permittivity of the material:

ε(ω) =̂ 1 + χ(1)(ω). (8)

Considering the case of a wave propagating in an isotropic medium along the x
direction, we show that [6]:

E(r, ω) = E0(ω) eiq(ω)x with q2(ω) =̂
ω2

c2 ε(ω). (9)

The complex quantity q(ω) = q′(ω) + iq′′(ω) gives rise to a propagation factor eiq′(ω)x

and a damping factor e−q′′(ω)x. Actually, q′(ω) can be seen as the wave vector of light
within the medium, which defines the refractive index of the material:

q′(ω) =̂
ω

c
n(ω), with n(ω) = Re

(√
ε(ω)

)
= Re

(√
1 + χ(1)(ω)

)
, (10)

while q′′(ω) characterizes the ability of the material to absorb light:

q′′(ω) =
ω χ′′(ω)

2c n(ω)
. (11)
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The imaginary part of the linear susceptibility χ(1) = χ′ + iχ′′ is indeed involved in
the absorbance of materials. As light intensity is given by I = 〈|E|2〉, Equation (9) leads to
the Beer–Lambert law for single-photon absorption:

I(x, ω) = I(0, ω) e−2q′′(ω)x =⇒ A(ω) =̂− log
I(x, ω)

I(0, ω)
=

x
c ln 10

ωχ′′(ω)

n(ω)
, (12)

relating in this way the absorbance A(ω) of the system (along an optical path of length
x) to the dielectric susceptibility. This relationship will be used in particular to extract
the analytical expression of the susceptibility of materials from their absorption spectrum
obtained by UV–visible spectrophotometry.

As a matter of fact, if the imaginary part χ′′(ω) of the susceptibility governs the
phenomenon of absorption, its real part χ′(ω) governs the phenomena of refraction and
dispersion, that is to say all the phenomena of propagation without phase shift:

χ′(ω) ∈ R =⇒ arg
(

ε0χ′(ω)Ei(ω)
)
= arg

(
Ei(ω)

)
, (13)

while the imaginary part introduces a π
2 phase shift:

iχ′′(ω) ∈ iR =⇒ arg
(

ε0iχ′′(ω)Ei(ω)
)
= arg

(
Ei(ω)

)
+

π

2
, (14)

for any component Ei of the electric field. Figure 2 shows the effect of this phase shift on the
field transmitted by a dielectric material. This field results from the superposition of two
contributions: the field Er(ω) ∝ Pr(ω) =̂ ε0χ′(ω)E(ω), resulting from optical refraction,
and the field Ea(ω) ∝ Pa(ω) =̂ ε0iχ′′(ω)E(ω), resulting from absorption. Taking into
account the π

2 phase shift which exists between the field E and the polarization Pa, the field
Ea is phase-shifted of π (= 2× π

2 ) compared to the field Er:

E +0−→ Pr
+0−→ Er, E +π/2−→ Pa

+π/2−→ Ea. (15)

E(ω) Er(ω)

Ea(ω)

Et(ω)

χ(1)(ω) = χ′￼(ω) + iχ′￼′￼(ω)

input field
transmitted field

x

e−q′￼′￼(ω)xdamped by a factor

dielectric medium

Figure 2. Wave propagation in a dielectric medium. Illustration of refraction and absorption
phenomena within a dielectric system of susceptibility χ(1)(ω). The incident electric field E(ω)

generates a polarization P(ω) = ε0χ′(ω)E(ω) + ε0iχ′′(ω)E(ω). The real part of χ(ω) results in the
appearance of a field Er(ω) in phase with the incident electric field, while the imaginary part leads
to the generation of an electric field Ea(ω) in phase opposition. The destructive interference thus
occurring gives rise to a transmitted electric field Et(ω) of weaker amplitude (damped by a factor
e−q′′(ω)x).

Therefore, these two electric fields add up in a destructive way. From the point of view
of wave optics, absorption can thus be described as resulting from destructive interference.
In other words, the function χ(1)(ω) measures the coherence of light as it propagates
through a dielectric medium.
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2.3. Scattering and Extinction

In the case of the propagation of electromagnetic waves through a population of spherical
dielectric particles, some part of the light is not only affected by absorption and is deflected in
all directions of space. We then speak of scattering [4,7]. From the point of view of geometric
optics, this deviation can be explained by multiple reflections and refractions occurring at the
particle boundary, as shown in Figure 3a. However, this approach is not realistic. It is indeed
necessary to adopt the wave formalism of electromagnetism and to study Mie’s theory to
explain this scattering phenomenon [8], as shown schematically in Figure 3b.

When a light beam of incident intensity I0 propagates through a population of particles
of density N, some of the photons are absorbed while others are scattered. These are all lost
photons, not indeed transmitted in the beam propagation direction. Since light intensity
measures the photon flow within a beam, this results in an extinction cross-section σext
defined so that [7]:

dI
dx

= −Nσext I(x), i.e., I(x) = I(0) e−Nσextx. (16)

σext actually measures the probability that a photon is absorbed or scattered by a
particle:

σext = σa + σs. (17)

It is clear that Equation (16) generalizes the Beer–Lambert law. We can also identify
the absorption cross-section:

σa(ω) =
2q′′(ω)

N
. (18)

Mie’s theory tells us that the scattering cross-section of a spherical particle depends
on the wavevector q′(ω) and on the polarizability α(ω) of the particle [7]:

σs(ω) =
[q′(ω)]4

6π
|α(ω)|2. (19)

As a reminder, this polarizability is nothing other than the microscopic counterpart of
susceptibility:

P(ω) = ε0χ(1)(ω)E(ω) ←→ µ(ω) = α(ω)E`(ω), (20)

where E` denotes the local field applied to the particle of dipole moment µ.
Like diffraction, scattering significantly manifests itself when the wavelength is about

the order of magnitude of the particle radius: λ . R. In the case of quantum dots, λ� R ∼
1–10 nm. Thus, for the same reasons that it is possible to assume a uniform electric field at
the nanoscale, we can reasonably neglect scattering with respect to absorption, provided
that particles do not agglomerate to form scattering centres of a few hundred nanometers.
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Figure 3. Geometric and wave description of light scattering. Sketch of the scattering process,
(a) from geometric optics and, (b) from wave optics. The dotted arrows represent the intensity of the
scattered light according to the scattering angle.
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2.4. Extinction Spectroscopies

UV–visible and infrared spectroscopies are generally presented as absorption spectro-
scopies. To be quite rigorous, these are extinction spectroscopies. When the particles are
large enough to scatter light, the Beer–Lambert law of absorbance must be adapted:

A(ω) 6= − log
I(x, ω)

I(0, ω)
= A(ω) + S(ω). (21)

While A(ω) = σa(ω)Nx/ ln 10 corresponds to absorbance, S(ω) would be the ‘scat-
terance’ (term not used in the literature and defined here for the sake of clarity):

S(ω) =̂
σs(ω)Nx

ln 10
. (22)

This means that UV–visible and infrared spectroscopies, which consist of measuring
the quantity − log I(x, ω)

I(0, ω)
as a function of the wavelength λ = 2πc/ω or the wavenumber

σ = 1/λ, are sensitive to light scattering. For instance, UV–visible spectroscopy allows
highlighting and quantifying the aggregation of metallic or semiconductor nanoparticles
when this indeed occurs [9,10].

3. Non-Linear Response of Anisotropic Media

The linear response theory satisfactorily describes the dielectric properties of matter
when light does not excite the system into an anharmonic regime. In short, the excitation is
not powerful enough to make the electrons and the nuclei explore potential energy surfaces
far from their equilibrium (which is precisely characterized by harmonic potential wells).
In contrast, when we probe matter with pulsed lasers, it is possible to achieve this new
dielectric regime. It is therefore necessary to expand the optical response at higher orders
of polarization.

3.1. Second Order Non-Linear Optical Processes

The phenomenological Relation (2) linking the polarization to the electric field can be
considered as a first order truncated series expansion. Here, we introduce the second order
term involved in the polarization:

P(t) = ε0 χ(1) ∗ E(t) + P(2)(t), (23)

where the second order polarization P(2) is quadratically dependent on the electric field.
This non-linear term is often treated inappropriately, even in reference books [2,3,11]. It is
often defined in frequency space (with complex exponential functions) whereas its true
definition can only refers to the time evolution of the system, as written in Equation (23).
The frequency spectrum of P(2)(t) then truly derives from its Fourier transform.

First, the quadratic dependence of P(2)(t) on the electric field results in a double
convolution product involving a new response function (t, t′) 7→ χ(2)(t, t′) [4,5]:

P(2)(t) =̂ ε0 χ(2) ∗ E⊗ E(t) = ε0

∫∫
R2

dt1 dt2 χ(2)(t− t1, t− t2) E(t1)⊗ E(t2). (24)

χ(2)(t, t′) is a third-rank tensor, i.e., a 3× 3× 3 hyper-matrix of second order response
functions χ

(2)
ijk (t, t′). The tensor product ⊗ allows the compact writing of the relation:

P(2)
i (t) = ε0 ∑

j,k=x,y,z

∫∫
R2

dt1 dt2 χ
(2)
ijk (t− t1, t− t2) Ej(t1)Ek(t2). (25)

As 2-argument functions, the second order response functions are associated to 2-
argument susceptibilities deduced from double Fourier transforms [4,5]:
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χ(2)(ω1, ω2) =̂
∫∫

R2
dτ1 dτ2 χ(2)(τ1, τ2) ei(ω1τ1+ω2τ2). (26)

However, the transposition of equation (24) into Fourier space is not as obvious as in
the linear case, for which we simply had P(ω) = ε0χ(1)(ω)E(ω). Here:

P(2)(ω) =
∫
R

dt P(2)(t) eiωt, (27)

giving:

P(2)(ω) =
∫
R

dt
∫∫

R2
dt1 dt2 ε0 χ(2)(t− t1, t− t2) E(t1)⊗ E(t2) eiωt. (28)

To simplify this expression, we choose to define the auxiliary function ξ(2)(ω; t1, t2)
as a (simple) Fourier transform of the response function t 7→ χ(2)(t− t1, t− t2):

ξ(2)(ω; t1, t2) =̂
∫
R

dt χ(2)(t− t1, t− t2) eiωt (29)

In this case, Equation (28) becomes

P(2)(ω) = ε0

∫∫
R2

dt1 dt2 ξ(2)(ω; t1, t2) E(t1)⊗ E(t2) (30)

= ε0

∫∫
R2

dω1

2π

dω2

2π
ξ(2)(ω; ω1, ω2) E(ω1)⊗ E(ω2), (31)

where ξ(2)(ω; ω1, ω2) is nothing but the double Fourier transform of ξ(2)(ω; t1, t2), with
respect to the temporal variables t1 and t2. Equation (31) means that the wave generated
by the medium at the frequency ω, via P(2)(ω), derives from a coupling governed by the
tensor ξ(ω; ω1, ω2) between all the frequencies (ω1, ω2) available in the spectrum of E. In
other words, the non-linearity of the material makes it possible to couple two different
frequencies (ω1 and ω2) into a third one (ω). This non-linearity therefore allows the system
to generate new frequencies, which is prohibited by the theory of linear response. This
property characterizes moreover all the non-linear processes: they are always inelastic (the
output frequency is different from the input frequency).

While most of the reference books and articles confuse ξ(2)(ω; ω1, ω2) and χ(2)(ω1, ω2)
[2–4,11], here we make explicit the mathematical relation between them and establish the
rigorous description of the non-linear second order optical response (Figure 1). By combin-
ing Equations (26) and (29), we get:

ξ(2)(ω; t1, t2) =
∫∫

R2

dω1

2π

dω2

2π
χ(2)(ω1, ω2) ei(ω1t1+ω2t2)

∫
R

dtei(ω−ω1−ω2)t︸ ︷︷ ︸
=2πδ(ω−ω1−ω2))

. (32)

From the definition of ξ(2)(ω; ω1, ω2) as a double Fourier transform of ξ(2)(ω; t1, t2),
we therefore identify:

ξ(2)(ω; ω1, ω2) = 2π χ(2)(ω1, ω2) δ(ω−ω1 −ω2). (33)

Therefore, the tensor ξ(2)(ω; ω1, ω2) can be interpreted as the spectral weight asso-
ciated with the generation of the frequency ω by the non-linear coupling of frequencies
ω1 and ω2, so that ω = ω1 + ω2. It is not equal to the susceptibility χ(2)(ω1, ω2), which
encodes for its part all the possible ways to couple two frequencies ω1 and ω2 available in
the input light spectrum. As shown in Figure 4, the dielectric medium radiates in this way
new fields at the frequencies:

• ω = ω1 + ω2, via χ(2)(ω1, ω2): for SFG, sum-frequency generation;



Symmetry 2021, 13, 153 9 of 26

• ω = ω1 −ω2, via χ(2)(ω1,−ω2): for DFG, difference-frequency generation;
• ω = 2ωi, via χ(2)(ωi, ωi), for SHG, second harmonic generation;
• ω = 0, via χ(2)(ωi,−ωi), corresponding to optical rectification.

Finally, Equations (31) and (33) allow us to give a synthetic description of the non-
linear second order optical processes. These are governed by:

P(2)(ω) =
∫
R

dω′

2π
P(2)(ω′, ω−ω′), (34)

with:
P(2)(ω1, ω2) =̂ ε0 χ(2)(ω1, ω2) E(ω1)⊗ E(ω2). (35)

This last equation constitutes the quadratic counterpart of the linear constitutive
relation P(ω) = ε0χ(1)(ω)E(ω).

E(ω2)

nonlinear dielectric 
medium

χ(2)(ω1, ω2)

E(ω1) ω = 2ω2

ω = 2ω1

ω = ω1 + ω2

ω = ω1 − ω2

SHG

SFG

DFG

opt. rect. ω = 0

Figure 4. Second order non-linear optical processes. Sketch of the processes of second harmonic
generation (SHG), sum-frequency generation (SFG) and difference-frequency generation (DFG).
These are driven by the second order dielectric susceptibility χ(2)(ω1, ω2) of the material, which
couples two input frequencies ω1 and ω2 to generate new signals.

3.2. Symmetry Rules

While all dielectric materials exhibit a linear response to optical excitation, they
do not necessarily all respond non-linearly. Within the electric dipole approximation,
to have a non-zero susceptibility χ(2), the material must not be centrosymmetric [2–5].
Indeed, let us examine the case of a centrosymmetric system for which P(2)(ω1, ω2) =
ε0 χ(2)(ω1, ω2) E(ω1)⊗E(ω2). The physical transformation which reverses the orientation
of the electric field:

φ :

{
R3 −→ R3

E 7−→ −E
, (36)

similarly transforms the polarization, by centrosymmetry of causes and effects: φ(P) = −P.
However, at the same time:

φ(P)(2)(ω1, ω2) = ε0 χ(2)(ω1, ω2) φ(E)(ω1)⊗ φ(E)(ω2)

= ε0 χ(2)(ω1, ω2) [−E(ω1)]⊗ [−E(ω2)]

= ε0 χ(2)(ω1, ω2) E(ω1)⊗ E(ω2)

= P(2)(ω1, ω2). (37)
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We must therefore both satisfy centrosymmetry, which implies φ(P)(2) = −P(2), and
Equation (38), which implies φ(P)(2) = P(2). In other words, P(2) = 0, and χ(2) = 0:
centrosymmetric materials cannot be the site of second order non-linear processes.

Apart from the case of anisotropic crystals and chiral structures which often constitute
good non-linear materials, second order non-linearities can arise, first, at the interface
between two dielectric media (given the breakdown of symmetry implied by this geometry)
or, second, from the quadrupolar response of bulk materials. This is also why sum-frequency
generation is very useful for the study of metal [12] and semiconductor [13] nanoparticles.
Deposited on a substrate probed by pulsed lasers (Figure 5a), these nanoparticles can be
analysed in a fine way given that the SFG signal is specific and characteristic of the
interface: the would-be pollutants distributed in volume do not contribute to the signal.
In addition, as nanoparticles are chemically functionalized on their surface (Figure 5b),
it is also possible to examine the interactions at the interface between them and their
surrounding molecules [14].

visible

IR

ω
vis

ωir

SFG

ωsfg =
      

  +ωvis
ω ir

global symmetry breaking

local symmetry 
breaking

(a) (b)

(c)
air

molecules

n1
nlay

n2
3-layer model

NP

air n1
nlay

n2
NPs

substrate

Figure 5. Sum-frequency generation at nanostructured interfaces. Schematic representation of
the SFG process in the case of functionalized nanoparticles grafted on a solid substrate. The two
input frequencies belong to the visible (ω1 = ωvis) and the infrared (ω2 = ωIR) spectral ranges. This
configuration is characterized by (a) a breaking of the global centrosymmetry at the macroscopic
scale of the substrate and (b) a breaking of the local centrosymmetry at the surface of nanoparticles.
(c) These two interfaces can be modelled as a 3-layer surface characterized by three refractive indices
n1, n2 and nlay.

3.3. Sum-Frequency Generation at Interfaces

Since the SFG process is specific to interfaces, we choose to base this Review on the
above-mentioned example of recent studies of nanoparticles [12,13] deposited on solid
substrates, as represented in Figure 5. The aim of this section is therefore to establish the
practical equations which allow us to interpret the SFG measurements carried out on such
flat samples.

If we consider the generic situation presented in Figure 6, we notice that the sample
geometry is invariant by any translation in the plane (x, y) and any azimuthal rotation
around the z-axis. Therefore, the tensor χ(2) of the system exhibit only four non-zero and
independent coefficients for symmetry reasons [15,16]:

(i) χ
(2)
zzz, (ii) χ

(2)
xxz = χ

(2)
yyz, (iii) χ

(2)
zxx = χ

(2)
zyy and (iv) χ

(2)
xzx = χ

(2)
yzy. (38)

Indeed, as the z-axis is the axis along which the centrosymmetry is broken, all the
components χ

(2)
ijk which do not contain at least one z index are zero: 8 components are first

removed. Owing to invariance of translation and isotropy within the plane (x, y), all the
components containing x and y as indices are zero: 6 more components are removed. Since
every plane containing the z-axis is a plane of symmetry and that (−Ez)2 = E2

z , all the
components with two z indices are zero: we get rid of 6 other components. Thus remains
27− 8− 6− 6 = 7 components, among which the permutation (x ↔ y) is an identity, due
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to the 2D-isotropy of the planar geometry. As a result, Equation (38) enumerates the 4
interesting terms.

Moreover, this translational invariance implies a phase matching condition on the
parallel components (with respect to the surface plane) of the wavevectors of the two
visible and infrared beams which probe the surface [17]:

q‖,vis + q‖,ir = q‖,sfg, (39)

where we write qvis, qir and qsfg, the respective wavevectors of the visible, infrared and
SFG beams. In general, we will always denote wavevectors by the letter q. They are defined
by their norm, by virtue of Equation (10):

|q| =̂ q′(ω) =
ω

c
n(ω), (40)

and directed according to the direction of propagation of the wave. The momentum h̄q
is the physical quantity which must be conserved when there is translational invariance,
hence the condition of phase agreement (39). This allows us to determine the angle θsfg
under which the SFG signal is emitted by reflection:

θsfg = arcsin
ωvis sin θvis + ωir sin θir

ωvis + ωir
, (41)

As the beams propagate though air, we consider that n(ω) = 1.
During SFG spectroscopy measurements, we commonly select two particular polar-

izations of the incident beams: the polarization P , for which the electric field is parallel to
the plane of incidence (x, z), and the polarization S (from the German senkrecht, meaning
perpendicular), for which the electric field is normal to the plane of incidence. These
polarizations are depicted in the Figure 6 and characterized by the unit vectors:

uP (θu) = cos θu ux + sin θu uz and uS (θu) = uy, (42)

where the index u refers to the visible or the infrared. The SFG signal can be detected in
polarization P or S :

uP (θsfg) = − cos θsfg ux + sin θsfg uz and uS (θsfg) = uy. (43)

⊗y x

z

q

incidence 
angle 𝔭

substrat

wavevector q q

𝔰
⦿

E E

x

y

z

y x

z

qvis

qir

θvis

θir

θsfg

qsfg

⊗

visible

IR

y x

z

qvis

qir

θvis

θir

θsfg

qsfg

⊗

𝔰
⦿𝔰

⦿

𝔭

𝔭𝔭

𝔭

(a)

(b)

(c)

(d)

SFG

Figure 6. SFG process at flat interfaces. (a) Schematic representation of SFG at the surface of a
nanostructured sample. The visible, IR and SFG beams belong to the same plane of incidence (x, z).
(b) Definition of the P and S polarizations, with respect to the plane of incidence (x, z). (c) Directions
and polarizations of the beams in [P : PP ] configuration. (d) Directions and polarizations of the
beams in [S : SP ] configuration.
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As far as we are concerned, we are only interested in the two configurations given in
Figure 6c,d, namely the configuration [P : PP ], for which all the beams are P-polarized,
and the configuration [S : SP ], for which the visible is S-polarized, the infrared P-
polarized and SFG detected in S polarization. The choice of these polarization triplets
actually depends on the nature of the sample substrate: to obtain an optimum SFG signal,
it is important to use the configuration which maximizes the substrate reflectivity, as we
usually acquire the SFG signal reflected by the surface.

In [P : PP ] polarization scheme (SFG, Vis and IR beams, respectively), the laser
excitation consists of the superposition of two monochromatic visible and infrared waves
polarized according to uP :

E(t) = Evis cos(ωvist) uP (θvis) + Eir cos(ωirt) uP (θir), (44)

while in [S : SP ] configuration:

E(t) = Evis cos(ωvist) uS (θvis) + Eir cos(ωirt) uP (θir). (45)

In the first case, we measure the P-component of the SFG field generated by the 2nd
order polarization. Therefore, the intensity of the SFG signal in [P : PP ] is determined by
the scalar quantity:

P(2)
P :PP (ωsfg) =̂ uP (θsfg) · P(2)(ωsfg). (46)

Taking into account the expression of the electric field (45), with Equations (34) and
(35) relating P(2)(ω) to the electric field via the second order susceptibility, we obtain:

P(2)
P :PP (ωsfg) =

πε0

2
EvisEir χ

(2)
P :PP (ωvis, ωir), (47)

involving the effective second order susceptibility:

χ
(2)
P :PP (ωvis, ωir) = − cos θsfg

(
cos θvis sin θir χ

(2)
xxz(ωvis, ωir) + sin θvis cos θir χ

(2)
xzx(ωvis, ωir)

)
+ sin θsfg

(
cos θvis cos θir χ

(2)
zxx(ωvis, ωir) + sin θvis sin θir χ

(2)
zzz(ωvis, ωir)

)
.

This result is consistent with the literature [17], with the difference that we have not
taken into account the Local Field correction factors Lijk(ωvis, ωir) which must strictly

multiply χ
(2)
ijk (ωvis, ωir). These Local Field correction factors account for the reflectivity

and optical dispersion of the sample. They are introduced in the next section. In the case of
the [S : SP ] configuration, the equations are simplified:

P(2)
S :SP (ωsfg) =

πε0

2
EvisEir χ

(2)
S :SP (ωvis, ωir), (48)

with:

χ
(2)
S :SP (ωvis, ωir) = sin θir χ

(2)
xxz(ωvis, ωir). (49)

The SFG intensity is then proportional to the square norm of the scalar polarization,
which results in [17]:

I(ωsfg) ∝
ω2

sfg

cos2 θsfg
|χ(2)

eff (ωvis, ωir)|2 I(ωvis) I(ωir), (50)

where χ
(2)
eff = χ

(2)
P :PP or χ

(2)
S :SP , depending on the polarization configuration, and I(ωvis)

and I(ωir) designate the intensities of the two incident beams. The measurement of the
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SFG intensity thus enables to extract the square norm of the effective susceptibility χ
(2)
eff ,

but not directly the susceptibilities χ
(2)
ijk .

3.4. Local Field Correction Factors: Light Intensity Modulation by Interface Symmetry

To be completely rigorous in our interpretations, we must take into account the
influence of Local Field correction factors on the SFG response. We have omitted them
so far, but their contribution is generally not negligible. In [P : PP ] configuration, these
factors, noted Lijk, modulate the susceptibilities χ

(2)
ijk as follows:

χ
(2)
P :PP = −Lxxz cos θsfg cos θvis sin θir χ

(2)
xxz

−Lxzx cos θsfg sin θvis cos θir χ
(2)
xzx (51)

+Lzxx sin θsfg cos θvis cos θir χ
(2)
zxx

+Lzzz sin θsfg sin θvis sin θir χ
(2)
zzz.

They account for the refraction and reflection processes between the different layers
of which the interface is made. In the case of typical interfaces, we use the 3-layer model,
as shown in Figure 5c. Hence, the Fresnel coefficients can be factorized in the form
Lijk(ωvis, ωir) = Fii(ωvis + ωir) Fjj(ωvis) Fkk(ωir), with [17]:

Fxx(ωu) =
2 n1(ωu) cos θT

u
n1(ωu) cos θT

u + n2(ωu) cos θu
, (52)

Fyy(ωu) =
2 n1(ωu) cos θu

n1(ωu) cos θu + n2(ωu) cos θT
u

, (53)

and:

Fzz(ωu) =
2 n2(ωu) cos θu

n1(ωu) cos θT
u + n2(ωu) cos θu

(
n1(ωu)

nlay(ωu)

)2

. (54)

The indices u refer to the visible, infrared or SFG. It is worth noting that:

θvis = 55◦, θir = 65◦, θsfg = arcsin
(

ωvis sin θvis + ωir sin θir
ωvis + ωir

)
, (55)

and the transmission angle of each beam is deduced from Snell-Descartes laws:

θT
u = arcsin

(
n1(ωu) sin θu

n2(ωu)

)
. (56)

3.5. Third Order Non-Linear Optical Processes

Beyond second order, the optical processes of the third order are no longer governed
by the geometry of the dielectric media and do not require any particular breaking of
centrosymmetry: all materials can exhibit a third order contribution. In addition, most of
the 3rd order processes are scattering processes since they do not involve phase matching
condition, which is quite different from the 2nd order processes.

These processes include Raman scattering and fluorescence [2–4], which are concomi-
tant processes. In both cases, a pump beam at frequency ωp excites the system. The
spectrum J(ω) of the light emitted by inelastic process (ω 6= ωp) is measured to obtain
electronic (fluorescence) or vibrational (Raman, in the framework of Figure 7 for molec-
ular optical spectroscopy) information. Formally, for a three-state system |g〉,|v〉 and |e〉,
illustrated in Figure 7, the susceptibility χ(3) which governs inelastic processes of order 3
actually involves two factors [4]:
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χ(3)(ωp,−ωp, ω) ∝
1

ωev −ω + ıγev︸ ︷︷ ︸
fluorescence :

Lorentzian resonance

constant− i
ωvg − (ωp −ω)− ıγvg︸ ︷︷ ︸

Raman scattering

, (57)

where γev and γvg denote the relaxation rates associated with the transitions (e→ v) and
(v→ g). The first factor is resonant for ω = ωev: the measured optical signal corresponds to
the transition from the electronic state |e〉 (excited) to the vibrational state |v〉 (fundamental),
characteristic of a relaxation by fluorescence (Figure 7a). The second factor resonates at
ω = ωp −ωvg: the associated signal corresponds to a vibrational excitation of the system;
the pump transfers a part of its energy ωp, in this case the quantity ωvg, to stimulate
the vibrational state |v〉 (Figure 7b). This is the Stokes Raman process, from which we
distinguish the anti-Stokes Raman process, described by χ(3)(ωp,−ωp,−ω) and giving a
signal at ω = ωp + ωvg (Figure 7c). While fluorescence is a process that occurs between
real electronic states, Raman scattering involves virtual states. As such, fluorescence can be
qualified as a resonant scattering process whereas Raman scattering is a non-electronically
resonant process.

fluorescence

Normal coordinates

En
er

gy
 (e

V)

|g⟩
|v⟩

|e⟩
ωp ω = ωev

Stokes Raman

Normal coordinates

En
er

gy

|g⟩
|v⟩

|e⟩
ωp ω = ωp − ωvg

anti-Stokes Raman
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|g⟩
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|e⟩
ωp ω = ωp + ωvg

virtual 
state

virtual 
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(a) (b) (c)

Figure 7. Fluorescence and Raman scattering. Illustration of third order non-linear processes:
(a) fluorescence, (b) Stokes Raman scattering and (c) anti-Stokes Raman scattering. We note |g〉 the
ground state, |v〉 a vibrational state within the ground state, and |e〉 an electronic excited state. The
definition of normal coordinates is given in Section 4.1 in the case of molecules.

Furthermore, there are other third order non-linear processes, among which we
count the optical Kerr effect, two-photon absorption (via χ(3)(ω,−ω, ω)), third har-
monic generation (via χ(3)(ω, ω, ω)) and sum-frequency generation under static field
(via χ(3)(ω1, ω2, 0)) [2–4,18,19].

4. Vibrational Spectroscopies

In physical chemistry, molecular SFG vibrational spectroscopy was established experi-
mentally in 1987 by Y.R. Shen at Berkeley (USA) through its three seminal papers published
on pentadecanoic acid [20,21] and coumarin monolayers [22]. SFG spectroscopy is used
in many applications such as (but not only) for the study of electrochemical [23–26] and
catalytic [27–29] processes at liquid/solid and gas/solid interfaces. In the recent literature,
SFG spectroscopy is intensively performed for the study of the water/air interface [30–32]
or water/solid interface [33,34]. SFG allows in particular to examine the molecular organi-
zation of these interfaces, in presence or absence of organic pollutants [35,36], the formation
of micellar complexes at the surface during the addition of various surfactants [37], or even
the ultra-fast dynamics of water molecules near the free surface [38]. This opens up the
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SFG to the study of biological systems (among which lipid layers are emblematic [39–41]),
with the objective to obtain structural information on the biological molecules (for peptides
and proteins, see a recent exhaustive review [42]) located at the liquid/air or liquid/solid
interfaces (e.g., conformational order, orientation of functional groups and chirality [43–46]).

SFG spectroscopy is a technique dedicated to the study of vibroelectronic coup-
lings [47–55]. Indeed, it combines a visible excitation, which stimulates electronic tran-
sitions in materials such as metals or semiconductors, and an infrared excitation, which
allows to simultaneously perform vibrational spectroscopy of organic species. SFG spec-
troscopy (2nd order process) therefore comes within the scope of vibrational spectroscopies,
alongside infrared absorption (linear or 1st order process) and Raman scattering (3rd order
process). We recall here the formalism used to describe the vibration modes of molecules
and, in order to contextualize the particular place occupied by SFG spectroscopy, we
compare these three spectroscopic probes.

4.1. Molecular Vibrations

Molecules can be mathematically described as a collection of N elastically bonded
atoms. We denote by rp = (xp, yp, zp), p ∈ J1, NK, the displacement vector of the p-th
atom in the reference frame of the centre of mass of the molecule. This vector is defined
with respect to the equilibrium position of each atom. To describe the vibrations of the
molecule, a first change of coordinates must be done. We use the mass-weighted Cartesian
coordinates {qn}3N

n=1 [56]:

q1 =
√

m1x1
q2 =

√
m1y1

q3 =
√

m1z1

q4 =
√

m2x2
q5 =

√
m2y2

q6 =
√

m2z2

· · · (58)

These mass-weighted coordinates make it possible to easily express the kinetic energy:

T({qn}) =
1
2 ∑

n
q̇2

n. (59)

The elastic bond between the atoms of the molecule results from the limited develop-
ment of their potential interaction energy in the vicinity of their equilibrium positions [56]:

V({qn}) = V({0}) + ∑
n

(
∂V
∂qn

)
{0}

qn +
1
2 ∑

n,m

(
∂2V

∂qn∂qm

)
{0}

qnqm. (60)

By setting the zero energy such that V({0}) = 0, and since the potential energy reaches
its minimum at equilibrium, i.e.,

(
∂V
∂qn

)
{0}

= 0:

V({qn}) =
1
2 ∑

n,m
fnm qnqm with fnm =̂

(
∂2V

∂qn∂qm

)
{0}

. (61)

The Euler–Lagrange dynamic equation thus leads to 3N coupled differential equations:

d
dt

(
∂T
∂q̇j

)
+

∂V
∂qj

= 0 =⇒ q̈n(t) + ∑
m

fnm qm(t) = 0, (62)

which admit solutions of the form qv
n(t) = qv

n,0 cos(ωvt), where ω2
v is an eigenvalue of

the matrix f = ( fnm), i.e., ∑m fnmqm = ω2
vqn, and qv

n,0 a constant depending on the initial
conditions. The scalar quantities ωv correspond to the vibration frequencies of the normal
modes |v〉 = {qv

n}3N
n=1 which diagonalize the matrix f of inter-atomic interactions. These

are also associated with the normal coordinates {Qv} defined so that the potential energy
explicitly reflects the existence of an elastic interaction between the atoms of the molecule:

V =
1
2 ∑

v
ω2

vQ2
v. (63)
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It can also be shown that these normal coordinates are linear combinations of the
mass-weighted coordinates [56]. By noting l = (lnv) the basis change matrix:

Qv = ∑
n

lnvqn ∝ cos(ωvt). (64)

This means that each specific vibration mode consists of a collective oscillation of its
atoms. When a molecule vibrates, all of its atoms oscillate at the same frequency and pass
through their equilibrium position at the same time. We generally distinguish two classes
of normal modes, represented in Figure 8: stretching and angular distorsion. In the cases of
hydrogen, carbon, nitrogen and oxygen, which are light atoms abundant in organic species,
the modes of angular distorsion, whose wavenumbers do not exceed 1500 cm−1, are much
less energetic than the stretching modes, which can be around 4000 cm−1 (Figure 9).
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Figure 8. Normal vibration modes. Schematic representation of the different vibration modes
observed within molecules. Here we take the example of CH2 chemical group.
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Figure 9. Infrared spectroscopy of methylene. Typical shape of the IR spectrum associated with
C−H vibration modes within CH2 groups.

4.2. Transition Dipole Moments and Susceptibility

Until now, we have only considered the classical definition of the dipole moment µ.
In quantum mechanics, this physical quantity has a corresponding operator described by
the matrix (µnm), where n and m label the set of quantum states:

µnm =̂ 〈n|µ|m〉. (65)
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We speak in this case of transition dipole moment, each µnm corresponding to the
dipole moment that the system acquires when it is promoted from state |n〉 to state |m〉. The
selection rules of the different spectroscopies directly derive from these transition dipole
moments, allowing or prohibiting certain optical transitions. In the case of a molecular
vibration |v〉, the dipole moment µ(t) can be expanded in the vicinity of the equilibrium
position Qv = 0 as follows:

µ(t) = µ(0) +

(
∂µ

∂Qv

)
0
Qv(t). (66)

Denoting the ground state by |0〉, and assuming that the equilibrium is characterized
by a zero dipole moment, i.e., 〈0|µ(0)|v〉 = 0, we see that the transition moments only
depend on the variation of µ with respect to the normal coordinates [56]:

µ0v =

(
∂µ

∂Qv

)
0
〈0|Qv(t)|v〉 =

√
h̄

2ωv

(
∂µ

∂Qv

)
0
. (67)

For a quantum system, the linear susceptibility χ(1)(ω) depends on the transition
moments. Kubo’s theorem (which results from the quantum treatment of the theory of
linear response via the density matrix formalism) indeed gives [57]:

χ
(1)
ij (t) = iNθ(t)〈[µi(t), µj]〉0, (68)

where θ(t) is the Heaviside function. The mean value is defined with respect to the density
matrix ρ(0) characterizing the statistic of the system at equilibrium. For any operator A:

〈A〉0 =̂ tr
(

ρ(0)A
)

. (69)

This leads to the well-known expression [2–4,58]:

χ
(1)
ij (ω) = − N

h̄ε0
∑
n,m

ρ
(0)
mm

 µi
mnµ

j
nm

ω−ωnm + iγnm
− µi

nmµ
j
mn

ω−ωmn + iγmn

, (70)

which relates the transition dipole moments to the linear susceptibility. Taking into account
Equation (67), molecular systems are characterized by the tensor relation:

χ(1) ∝ µ0v ⊗ µv0 ∝
(

∂µ

∂Qv

)
0
⊗
(

∂µ

∂Qv

)
0
. (71)

This is quite logical and substantial. On the one hand, the transition moments
(∂µ/∂Qv)0 are 1st rank tensors (i.e., vectors). The product of two 1st rank tensors does
indeed give a new 2nd rank tensor: here χ(1)[59]. On the other hand, (∂µ/∂Qv)0 describes
the zero order of the dielectric response (We use here the notation of Landau O(En) proper
to Taylor expansion. For polarization, we typically have: P = χ(0)E0 + χ(1)E1 + · · · +
χ(n−1)En−1 +O(En), where E denotes the scalar amplitude of the electric field. Saying that
a response function is in O(En) means that it describes the response to the order n− 1, and
dominates all terms of order greater than or equal to n.), behaving like O(E), which means
that χ(1) describes the dielectric response to order 1, behaving like O(E)×O(E) = O(E2)
as expected. These remarks will prove to be very enlightening thereafter.

4.3. Infrared Spectroscopy

The first vibrational spectroscopy technique relies on infrared absorption [56,60,61].
It is a linear optical process driven by the susceptibility χ(1)(ωir) of the medium. This
technique is widely used for the identification of molecular species, each molecule having
its own infrared response, according to its modes of vibration. As soon as the energy h̄ωir
brought by the excitation matches the frequency ωv of a vibrational eigenmode, we observe
an absorption band, as described in Figure 9. The vibration modes of a molecule are not
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systematically detectable by infrared spectroscopy. In particular, the dipole moment µ of
the molecule must vary when the molecule vibrates [2,3,56,62]:(

∂µ

∂Qv

)
0
6= 0. (72)

Indeed, Section 2.2 taught us that absorption was governed by the imaginary part of
the linear susceptibility. Equations (67) and (70) lead then to the infrared absorbance [63]:

A(ωir) ∝ Im χ
(1)
ij (ωir) =

N
2ε0ωv

(
∂µi
∂Qv

)
0

(
∂µj

∂Qv

)
0

γv

(ωv −ωir)2 + γ2
v

. (73)

As announced, the intensity of the infrared signal directly depends on the dipole
moment variation with respect to the normal coordinates, which confirms the selection
rule (72). Especially, this rule explains that the antisymmetric normal modes absorb more
efficiently than the symmetric modes (Figure 9), the former being generally accompanied
by a greater increase in the dipole moment. Equation (73) also tells us that each active
vibration mode gives rise to a Lorentzian resonance in the absorption spectrum, which
justifies the shape of the spectrum presented in Figure 9.

4.4. Raman Spectroscopy

As said in Section 3.5, the Raman process consists of the inelastic scattering of a pump
beam E(t) = E0 cos(ωpt) by the vibration modes ωv of the medium. By measuring the
frequency ω′p of the scattered light, it is thus possible to retrieve the value of the eigen-
frequencies, given by ωv = |ωp −ω′p|, and to identify the present molecular species [64],
provided that the associated vibration modes are Raman active. While the selection rules
for infrared absorption is related to the transition dipole moments, the Raman selection
rules are based on the polarizability α, which we expand to the first order in Qv [4,65]:

α(t) = α(0) +

(
∂α

∂Qv

)
0
Qv(t). (74)

Assuming that the vibration mode v is potentially activated within the molecule (by
thermal agitation in particular), Qv is a sinusoidal function of frequency ωv and amplitude
Qm: Qv(t) = Qm cos(ωvt). Using then the relation µ(t) = α(t)E(t), although it is not very
rigorous, we get:

µ(t) = α(0)E0 cos(ωpt) (75)

+
Qm

2

(
∂α

∂Qv

)
0
E0 cos[(ωp −ωv)t] (76)

+
Qm

2

(
∂α

∂Qv

)
0
E0 cos[(ωp + ωv)t]. (77)

Thus, we identify the elastic Rayleigh scattering at the frequency ωp (75), the inelastic
Stokes Raman scattering at the frequency ωp −ωv (76) and the inelastic anti-Stokes Raman
scattering at the frequency ωp + ωv (77). Although its use is common, this presentation is
not satisfactory. Formally, Equations (75)–(77) show Raman scattering as a linear process,
which is obviously not the case (since inelastic). This mathematical contradiction actually
translates our inability to describe by classical electromagnetism the incoherent processes
of Raman scattering and fluorescence [66]. These two processes are indeed spontaneous
and random, so that each photon scattered in Raman (or emitted in fluorescence) has
a random phase. Consequently, they give rise to incoherent fields, whose value is zero
in average. Moreover, it is because of this inconsistency, characterized by the absence
of a phase matching condition, that the scattered and incident powers maintain a linear
relation [58] (as described in Equations (75)–(77)), despite the non-linearity of the optical
process. The classical approach that we have just presented here predicts formally the
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Stokes and anti-Stokes Raman processes, and justifies also the selection rule specific to
Raman spectroscopy, that is: (

∂α

∂Qv

)
0
6= 0. (78)

As demonstrated elsewhere in quantum mechanics [2,3,58,62,67], a vibration mode is
Raman active if the polarizability of the molecule depends on the normal mode coordinate.
It is not a coincidence if the polarizability is involved in the Raman process. As a 3rd order
non-linear process, Raman spectroscopy is driven by [63,68,69]:

χ(3) ∝
(

∂α

∂Qv

)
0
⊗
(

∂α

∂Qv

)
0
. (79)

Like the tensor Relation (71), Equation (79) mathematically manifests the non-linearity
of the physical phenomenon. First, the polarizability α = (αij) is a 2nd rank tensor. The

product of two 2nd rank tensors gives a 4th rank tensor: χ(3) = (χ
(3)
ijkl). Second, α describes

the 1st order dielectric response, behaving like O(E2), which is consistent with the fact that
χ(3) describes the 3rd order response, behaving like O(E2)×O(E2) = O(E4). Analogously
to infrared spectroscopy, the Raman spectrum of scattered light is then represented by [63]:

Im χ
(3)
ijkl(ωp,−ωp, ω) =

N
2ε0ωv

(
∂αij

∂Qv

)
0

(
∂αkl
∂Qv

)
0

γv

[ωv − (ωp −ω)]2 + γ2
v

. (80)

As the foundations of infrared and Raman spectroscopies are now established, it is
possible to present the specificities of SFG spectroscopy and understand its interest in the
study of vibroelectronic couplings within matter.

4.5. SFG Spectroscopy

We commonly read in the literature that SFG spectroscopy is a combination of infrared
and Raman spectroscopies. Figure 10 illustrates this point of view by considering the case
of a three-state quantum system. For purely molecular systems, this enables to justify the
SFG selection rules. In this case, the non-linear susceptibility χ(2), behaving like O(E3), is
proportional to the transition polarizability, behaving like O(E2), and the transition dipole
moment, behaving like O(E) [2,3,63]:

χ(2)(ωvis, ωir) ∝
(

∂α

∂Qv

)
0
⊗
(

∂µ

∂Qv

)
0
. (81)

This relation tells us that a vibration mode is active in SFG spectroscopy if it is active
in both infrared absorption and Raman scattering. However, we cannot ignore that the
infrared and Raman processes are driven by the tensor Relations (71) and (79), which
logically means that their combination would give rise to a 5th order optical process:
χ(5) ∝

(
∂α

∂Qv

)
0
⊗
(

∂α
∂Qv

)
0
⊗
(

∂µ
∂Qv

)
0
⊗
(

∂µ
∂Qv

)
0
, much different from SFG. Considering sum-

frequency generation as a combination of infrared and Raman processes is thus misleading:
χ
(2)
sfg 6= χ

(1)
ir ⊗ χ

(3)
Raman. The only way to formally link χ(2) to χ(1) and χ(3) is by defining

contracted tensors [59], even though it is fundamentally and conceptually improper to
describe SFG as a combination of IR and Raman spectroscopies.

To understand the specificity of SFG spectroscopy, we compare it to infrared and
Raman spectroscopies in Table 1. Especially, SFG is resonant with respect to the infrared,
and consists in a coherent emission (which is hardly the case of Raman). Another advantage
of SFG is its surface specificity and that it can be doubly resonant [70]: in addition to its
resonant character in the infrared, inherited from IR absorption, the SFG signal can be
resonant in the visible. This situation is shown in Figure 10, where the visible and SFG
frequencies match electronic transitions.
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Table 1. Comparison of vibrational spectroscopies. Comparative table of the three vibrational
spectroscopies: infrared absorption, Raman scattering and SFG. † Raman scattering can be resonant
in the visible spectral range when the frequency of the pump beam coincides with an electronic
transition (the excited state is therefore not virtual but indeed real, as illustrated in Figure 10). ‡ SFG
can be doubly resonant, with respect to the infrared and visible beams, as shown in Figure 10.

IR Absorption Raman Scattering SFG

χ(1)(ωir) χ(3)(ωvis,−ωvis, ω) χ(2)(ωvis, ωir)(
∂µ
∂Qv

)
0
6= 0

(
∂α

∂Qv

)
0
6= 0

(
∂α

∂Qv

)
0
⊗
(

∂µ
∂Qv

)
0
6= 0

ωir-resonant non ωir-resonant ωir-resonant
non ωvis-resonant (ωvis-resonant) † (ωvis-resonant) ‡

coherent incoherent coherent
directional diffused directional

non surface-specific non surface-specific surface specific

ωir = ωvg ωas = ωvis + ωvg ωsfg = ωvis + ωir

× ( ∂α
∂Qv )0( ∂μ

∂Qv )0
= χ(2)(ωvis, ωir)

|e⟩

|v⟩
|g⟩

IR Absorption anti-Stokes Raman SFG

Figure 10. Vibrational spectroscopies. Comparison between the three techniques of vibrational
spectroscopy: infrared absorption, anti-Stokes Raman scattering and sum-frequency generation. We
represent three quantum states |g〉, |v〉 and |e〉 for the system, with the same meaning than Figure 7.

Therefore, three spectroscopic approaches can be employed. The first one is con-
ventional: it consists in measuring the intensity of the SFG signal for a given visible
excitation (i.e., at a fixed frequency ωvis) by varying the frequency ωir of the infrared
excitation [9,71]. The corresponding spectra carry the vibrational information of the probed
system (Figure 11a). In a less conventional way, it is possible to compare several vibrational
SFG spectra obtained for different visible excitations (Figure 11b) and thereby deduce the
influence of the electronic properties of the system on the expression of its vibrational
fingerprint [13,72]. Eventually, in a last unconventional manner, a third approach con-
sists of measuring the SFG intensity for a given infrared excitation, preferably matching
a vibration mode (i.e., ωir = ωv), by varying the frequency ωvis of the visible excitation
(Figure 11c) [14,73].

When we exploit SFG spectroscopy in its vibrational dimension, by fixing ωvis and by
varying ωir, the spectrum is described by [3,63]:

χ
(2)
ijk (ωvis, ωir) =

N
2ε0ωv

(
∂αij

∂Qv

)
0

(
∂µk
∂Qv

)
0

1
ωir −ωv + iγv

. (82)

This equation reflects the vibrational response of the molecular system, obviously
resonant in the infrared range when the excitation frequency ωir coincides with the eigenfre-
quency ωv. In the typical case of functionalized nanoparticles grafted on a solid substrate,
it is also necessary to take into account the SFG response of the substrate and the nanoparti-
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cles. Generally, these components do not exhibit vibration modes over the probed infrared
spectral range. The SFG spectra are then modelled by an effective susceptibility of the
form [72,74]:

χ
(2)
eff (ωvis, ωir) = A eiΦ + ∑

v

av eiϕv

ωir −ωv + iγv
. (83)
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Figure 11. Principle of 2-dimension sum-frequency generation. (a) Conventional use of SFG
spectroscopy on a nanostructured sample functionalized by organic molecules. The SFG spectrum
consists in measuring the SFG intensity as a function of the IR wavenumber for a fixed visible
wavelength (λvis = 550 nm). (b) Comparison of five vibrational SFG spectra obtained for five different
visible wavelengths. For each vibration mode, the variation of the intensity from a visible wavelength
to another is characteristic of electronic structure of the system (nanoparticles). (c) Unconventional
use of SFG spectroscopy at variable visible wavelength. The spectrum is acquired at a fixed IR
wavenumber that coincides with the vibration mode indicated on the spectra of Figure 11b.

The first term corresponds to the non-resonant response (with respect to the infrared)
of the inorganic components (i.e., substrate and nanoparticles). The amplitude A and the
phase Φ can possibly depend on the electronic response of these objects, hence:

A = A(ωvis) ∈ R+ and Φ = Φ(ωvis) ∈ [0, 2π[. (84)

The sum over v describes the vibrational resonances associated with each of the
molecular vibration modes of eigenfrequencies ωv. These are complex Lorentzian functions,
as suggested by Equation (82). In the general case of hybrid organic/inorganic interfaces,
the amplitudes of vibration av can be conditioned by the electronic activity of the inorganic
components. As such, they potentially admit a dependence on the visible frequency:

av = av(ωvis) ∈ R+ and ϕv = ϕv(ωvis) ∈ [0, 2π[. (85)

As the terms of Equation (83) are complex numbers, this experimentally results in
interference patterns on the SFG spectra. Figure 12 illustrates this point. According to
Equation (50), the SFG intensity is proportional to the square norm of the effective second
order susceptibility. Considering the case of a single mode of vibration:

|χ(2)
eff |

2 = A2 (86)

+
a2

v
(ωir −ωv)2 + γ2

v

+
2Aav√

(ωir −ωv)2 + γ2
v

cos

(
ϕv −Φ− 2 arctan

γv

ωir −ωv +
√
(ωir −ωv)2 + γ2

v

)
.
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Figure 12. Interference profiles of SFG spectra. Typical profiles of the vibrational SFG spectra:
(a) in the destructive case, (b) in an intermediate case, (c) in the constructive case. The quantity A2

corresponds to the non-resonant background. It is not specific to the molecular species but to the
inorganic components of the system.

The first term defines what is called the non-resonant background of the SFG signal.
The second term is the vibrational resonance, and the third is an interference term between
the substrate and the adsorbate. In the constructive case, the vibration appears as a peak on
the SFG spectrum (Figure 12c); in the destructive case, it appears as a dip (Figure 12a). The
above-mentioned description of the SFG response of an interface is phenomenological and
easy to use for data fitting. In addition, it is worth noting that recent theoretical and analyt-
ical models developed for doubly resonant SFG and DFG spectroscopies give a quantified
description of complex phenomena related to vibronic couplings inside molecules [75,76].

4.6. Prospects in SFG Spectroscopy and Microscopy

Beyond the mathematical formalism introduced here and applied to surface-specific
Two-colour SFG spectroscopy, we emphasize that the intrinsic symmetry properties of SFG
spectroscopy allow to relate its susceptibility chiral components to the broader concept of
vibrational optical activity (VOA) already developed for infrared and Raman spectroscopy,
widening the field of investigation not only for any type of surface or (buried) interface
but also for bulk materials (in volume). Nowadays, chiral SFG spectroscopy is a potential
powerful local probe aimed at playing specifically with (bio)molecular symmetry rules in
primary, secondary and ternary biological structures. In fact, it is the object of numerous
experimental developments and studies [77], constituting the utmost probe of VOA [78,79]
for both interfacial and bulk samples, which is counter-intuitive at first glance for non-linear
2nd order optical probes in the latter case. Moreover, chiral SFG allows to distinguish
between non-zero susceptibility components as a function of the sample symmetry at the
molecular, nanometer and microscopic scale: it allows therefore to discriminate chiral
interface, chiral bulk, achiral interface and achiral bulk properties, respectively. In these
conditions, it is clear that SFG sensitivity is greatly enhanced as a function of the selected
polarization combination triplet (x, y, z) for χ

(2)
ijk in the 3-dimensional space. It can therefore

be applied to distinguish different enantiomers in racemic mixtures, analyse the geometry
inside polymer thin films or a the air/proteins interfaces. More exciting for the future, it
could be also applied to selectively detect complementary DNA strands in the development
of biosensors for medical purposes. A dedicated theoretical formalism for VOA SFG has to
be developed in the future and our contribution could constitute a solid foundation for
such a demanding task.

Finally, promising developments show that it is possible to use SFG in microscopy
imaging [80–83], thus offering the possibility of probing interfaces at least with 100 nm
spatial resolution.
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5. Conclusions

In this review, by revisiting past and current literature on the fundamentals of linear
(first order) and non-linear optics (second and third orders), we have established a coherent
and unified mathematical description for the major optical vibrational and electronic
spectroscopies thanks to a progressive description of their own characteristics and interest
field: absorption, scattering, fluorescence, infrared, Raman and sum-frequency generation
(SFG) processes, compatible with the current and past experimental observations. This
made it possible to remove the ambiguities observed in literature for the description of the
susceptibilities of materials. The emblematic case of SFG spectroscopy has been addressed
in details because it relies on the selection and exclusion rules of infrared and Raman
spectroscopies, strictly correlated to (centro)symmetry properties of interface and bulk
materials. While nowadays SFG spectroscopy is mainly aimed at probing surfaces and
interfaces at multiscale, from the atomic to the biological scale, the presence of chiral
parameters in the design of complex hybrid organic/inorganic systems opens the door to a
bright and exciting future in the analysis of their physico-chemical properties: a new age of
non-linear spectroscopy is on the edge!
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